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Intractable target distributions

Consider a Bayesian model for parameter 6:

m(0ly) < f(yl0) =(0):=7#(0ly).
—_— —— =~

Posterior Likelihood  Prior

The posterior is often complicated enough that it is only known up to the
unnormalized 7#(6|y).

Markov chain Monte Carlo (MCMC) algorithms may be used to sample from
m(0]y)-
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Accept-Reject based MCMC

An accept-reject MCMC algorithm (k + 1) update:

1. Generate 0* ~ q(6*|0x)
2. Set 041 = 6* with probability «(6, 6*).
3. EIse, 9k+1 = Hk.

Of course (0, 0*) is chosen to satisfy posterior invariance.
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Accept-Reject based MCMC

An accept-reject MCMC algorithm (k + 1) update:

1. Generate 0* ~ q(6*|0x)
2. Set 041 = 6* with probability «(6, 6*).
3. EIse, 9k+1 = Hk.

Of course (0, 0*) is chosen to satisfy posterior invariance.

If a(6,0*) can be evaluated, then obtaining an event with prob. «(6,6*) is by:

Get U ~ U(0,1) and check is U < «(6,6")
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Metropolis-Hastings (MH)

A popular acceptance probability used is the Metropolis-Hastings acceptance
probability:

apn(6,0%) = min {1 7r(9*y)q(9|9*)}

- 7(0%]y) q(0|0*)
2 (0ly) a(6°160) {1 }

" 7 (0ly) q(0%]0)
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Metropolis-Hastings (MH)

A popular acceptance probability used is the Metropolis-Hastings acceptance
probability:

o m(0"]y) q(0]0*)\ _ . 7(0]y) q(6|0%)
amy(6,07) = min {17 (@) 3 10) } = min {1, #(0y) 90 10) }

Of course, if 7(0]y) is known, then MH can be implemented easily.
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Intractable posteriors

Consider problems that yield targets that cannot be evaluated. This may be for
example, because

~(6ly) = / g(0.nly)dn.

This problem arises in
» Priors on constrained spaces
» Missing data - imputation

» Bayesian inference for diffusions
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Intractable posteriors

Consider problems that yield targets that cannot be evaluated. This may be for
example, because

~(6ly) = / g(0.nly)dn.

This problem arises in
» Priors on constrained spaces
» Missing data - imputation

» Bayesian inference for diffusions

Here,
m(0*]y) q(0«|6*) }

amn(0,6") = min {1’ 7(0]y) q(0%]60x)

cannot be evaluated.
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Barker's algorithm

Barker (1965) proposed the acceptance function:

m(0"ly) q(016~)
(0ly) a(6%10) + m(6*|y) a(6]6*)

a5(979*) = -

Barker’s algorithm is not very popular due to Peskun's ordering result.
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Peskun Ordering (Peskun, 1973)

Let X, = n=1Y", h(X;) be a Monte Carlo estimator for a function h. Let Pg and
Pumn be Barker's and MH Markov kernels. Then
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Peskun Ordering (Peskun, 1973)

Let X, = n=1Y", h(X;) be a Monte Carlo estimator for a function h. Let Pg and
Pumn be Barker's and MH Markov kernels. Then

var,(Pmu, h) < var(Pg, h) < 2var;(Pmu, h) + Var,(h)
where var, (P, h) = lim,_ nVar()_(h) is the asymptotic variance when X; is

produced from P.

So although Barker's is more inefficient, it is not too much so.
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Barker's for intractable posteriors

But Barker's still doesn't solve our problem since 7(6|y) still appears in the
function:

m(0*|y) q(0]0)
(Oly) q(0%[0) + m(6*|y) q(0]6*)

aB(G, 9*) = -
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Barker's for intractable posteriors

But Barker's still doesn't solve our problem since 7(6|y) still appears in the
function:

m(0*|y) q(0]0)
(Oly) q(0%[0) + m(6*|y) q(0]6*)

aB(G, 9*) = -

To the rescue: Bernoulli factory!
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Bernoulli factory

A Bernoulli factory is an algorithm that generates a Bernoulli event of probability
h(p) for some function h(-), using Bernoulli(p) events.
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A Bernoulli factory is an algorithm that generates a Bernoulli event of probability
h(p) for some function h(-), using Bernoulli(p) events.

Want events of prob. ag(f,0*) without evaluating it.
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Bernoulli factory

A Bernoulli factory is an algorithm that generates a Bernoulli event of probability
h(p) for some function h(-), using Bernoulli(p) events.

