# Efficient Bernoulli factory MCMC for intractable posteriors<sup>1</sup>

Dootika Vats Indian Institute of Technology Kanpur

CS Katha Barta Talk Series, NISER

October 4, 2023

<sup>&</sup>lt;sup>1</sup>Joint with F.B. Gonçalves, K. Łatuszyński, G.O. Roberts

#### Intractable target distributions

Consider a Bayesian model for parameter  $\theta$ :

$$\underbrace{\pi(\theta|y)}_{\text{Posterior}} \propto \underbrace{f(y|\theta)}_{\text{Likelihood}} \underbrace{\pi(\theta)}_{\text{Prior}} := \tilde{\pi}(\theta|y) \,.$$

The posterior is often complicated enough that it is only known up to the unnormalized  $\tilde{\pi}(\theta|y)$ .

Markov chain Monte Carlo (MCMC) algorithms may be used to sample from  $\pi(\theta|y).$ 

## Accept-Reject based MCMC

An accept-reject MCMC algorithm (k + 1) update:

- 1. Generate  $\theta^* \sim q(\theta^* | \theta_k)$
- 2. Set  $\theta_{k+1} = \theta^*$  with probability  $\alpha(\theta_k, \theta^*)$ .
- 3. Else,  $\theta_{k+1} = \theta_k$ .

Of course  $\alpha(\theta, \theta^*)$  is chosen to satisfy posterior invariance.

## Accept-Reject based MCMC

An accept-reject MCMC algorithm (k + 1) update:

- 1. Generate  $\theta^* \sim q(\theta^* | \theta_k)$
- 2. Set  $\theta_{k+1} = \theta^*$  with probability  $\alpha(\theta_k, \theta^*)$ .
- 3. Else,  $\theta_{k+1} = \theta_k$ .

Of course  $\alpha(\theta, \theta^*)$  is chosen to satisfy posterior invariance.

If  $\alpha(\theta, \theta^*)$  can be evaluated, then obtaining an event with prob.  $\alpha(\theta, \theta^*)$  is by: Get  $U \sim U(0, 1)$  and check is  $U \leq \alpha(\theta, \theta^*)$ 

# Metropolis-Hastings (MH)

A popular acceptance probability used is the Metropolis-Hastings acceptance probability:

$$\alpha_{MH}(\theta, \theta^*) = \min\left\{1, \frac{\pi(\theta^*|y) q(\theta|\theta^*)}{\pi(\theta|y) q(\theta^*|\theta)}\right\} = \min\left\{1, \frac{\tilde{\pi}(\theta^*|y) q(\theta|\theta^*)}{\tilde{\pi}(\theta|y) q(\theta^*|\theta)}\right\}$$

# Metropolis-Hastings (MH)

A popular acceptance probability used is the Metropolis-Hastings acceptance probability:

$$\alpha_{MH}(\theta,\theta^*) = \min\left\{1, \frac{\pi(\theta^*|y) q(\theta|\theta^*)}{\pi(\theta|y) q(\theta^*|\theta)}\right\} = \min\left\{1, \frac{\tilde{\pi}(\theta^*|y) q(\theta|\theta^*)}{\tilde{\pi}(\theta|y) q(\theta^*|\theta)}\right\}$$

Of course, if  $\tilde{\pi}(\theta|y)$  is known, then MH can be implemented easily.

#### Intractable posteriors

Consider problems that yield targets that *cannot* be evaluated. This may be for example, because

$$\pi( heta|y) = \int_\eta g( heta,\eta|y) d\eta \, .$$

This problem arises in

- Priors on constrained spaces
- Missing data imputation
- Bayesian inference for diffusions

#### Intractable posteriors

Consider problems that yield targets that *cannot* be evaluated. This may be for example, because

$$\pi( heta|y) = \int_\eta g( heta,\eta|y) d\eta \, .$$

This problem arises in

- Priors on constrained spaces
- Missing data imputation
- Bayesian inference for diffusions

Here,

$$\alpha_{MH}(\theta, \theta^*) = \min\left\{1, \frac{\pi(\theta^*|y) \, q(\theta_k|\theta^*)}{\pi(\theta|y) \, q(\theta^*|\theta_k)}\right\}$$

cannot be evaluated.

Barker (1965) proposed the acceptance function:

$$\alpha_B(\theta, \theta^*) = \frac{\pi(\theta^*|y) \, q(\theta|\theta^*)}{\pi(\theta|y) \, q(\theta^*|\theta) + \pi(\theta^*|y) \, q(\theta|\theta^*)}$$

Barker's algorithm is not very popular due to Peskun's ordering result.

# Peskun Ordering (Peskun, 1973)

Let  $\bar{X}_h = n^{-1} \sum_t h(X_t)$  be a Monte Carlo estimator for a function h. Let  $P_B$  and  $P_{MH}$  be Barker's and MH Markov kernels. Then

# Peskun Ordering (Peskun, 1973)

Let  $\bar{X}_h = n^{-1} \sum_t h(X_t)$  be a Monte Carlo estimator for a function h. Let  $P_B$  and  $P_{MH}$  be Barker's and MH Markov kernels. Then

$$\operatorname{var}_{\pi}(P_{MH},h) \leq \operatorname{var}_{\pi}(P_B,h) \leq 2\operatorname{var}_{\pi}(P_{MH},h) + \operatorname{Var}_{\pi}(h)$$

where  $\operatorname{var}_{\pi}(P, h) = \lim_{n \to \infty} n \operatorname{Var}(\bar{X}_h)$  is the asymptotic variance when  $X_t$  is produced from P.

So although Barker's is more inefficient, it is not too much so.

#### Barker's for intractable posteriors

But Barker's still doesn't solve our problem since  $\pi(\theta|y)$  still appears in the function:

$$\alpha_B(\theta, \theta^*) = \frac{\pi(\theta^*|y) \, q(\theta|\theta^*)}{\pi(\theta|y) \, q(\theta^*|\theta) + \pi(\theta^*|y) \, q(\theta|\theta^*)}$$

#### Barker's for intractable posteriors

But Barker's still doesn't solve our problem since  $\pi(\theta|y)$  still appears in the function:

$$\alpha_B(\theta, \theta^*) = \frac{\pi(\theta^*|y) \, q(\theta|\theta^*)}{\pi(\theta|y) \, q(\theta^*|\theta) + \pi(\theta^*|y) \, q(\theta|\theta^*)}$$

To the rescue: Bernoulli factory!

A Bernoulli factory is an algorithm that generates a Bernoulli event of probability h(p) for some function  $h(\cdot)$ , using Bernoulli(p) events.

A Bernoulli factory is an algorithm that generates a Bernoulli event of probability h(p) for some function  $h(\cdot)$ , using Bernoulli(p) events.

Want events of prob.  $\alpha_{B}(\theta, \theta^{*})$  without evaluating it.

A Bernoulli factory is an algorithm that generates a Bernoulli event of probability h(p) for some function  $h(\cdot)$ , using Bernoulli(p) events.

Want events of prob.  $\alpha_{\rm B}(\theta, \theta^*)$  without evaluating it. Gonçalves et al. (2017) proposed the following. Suppose we can, find  $c_{\theta}$ 

 $\pi( heta|y)q( heta^*| heta)\leq c_ heta$  .

Then set  $\pi(\theta|y)q(\theta^*|\theta) = c_{\theta}p_{\theta}$  where

$$m{p}_{ heta} = rac{\pi( heta|y)m{q}( heta^*| heta)}{m{c}_{ heta}} \leq 1,$$

A Bernoulli factory is an algorithm that generates a Bernoulli event of probability h(p) for some function  $h(\cdot)$ , using Bernoulli(p) events.