Want events of prob. ag(f,0*) without evaluating it. Gongalves et al. (2017)
proposed the following. Suppose we can, find ¢y

m(0ly)q(07|0) < co.

Then set w(0]y)q(6*|0) = cops where

py— TN _
Co

)
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Bernoulli factory

A Bernoulli factory is an algorithm that generates a Bernoulli event of probability

h(p) for some function h(-), using Bernoulli(p) events.

Want events of prob. ag(f,0*) without evaluating it. Gongalves et al. (2017)

proposed the following. Suppose we can, find ¢y
m(0]y)q(0%10) < co.
Then set w(0]y)q(6*|0) = cops where

py— TN _
Co

)

Then to generate events with probability

(0% |y)q(6%|0) Co~ Po-

m(01y)a(016*) +w(0*ly)q(6+10) — cope + co- po-

they propose a two-coin algorithm.
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Two-coin algorithm

1. Draw C; ~ Bern <C0>
Cop + Co~

2. If (3 =1, then

2.1 Draw G, ~ Bern(pg~)

2.2 If G; =1, then output 1

2.3 If G, =0, then goto Step 1
3. If GG =0, then

3.1 Draw G, ~ Bern(ps)

3.2 If G; =1, then output 0

3.3 If G =0, then go to Step 1

The above algorithm outputs 1 w.p. ag(6,6*).
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Two-coin algorithm

1. Draw C; ~ Bern <C0>
Cop + Co~

2. If (3 =1, then

2.1 Draw G, ~ Bern(pg~)

2.2 If G; =1, then output 1

2.3 If G, =0, then goto Step 1
3. If GG =0, then

3.1 Draw G, ~ Bern(ps)

3.2 If G; =1, then output 0

3.3 If G =0, then go to Step 1

The above algorithm outputs 1 w.p. ag(d,6*). But how do we sample Bern(py)?
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Two-coin algorithm

To sample Bern(py), note that

py = TOY)a(0710) _ a(010) [ (0, nly)dn

Co Co

Suppose support of 7 is bounded.

11/25



Two-coin algorithm

To sample Bern(py), note that

m(0ly)q(6*10) _ q(6*10) [ &(0,nly)dn

Co Co

Suppose support of 7 is bounded. Then draw N ~ Uniform within support of n

and set
q(0"10)g(0", Nly)

Co

My =

and E(Mp) =

So if C; ~ Bern(My), then
PHCo = 1) = E(I(G, = 1)) = E(E(I(G, = 1)|Mp)) = po

So G, ~ Bern(pg)
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Two-coin algorithm

1. Draw C; ~ Bern <C0>
Co + Co~

2. If (3 =1, then

2.1 Draw G, ~ Bern(po~)

2.2 If G; =1, then output 1

2.3 If G, =0, then goto Step 1
3. If GG =0, then

3.1 Draw G, ~ Bern(py)

3.2 If G; =1, then output 0

3.3 If G =0, then go to Step 1

Algorithm restarts often if py or pyg~ are small. That is, if we propose unlikely
values in the Barker's algorithm, algorithm gets stuck in a loop.
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Portkey Barker's algorithm

Here, the acceptance probability need not be the ratio of the target densities.
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Portkey Barker's algorithm

Here, the acceptance probability need not be the ratio of the target densities. We
propose the Portkey Barker’s algorithm for d(6,60*) > 0.

m(0*|y)q(0]0%)
7(0]y)q(0%(0) + 7 (0*|y)q(0]6*) + d(6,6%)

O[p(e, 9*) =
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Portkey Barker's algorithm

Here, the acceptance probability need not be the ratio of the target densities. We
propose the Portkey Barker’s algorithm for d(6,60*) > 0.

m(0*|y)q(0]0%)
7(0]y)q(0%(0) + 7 (0*|y)q(0]6*) + d(6,6%)

O[p(e, 9*) =

Theorem
Ifd(8,0%) = d(6%,6), then ap(0,6*) yields a m-invariant Markov chain.
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Portkey Barker's algorithm

Here, the acceptance probability need not be the ratio of the target densities. We
propose the Portkey Barker’s algorithm for d(6,60*) > 0.

m(0*|y)q(0]0%)
7(0]y)q(0%(0) + 7 (0*|y)q(0]6*) + d(6,6%)

O[p(e, 9*) =

Theorem
Ifd(8,0%) = d(6%,6), then ap(0,6*) yields a m-invariant Markov chain.