Want events of prob.  $\alpha_{\rm B}(\theta, \theta^*)$  without evaluating it. Gonçalves et al. (2017) proposed the following. Suppose we can, find  $c_{\theta}$ 

 $\pi( heta|y)q( heta^*| heta)\leq c_ heta$  .

Then set  $\pi( heta|y)q( heta^*| heta)=c_ heta p_ heta$  where

$$oldsymbol{p}_{ heta} = rac{\pi( heta|y) oldsymbol{q}( heta^*| heta)}{oldsymbol{c}_{ heta}} \leq 1,$$

Then to generate events with probability

$$\frac{\pi(\theta^*|y)q(\theta^*|\theta)}{\pi(\theta|y)q(\theta|\theta^*) + \pi(\theta^*|y)q(\theta^*|\theta)} = \frac{c_{\theta^*}p_{\theta^*}}{c_{\theta}p_{\theta} + c_{\theta^*}p_{\theta^*}}$$

they propose a *two-coin* algorithm.

1. Draw 
$$C_1 \sim \mathsf{Bern}\left(rac{c_{ heta^*}}{c_{ heta}+c_{ heta^*}}
ight)$$

- 2. If  $C_1 = 1$ , then
  - 2.1 Draw  $C_2 \sim \text{Bern}(p_{\theta^*})$
  - 2.2 If  $C_2 = 1$ , then output 1
  - 2.3 If  $C_2 = 0$ , then go o Step 1
- 3. If  $C_1 = 0$ , then
  - 3.1 Draw  $C_2 \sim \text{Bern}(p_{\theta})$
  - 3.2 If  $C_2 = 1$ , then output 0
  - 3.3 If  $C_2 = 0$ , then go to Step 1

The above algorithm outputs 1 w.p.  $\alpha_B(\theta, \theta^*)$ .

1. Draw 
$$C_1 \sim \mathsf{Bern}\left(rac{c_{ heta^*}}{c_{ heta}+c_{ heta^*}}
ight)$$

- 2. If  $C_1 = 1$ , then
  - 2.1 Draw  $C_2 \sim \text{Bern}(p_{\theta^*})$
  - 2.2 If  $C_2 = 1$ , then output 1
  - 2.3 If  $C_2 = 0$ , then go o Step 1
- 3. If  $C_1 = 0$ , then
  - 3.1 Draw  $C_2 \sim \text{Bern}(p_{\theta})$
  - 3.2 If  $C_2 = 1$ , then output 0
  - 3.3 If  $C_2 = 0$ , then go to Step 1

The above algorithm outputs 1 w.p.  $\alpha_B(\theta, \theta^*)$ . But how do we sample Bern $(p_\theta)$ ?

To sample  $Bern(p_{\theta})$ , note that

$$p_{ heta} = rac{\pi( heta|y)q( heta^*| heta)}{c_{ heta}} = rac{q( heta^*| heta)\int g( heta,\eta|y)d\eta}{c_{ heta}}$$

Suppose support of  $\eta$  is bounded.

To sample  $Bern(p_{\theta})$ , note that

$$p_{ heta} = rac{\pi( heta|y)q( heta^*| heta)}{c_{ heta}} = rac{q( heta^*| heta)\int g( heta,\eta|y)d\eta}{c_{ heta}}$$

Suppose support of  $\eta$  is bounded. Then draw  $N \sim$  Uniform within support of  $\eta$  and set

$$M_{ heta} = rac{q( heta^*| heta)g( heta^*,N|y)}{c_{ heta}} \quad ext{and } \mathsf{E}(M_{ heta}) = p_{ heta} \,.$$

So if  $C_2 \sim \text{Bern}(M_{\theta})$ , then

$$\Pr(C_2=1) = \mathsf{E}\left(\mathbb{I}(C_2=1)\right) = \mathsf{E}\left(\mathsf{E}\left(\mathbb{I}(C_2=1)|M_\theta\right)\right) = p_\theta.$$