We consider, for 5 > 0,
m(0*]y)q(016")
1
m(0]y)q(0*10) + m(0*]y)q(0]0*) +

Oéﬁ(e, 9*) =

gﬁ(cm + @)

3 =1 is Barker's.
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Portkey Barker's algorithm

(0" ]y)q(0]0%)

7(60ly)a(0*16) + 7(6*]y)a(610") + - -

Ideally, choose 8 ~ 1 so as to remain close to the Barker’s algorithm. Because:

ag(0,0") =

B(c(;* + @)
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Portkey Barker's algorithm

(0" ]y)q(0]0%)

7(60ly)a(0*16) + 7(6*]y)a(610") + - -

ag(0,0") =

B(c(;* + @)

Ideally, choose 8 ~ 1 so as to remain close to the Barker’s algorithm. Because:

Theorem
For 5 >0,
varg(h, Pg) < Bvarg(h, Pg) + (8 — 1) Var(h).
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Portkey Barker's algorithm

(0" ]y)q(0]0%)

7(60ly)a(0*16) + 7(6*]y)a(610") + - -

ag(0,0") =

B(c(;* + @)

Ideally, choose 8 ~ 1 so as to remain close to the Barker’s algorithm. Because:

Theorem
For 5 >0,
varg(h, Pg) < Bvarg(h, Pg) + (8 — 1) Var(h).

and if there exists v > 0 such that pg- > -y and pg > -y, then

varg(h, Pg) < (1 + 1;;) var.(h, Pg) +

VB

Var,(h).

Then why use Portkey Barker's?
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Portkey Two-coin algorithm

1. Draw S ~ Bern(/5) (S is the portkey?)
2. If § =0, output 0.
3.1fS=1,

3.1 Draw G ~ Bern (L>
Co + Co=
3.2 If GG =1, then
3.2.1 Draw G, ~ Bern(pg+)
3.2.2 If G; =1, then output 1
3.2.3 If G =0, then goto Step 1
3.3 If GG =0, then
3.3.1 Draw G, ~ Bern(py)
3.3.2 If G =1, then output 0

3.3.3 If G, =0, then go to Step 1

2Yes, this is a Harry Potter reference
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Flipped Portkey's

Notice that if we divide Portkey Barker's throughout by
m(0%[y)q(0]6") w(0]y)q(07|0)
then,

m(0*|y)q(0]6%)
m(0ly)q(0*|0) + m(0*|y)q(010*) + d(0, 0*)

Oép(e, 9*) =

_ (x(6ly)q(6"[6))"*
(w(61y)q(6°[6)) " + (w(6°1y)a(6167))  + d'(6,6)
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Flipped Portkey's

Notice that if we divide Portkey Barker's throughout by
m(0%[y)q(0]6") w(0]y)q(07|0)
then,

m(0*|y)q(0]6%)
m(0ly)q(0*|0) + m(0*|y)q(010*) + d(0, 0*)

Oép(e, 9*) =

m(6ly)q(6*]6)) "
(m(0ly)q(0+10))~t + (m(0*|y)q(0]0*))~* + d'(0,6*)

So if we can lower bound m(0|y)q(6*|0), we can implement a similar Portkey
two-coin algorithm.

16/25



Application: Bayesian Correlation Estimation

Suppose
iid
Yi,--- ayan ~ N(O’ R)

where R is a p X p correlation matrix.
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Application: Bayesian Correlation Estimation

Suppose
iid
Yi,--- ayan ~ N(O5 R)

where R is a p X p correlation matrix.
Let S be the set of p x p correlation matrices. Liechty et al. (2009) set priors:

1 L 2
exp < — 7(”1 )
V2mo? 202

fF(R| po?) = L(uvaz)H’

i<j

- 1 (rg — p)?
LY (0, 02 :/ - e {—” dr;
(4.07) ReS*H\/27T02 P 202 Y

Py
Further, i ~ N(0,72) and 02 ~ IG(ag, bo) are chosen. Interest is in the posterior
distribution for (R, u, 02).

}]I{R € S;}, where
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MCMC steps

Let / = p(p — 1)/2. Implement a component-wise algorithm:

_ tr(R1YTY rij — p)?
o P | IO [

We use Metropolis-Hastings update with a Gaussian proposal for each rj;.
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MCMC steps

Let / = p(p — 1)/2. Implement a component-wise algorithm:

tr(RlYTY)}eXp{_W

frij | r—ijs s 02) X |R|7n/2 exp {_ 5 202 }]I{lijﬁrijéul'j}

We use Metropolis-Hastings update with a Gaussian proposal for each rj;.

u)2 NG
Rt Lo | el ).

1<J

(rlJ M)Q 1 ao+//2+1 bo
R L( -~ %
F(0® | R, p) o< L(p, %) [ [ exp { 5 = expi—— 0,

i<j

Running Metropolis steps for the conditional updates of x and o2 is not possible.