So  $C_2 \sim \text{Bern}(p_\theta)$ 

1. Draw 
$$C_1 \sim \text{Bern}\left(rac{c_{ heta^*}}{c_{ heta}+c_{ heta^*}}
ight)$$

- 2. If  $C_1 = 1$ , then
  - 2.1 Draw  $C_2 \sim \text{Bern}(p_{\theta^*})$
  - 2.2 If  $C_2 = 1$ , then output 1
  - 2.3 If  $C_2 = 0$ , then goto Step 1
- 3. If  $C_1 = 0$ , then
  - 3.1 Draw  $C_2 \sim \text{Bern}(p_{\theta})$
  - 3.2 If  $C_2 = 1$ , then output 0
  - 3.3 If  $C_2 = 0$ , then go to Step 1

Algorithm restarts often if  $p_{\theta}$  or  $p_{\theta^*}$  are small. That is, if we propose unlikely values in the Barker's algorithm, algorithm gets stuck in a loop.

Here, the acceptance probability need not be the ratio of the target densities.

Here, the acceptance probability need not be the ratio of the target densities. We propose the *Portkey Barker's* algorithm for  $d(\theta, \theta^*) \ge 0$ .

$$\alpha_{P}(\theta, \theta^{*}) = \frac{\pi(\theta^{*}|y)q(\theta|\theta^{*})}{\pi(\theta|y)q(\theta^{*}|\theta) + \pi(\theta^{*}|y)q(\theta|\theta^{*}) + d(\theta, \theta^{*})}$$

Here, the acceptance probability need not be the ratio of the target densities. We propose the *Portkey Barker's* algorithm for  $d(\theta, \theta^*) \ge 0$ .

$$\alpha_P(\theta, \theta^*) = \frac{\pi(\theta^*|y)q(\theta|\theta^*)}{\pi(\theta|y)q(\theta^*|\theta) + \pi(\theta^*|y)q(\theta|\theta^*) + d(\theta, \theta^*)}$$

Theorem

If  $d(\theta, \theta^*) = d(\theta^*, \theta)$ , then  $\alpha_P(\theta, \theta^*)$  yields a  $\pi$ -invariant Markov chain.

Here, the acceptance probability need not be the ratio of the target densities. We propose the *Portkey Barker's* algorithm for  $d(\theta, \theta^*) \ge 0$ .

$$\alpha_{P}(\theta, \theta^{*}) = \frac{\pi(\theta^{*}|y)q(\theta|\theta^{*})}{\pi(\theta|y)q(\theta^{*}|\theta) + \pi(\theta^{*}|y)q(\theta|\theta^{*}) + d(\theta, \theta^{*})}$$

Theorem If  $d(\theta, \theta^*) = d(\theta^*, \theta)$ , then  $\alpha_P(\theta, \theta^*)$  yields a  $\pi$ -invariant Markov chain.

We consider, for  $\beta > 0$ ,

$$\alpha_{\beta}(\theta, \theta^{*}) = \frac{\pi(\theta^{*}|y)q(\theta|\theta^{*})}{\pi(\theta|y)q(\theta^{*}|\theta) + \pi(\theta^{*}|y)q(\theta|\theta^{*}) + \frac{1-\beta}{\beta}(c_{\theta^{*}} + c_{\theta})}$$

 $\beta = 1$  is Barker's.

$$\alpha_{\beta}(\theta, \theta^{*}) = \frac{\pi(\theta^{*}|y)q(\theta|\theta^{*})}{\pi(\theta|y)q(\theta^{*}|\theta) + \pi(\theta^{*}|y)q(\theta|\theta^{*}) + \frac{1-\beta}{\beta}(c_{\theta^{*}} + c_{\theta})}$$

Ideally, choose  $\beta\approx 1$  so as to remain close to the Barker's algorithm. Because:

$$\alpha_{\beta}(\theta, \theta^{*}) = \frac{\pi(\theta^{*}|y)q(\theta|\theta^{*})}{\pi(\theta|y)q(\theta^{*}|\theta) + \pi(\theta^{*}|y)q(\theta|\theta^{*}) + \frac{1-\beta}{\beta}(c_{\theta^{*}} + c_{\theta})}$$

Ideally, choose  $\beta\approx 1$  so as to remain close to the Barker's algorithm. Because:

#### Theorem

For  $\beta > 0$ ,

$$\operatorname{var}_{\pi}(h, P_B) \leq \beta \operatorname{var}_{\pi}(h, P_{\beta}) + (\beta - 1)\operatorname{Var}_{\pi}(h)$$
.

$$\alpha_{\beta}(\theta, \theta^{*}) = \frac{\pi(\theta^{*}|y)q(\theta|\theta^{*})}{\pi(\theta|y)q(\theta^{*}|\theta) + \pi(\theta^{*}|y)q(\theta|\theta^{*}) + \frac{1-\beta}{\beta}(c_{\theta^{*}} + c_{\theta})}$$

Ideally, choose  $\beta \approx 1$  so as to remain close to the Barker's algorithm. Because:

#### Theorem

For  $\beta > 0$ ,

$$\operatorname{var}_{\pi}(h, P_B) \leq \beta \operatorname{var}_{\pi}(h, P_{\beta}) + (\beta - 1) \operatorname{Var}_{\pi}(h).$$

and if there exists  $\gamma > 0$  such that  $p_{\theta^*} > \gamma$  and  $p_{\theta} > \gamma$ , then

$$\mathsf{var}_{\pi}(h, \mathsf{P}_{\beta}) \leq \left(1 + \frac{1 - \beta}{\gamma \beta}\right) \mathsf{var}_{\pi}(h, \mathsf{P}_{B}) + \frac{1 - \beta}{\gamma \beta} \mathsf{Var}_{\pi}(h).$$

Then why use Portkey Barker's?

# Portkey Two-coin algorithm

- 1. Draw  $S \sim \text{Bern}(\beta)$  (S is the portkey<sup>2</sup>)
- 2. If S = 0, output 0.
- 3. If *S* = 1,

3.1 Draw 
$$C_1 \sim \text{Bern}\left(\frac{c_{\theta^*}}{c_{\theta} + c_{\theta^*}}\right)$$

- 3.2 If  $C_1 = 1$ , then
  - 3.2.1 Draw  $C_2 \sim \text{Bern}(p_{\theta^*})$
  - 3.2.2 If  $C_2 = 1$ , then output 1
  - 3.2.3 If  $C_2 = 0$ , then go o Step 1
- 3.3 If  $C_1 = 0$ , then
  - 3.3.1 Draw  $C_2 \sim \text{Bern}(p_{\theta})$
  - 3.3.2 If  $C_2 = 1$ , then output 0
  - 3.3.3 If  $C_2 = 0$ , then go to Step 1

<sup>&</sup>lt;sup>2</sup>Yes, this is a Harry Potter reference

## Flipped Portkey's

Notice that if we divide Portkey Barker's throughout by

 $\pi(\theta^*|y)q(\theta|\theta^*) \ \pi(\theta|y)q(\theta^*|\theta)$ 

then,

$$\begin{aligned} \alpha_P(\theta, \theta^*) &= \frac{\pi(\theta^*|y)q(\theta|\theta^*)}{\pi(\theta|y)q(\theta^*|\theta) + \pi(\theta^*|y)q(\theta|\theta^*) + d(\theta, \theta^*)} \\ &= \frac{(\pi(\theta|y)q(\theta^*|\theta))^{-1}}{(\pi(\theta|y)q(\theta^*|\theta))^{-1} + (\pi(\theta^*|y)q(\theta|\theta^*))^{-1} + d'(\theta, \theta^*)} \end{aligned}$$