Liechty et al. (2009) use an approximate inference shadow prior approach.
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Application: Flipped Portkey Barker's

Let's focus on the p update:
2 2 (rj — p)? 12
fu | R,o%) o L, o )Hexp{_zgz}exp{‘w

i<j

Recall,

L_I(M,U2):/ Hlexp{_(ru_'u)z}dru
Res; ok V2ma? 202

P i<

19/25



Application: Flipped Portkey Barker's

Let's focus on the p update:

1 Ryt oo {2 o {5}

i<j

P i<y

Recall,

1 rij — 2
e e L

Obtaining an unbiased estimate of L~! is simple since
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Application: Flipped Portkey Barker's

Let's focus on the p update:

)2 12
f(u|R,0°) o< L(p,0? Hexp{ }exp{—w}

1<J

Recall,

_ 1 (rj —m)
- [T se{ -,
(1.07) ReS*H 2mo? P 202 i’

Py

Obtaining an unbiased estimate of L~! is simple since
_ _ _ / o
L HNp,0?) < [@ (01 —p) —® (e (-1—-p))] =&,

which gives us a lower bound for f( | R,02). So we can use flipped portkey
Barker's algorithm.
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Application: Flipped Portkey Barker's
Let's focus on the p update:
)2 12
f(u|R,0°) o< L(p,0? Eexp{ }exp{—w}

Recall,

_ 1 (rj —m)
- [T se{ -,
(1.07) ReS*H 2mo? P 202 i’

Py

Obtaining an unbiased estimate of L~! is simple since
_ _ _ / o
L HNp,0?) < [@ (01 —p) —® (e (-1—-p))] =&,

which gives us a lower bound for f( | R,02). So we can use flipped portkey
Barker's algorithm.

We study the correlation of the closing prices of the four major European stocks
from 1991-1998.
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Number of loops

12

10

Log of the number of loops for p
6

Figure: Log of the
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ratio of the Bernoulli factory loops for one run of length 1e5.
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Example: ACF plots
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Figure: Autocorrelation plot for one run of length 1e5.
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Example: Efficiency

Table: Averaged results from 10 replications of length 1e4

B 1 .90
ESS 542 (1350) 496 (9.00)
ESS/s 9.63 (192) 14.83 (0219
Mean loops u 218.43 (asse)  2.99 (0.010)
Mean loops o2 3.21 0o 2.49 (o)
Max loops p 2084195 (14017m7) 34 2oy
Max loops o2 38 @13 27 sy
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Example: Efficiency

Table: Averaged results from 10 replications of length 1e4

B 1 .90
ESS 542 (1350) 496 (9.00)
ESS/s 9.63 (192) 14.83 (0219
Mean loops u 218.43 (asse)  2.99 (0.010)
Mean loops o2 3.21 0o 2.49 (o)
Max loops p 2084195 (14017m7) 34 2oy
Max loops o2 38 @13 27 sy

Could only do 10 replications as 8 = 1 original would get stuck in large loops!
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Attempting properly tuned proposal

Agrawal et al. (2023) showed that the optimal acceptance rate for Barker's
acceptance function is 15.8%. If the proposal distribution is tuned to this:
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acceptance function is 15.8%. If the proposal distribution is tuned to this:

B = .90: 10* samples in 40s with estimated ESS = 514
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Attempting properly tuned proposal

Agrawal et al. (2023) showed that the optimal acceptance rate for Barker's
acceptance function is 15.8%. If the proposal distribution is tuned to this:

B = .90: 10* samples in 40s with estimated ESS = 514

B = 1: not even 10° samples in 24hrs and simulation was forcibly stopped.
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Conclusion

Vats, D., Gongalves, F., Latusynski, K., Roberts, G. O.,
Efficient Bernoulli Factory MCMC for intractable posteriors, Biometrika, 2022

Advantages
» Markovian dynamics are mildly altered for f ~ 1
» Exact MCMC

» Significantly more robust

Disadvantages
» Loss of statistical efficiency from MH algorithms

» Finding the bounds cy may be challenging.
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Conclusion

Vats, D., Gongalves, F., Latusynski, K., Roberts, G. O.,
Efficient Bernoulli Factory MCMC for intractable posteriors, Biometrika, 2022

Advantages
» Markovian dynamics are mildly altered for f ~ 1
» Exact MCMC

» Significantly more robust

Disadvantages
» Loss of statistical efficiency from MH algorithms

» Finding the bounds cy may be challenging.

Thank You!
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