# Flipped Portkey's

Notice that if we divide Portkey Barker's throughout by

 $\pi(\theta^*|y)q(\theta|\theta^*) \pi(\theta|y)q(\theta^*|\theta)$ 

then,

$$\alpha_P(\theta, \theta^*) = \frac{\pi(\theta^*|y)q(\theta|\theta^*)}{\pi(\theta|y)q(\theta^*|\theta) + \pi(\theta^*|y)q(\theta|\theta^*) + d(\theta, \theta^*)}$$
$$= \frac{(\pi(\theta|y)q(\theta^*|\theta))^{-1}}{(\pi(\theta|y)q(\theta^*|\theta))^{-1} + (\pi(\theta^*|y)q(\theta|\theta^*))^{-1} + d'(\theta, \theta^*)}$$

So if we can *lower bound*  $\pi(\theta|y)q(\theta^*|\theta)$ , we can implement a similar Portkey two-coin algorithm.

# Application: Bayesian Correlation Estimation

Suppose

$$y_1,\ldots,y_n|R\overset{iid}{\sim}N(0,R)$$

where R is a  $p \times p$  correlation matrix.

### Application: Bayesian Correlation Estimation

Suppose

$$y_1,\ldots,y_n|R\stackrel{iid}{\sim}N(0,R)$$

where R is a  $p \times p$  correlation matrix.

Let  $S_p^+$  be the set of  $p \times p$  correlation matrices. Liechty et al. (2009) set priors:

$$f(R \mid \mu, \sigma^2) = L(\mu, \sigma^2) \prod_{i < j} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(r_{ij} - \mu)^2}{2\sigma^2}\right\} \mathbb{I}\{R \in S_p^+\}, \text{ where}$$
$$L^{-1}(\mu, \sigma^2) = \int_{R \in S_p^+} \prod_{i < j} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(r_{ij} - \mu)^2}{2\sigma^2}\right\} dr_{ij}$$

Further,  $\mu \sim N(0, \tau^2)$  and  $\sigma^2 \sim IG(a_0, b_0)$  are chosen. Interest is in the posterior distribution for  $(R, \mu, \sigma^2)$ .

## MCMC steps

Let l = p(p-1)/2. Implement a component-wise algorithm:

$$f(r_{ij} \mid r_{-ij}, \mu, \sigma^2) \propto |R|^{-n/2} \exp\left\{-\frac{\operatorname{tr}(R^{-1}Y^TY)}{2}\right\} \exp\left\{-\frac{(r_{ij}-\mu)^2}{2\sigma^2}\right\} \mathbb{I}_{\{I_{ij} \leq r_{ij} \leq u_{ij}\}}$$

We use Metropolis-Hastings update with a Gaussian proposal for each  $r_{ij}$ .

#### MCMC steps

Let l = p(p-1)/2. Implement a component-wise algorithm:

$$f(r_{ij} \mid r_{-ij}, \mu, \sigma^2) \propto |R|^{-n/2} \exp\left\{-\frac{\operatorname{tr}(R^{-1}Y^TY)}{2}\right\} \exp\left\{-\frac{(r_{ij}-\mu)^2}{2\sigma^2}\right\} \mathbb{I}_{\{l_{ij} \leq r_{ij} \leq u_{ij}\}}$$

We use Metropolis-Hastings update with a Gaussian proposal for each  $r_{ij}$ .

$$f(\mu \mid R, \sigma^2) \propto L(\mu, \sigma^2) \prod_{i < j} \exp\left\{-\frac{(r_{ij} - \mu)^2}{2\sigma^2}\right\} \exp\left\{-\frac{\mu^2}{2\tau^2}\right\},$$
  
$$f(\sigma^2 \mid R, \mu) \propto L(\mu, \sigma^2) \prod_{i < j} \exp\left\{-\frac{(r_{ij} - \mu)^2}{2\sigma^2}\right\} \left(\frac{1}{\sigma^2}\right)^{a_0 + l/2 + 1} \exp\left\{-\frac{b_0}{\sigma^2}\right\},$$

Running Metropolis steps for the conditional updates of  $\mu$  and  $\sigma^2$  is not possible. Liechty et al. (2009) use an approximate inference shadow prior approach.

Let's focus on the  $\mu$  update:

$$f(\mu \mid R, \sigma^2) \propto L(\mu, \sigma^2) \prod_{i < j} \exp\left\{-\frac{(r_{ij} - \mu)^2}{2\sigma^2}\right\} \exp\left\{-\frac{\mu^2}{2\tau^2}\right\}$$

Recall,

$$L^{-1}(\mu,\sigma^2) = \int_{R \in S_p^+} \prod_{i < j} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(r_{ij} - \mu)^2}{2\sigma^2}\right\} dr_{ij}$$

Let's focus on the  $\mu$  update:

$$f(\mu \mid R, \sigma^2) \propto L(\mu, \sigma^2) \prod_{i < j} \exp\left\{-\frac{(r_{ij} - \mu)^2}{2\sigma^2}\right\} \exp\left\{-\frac{\mu^2}{2\tau^2}\right\}$$

Recall,

$$L^{-1}(\mu, \sigma^{2}) = \int_{R \in S_{p}^{+}} \prod_{i < j} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left\{-\frac{(r_{ij} - \mu)^{2}}{2\sigma^{2}}\right\} dr_{ij}$$

Obtaining an unbiased estimate of  $L^{-1}$  is simple since

Let's focus on the  $\mu$  update:

$$f(\mu \mid R, \sigma^2) \propto L(\mu, \sigma^2) \prod_{i < j} \exp\left\{-\frac{(r_{ij} - \mu)^2}{2\sigma^2}\right\} \exp\left\{-\frac{\mu^2}{2\tau^2}\right\}$$

Recall,

$$L^{-1}(\mu, \sigma^{2}) = \int_{R \in S_{p}^{+}} \prod_{i < j} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left\{-\frac{(r_{ij} - \mu)^{2}}{2\sigma^{2}}\right\} dr_{ij}$$

Obtaining an unbiased estimate of  $L^{-1}$  is simple since

$$L^{-1}(\mu,\sigma^2) \leq \left[\Phi\left(\sigma^{-1}(1-\mu)
ight) - \Phi\left(\sigma^{-1}(-1-\mu)
ight)
ight]' := ilde{c}_{\mu}$$

which gives us a lower bound for  $f(\mu \mid R, \sigma^2)$ . So we can use flipped portkey Barker's algorithm.

Let's focus on the  $\mu$  update:

$$f(\mu \mid R, \sigma^2) \propto L(\mu, \sigma^2) \prod_{i < j} \exp\left\{-\frac{(r_{ij} - \mu)^2}{2\sigma^2}\right\} \exp\left\{-\frac{\mu^2}{2\tau^2}\right\}$$

Recall,

$$L^{-1}(\mu, \sigma^{2}) = \int_{R \in S_{p}^{+}} \prod_{i < j} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left\{-\frac{(r_{ij} - \mu)^{2}}{2\sigma^{2}}\right\} dr_{ij}$$

Obtaining an unbiased estimate of  $L^{-1}$  is simple since

$$L^{-1}(\mu,\sigma^2) \leq \left[\Phi\left(\sigma^{-1}(1-\mu)
ight) - \Phi\left(\sigma^{-1}(-1-\mu)
ight)
ight]^I := ilde{c}_{\mu}$$

which gives us a lower bound for  $f(\mu \mid R, \sigma^2)$ . So we can use flipped portkey Barker's algorithm.

We study the correlation of the closing prices of the four major European stocks from 1991-1998.

#### Number of loops



Figure: Log of the ratio of the Bernoulli factory loops for one run of length 1e5.

## Example: ACF plots



Figure: Autocorrelation plot for one run of length 1e5.

# Example: Efficiency

#### Table: Averaged results from 10 replications of length 1e4

| β                     | 1                 | .90           |
|-----------------------|-------------------|---------------|
| ESS                   | 542 (13.50)       | 496 (9.00)    |
| ESS/s                 | 9.63 (1.992)      | 14.83 (0.279) |
| Mean loops $\mu$      | 218.43 (148.89)   | 2.99 (0.010)  |
| Mean loops $\sigma^2$ | 3.21 (0.02)       | 2.49 (0.010)  |
| Max loops $\mu$       | 2084195 (1491777) | 34 (2.94)     |
| Max loops $\sigma^2$  | 38 (1.13)         | 27 (1.51)     |

# Example: Efficiency

Table: Averaged results from 10 replications of length 1e4

| β                                  | 1                 | .90           |
|------------------------------------|-------------------|---------------|
| ESS                                | 542 (13.50)       | 496 (9.00)    |
| ESS/s                              | 9.63 (1.992)      | 14.83 (0.279) |
| Mean loops $\mu$                   | 218.43 (148.89)   | 2.99 (0.010)  |
| Mean loops $\sigma^2$              | 3.21 (0.02)       | 2.49 (0.010)  |
| Max loops $\mu$                    | 2084195 (1491777) | 34 (2.94)     |
| ${\rm Max}\ {\rm loops}\ \sigma^2$ | 38 (1.13)         | 27 (1.51)     |

Could only do 10 replications as  $\beta = 1$  original would get stuck in large loops!

# Attempting properly tuned proposal

Agrawal et al. (2023) showed that the optimal acceptance rate for Barker's acceptance function is 15.8%. If the proposal distribution is tuned to this:

# Attempting properly tuned proposal

Agrawal et al. (2023) showed that the optimal acceptance rate for Barker's acceptance function is 15.8%. If the proposal distribution is tuned to this:

 $\beta = .90$ : 10<sup>4</sup> samples in 40s with estimated ESS = 514

# Attempting properly tuned proposal

Agrawal et al. (2023) showed that the optimal acceptance rate for Barker's acceptance function is 15.8%. If the proposal distribution is tuned to this:

 $\beta = .90$ : 10<sup>4</sup> samples in 40s with estimated ESS = 514

 $\beta = 1$ : not even 10<sup>3</sup> samples in 24hrs and simulation was forcibly stopped.

# Conclusion

Vats, D., Gonçalves, F., Łatusyński, K., Roberts, G. O., Efficient Bernoulli Factory MCMC for intractable posteriors, Biometrika, 2022

#### Advantages

- Markovian dynamics are mildly altered for  $\beta \approx 1$
- Exact MCMC
- Significantly more robust

#### Disadvantages

- Loss of statistical efficiency from MH algorithms
- Finding the bounds  $c_{\theta}$  may be challenging.

# Conclusion

Vats, D., Gonçalves, F., Łatusyński, K., Roberts, G. O., Efficient Bernoulli Factory MCMC for intractable posteriors, Biometrika, 2022

#### Advantages

- Markovian dynamics are mildly altered for  $\beta \approx 1$
- Exact MCMC
- Significantly more robust

#### Disadvantages

- Loss of statistical efficiency from MH algorithms
- Finding the bounds  $c_{\theta}$  may be challenging.

# Thank You!

# Reference I

- Agrawal, S., Vats, D., Łatuszyński, K., and Roberts, G. O. (2023). Optimal scaling of MCMC beyond Metropolis. *Advances in Applied Probability*, 55(2):492–509.
- Barker, A. A. (1965). Monte Carlo calculations of the radial distribution functions for a proton-electron plasma. *Australian Journal of Physics*, 18:119–134.
- Gonçalves, F. B., Łatuszyński, K., Roberts, G. O., et al. (2017). Barker's algorithm for Bayesian inference with intractable likelihoods. *Brazilian Journal of Probability and Statistics*, 31:732–745.
- Liechty, M. W., Liechty, J. C., and Müller, P. (2009). The shadow prior. *Journal of Computational and Graphical Statistics*, 18:368–383.
- Peskun, P. (1973). Optimum Monte-Carlo sampling using Markov Chains. *Biometrika*, 89:745–754.