
New Frontiers for Speech and Language Processing
An Indian Language Perspective

Preethi Jyothi, IIT Bombay
CS Katha Barta, NISER

March 28, 2023

Speech and Language Technologies (SLT) for India
• SLT faces significant challenges in India

• With hundreds of languages, thousands of dialects*

* Census 2011: 19,569 raw linguistic affiliations, 1369 rationalized mother tongues

• High correlation between supervision for a language/accent and its final WER [1]

[1] “Robust Speech Recognition via Large-scale Weak Supervision”, Radford et al., https://arxiv.org/pdf/2212.04356.pdf, Dec 2022

“We observe lower accuracy on low-resource and/or  
low-discoverability languages or languages where  
we have less training data. The models also exhibit  
disparate performance on different accents and  
dialects of particular languages.” 
 
https://github.com/openai/whisper/blob/main/model-card.md

Low-Resource
SLT

Non-native
language effects

Noisy
Environments

Constrained
Devices/

Platforms

Speech and Language Technologies (SLT) for India
• SLT faces significant challenges in India

• With hundreds of languages, thousands of dialects*
• High correlation between supervision for a language/accent and its final WER [1]

Code-
switching

Accent

Multilingual
Systems Multimodal

Data

Low-Resource
SLT

Non-native
language effects

Noisy
Environments

Constrained
Devices/

Platforms

Speech and Language Technologies (SLT) for India

Code-
switching

Multilingual
Systems Multimodal

Data

Accent

• Non-native accents pose a significant challenge to state-of-the-art ASR systems

Image from https://fairspeech.stanford.edu/, 2020

Word Error Rates (WERs)

Voice Is the Next Big Platform, Unless You Have an Accent

• Can we use blackbox service APIs to guide a local ASR system targeting specific accents?

Adapting Black-box ASR Systems to Accented Speech

• Guided inference to adapt a black-box ASR system to speech from a target accent

w⇤
1 , . . . , w

⇤
m

<latexit sha1_base64="VFwEZSWIfbQi3tctrYY63b6m+B4=">AAACFHicbVDLSsNAFJ3UV62v+Ni5GSyCSClJFXRZdOOygn1AG8NkMmmHziRhZqLU0N9w7Va/wZ24de8n+BdO2iy07YELZ865lzv3eDGjUlnWt1FYWl5ZXSuulzY2t7Z3zN29lowSgUkTRywSHQ9JwmhImooqRjqxIIh7jLS94XXmtx+IkDQK79QoJg5H/ZAGFCOlJdc8eLw/de0K7DE/UrICsyd3zbJVtSaA88TOSRnkaLjmT8+PcMJJqDBDUnZtK1ZOioSimJFxqZdIEiM8RH3S1TREnEgnnfx+DI+14sMgErpCBSfq34kUcSlH3NOdHKmBnPUycaHn8UVyN1HBpZPSME4UCfF0f5AwqCKYJQR9KghWbKQJwoLqEyAeIIGw0jmWdDb2bBLzpFWr2mfV2u15uX6Vp1QEh+AInAAbXIA6uAEN0AQYPIEX8ArejGfj3fgwPqetBSOf2Qf/YHz9AvGYnR0=</latexit>

Google
ASR Engine

(w1, s1), . . . , (wn, sn)
<latexit sha1_base64="hdQZ1XQCJewIvgKDbIK+LbJOPvA=">AAACHHicbZDLSgMxGIUzXmu9jbrURbAILZQyUwVdFt24rGAv0A5DJs20oUlmSDJKGbrxQVy71WdwJ24FH8G3MG1noW0PBA7f+X/Cf4KYUaUd59taWV1b39jMbeW3d3b39u2Dw6aKEolJA0csku0AKcKoIA1NNSPtWBLEA0ZawfBmkrceiFQ0Evd6FBOPo76gIcVIG+TbJ8VH3y0r3y2VYZf1Iq3K0CBhkCj5dsGpOFPBReNmpgAy1X37p9uLcMKJ0JghpTquE2svRVJTzMg4300UiREeoj7pGCsQJ8pLp1eM4ZkhPRhG0jyh4ZT+3UgRV2rEAzPJkR6o+WwCl2YBX4Y7iQ6vvJSKONFE4Nn/YcKgjuCkKdijkmDNRsYgLKk5AeIBkghr02fedOPON7FomtWKe16p3l0UatdZSzlwDE5BEbjgEtTALaiDBsDgCbyAV/BmPVvv1of1ORtdsbKdI/BP1tcv0G2fmw==</latexit>

X
<latexit sha1_base64="tclmv0MBcfQqqHYzV4JVK6f09IM=">AAACCHicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BLx4jmAcmS5idzCZDZmaXmVkhLPkBz171G7yJV//CT/AvnE32oEkKGoqqbrq7gpgzbVz32ymsrW9sbhW3Szu7e/sH5cOjlo4SRWiTRDxSnQBrypmkTcMMp51YUSwCTtvB+Dbz209UaRbJBzOJqS/wULKQEWys9NgT2IyCMO1M++WKW3VnQMvEy0kFcjT65Z/eICKJoNIQjrXuem5s/BQrwwin01Iv0TTGZIyHtGupxIJqP51dPEVnVhmgMFK2pEEz9e9EioXWExHYzuxCvehl4kovEKvkbmLCaz9lMk4MlWS+P0w4MhHKUkEDpigxfGIJJorZFxAZYYWJsdmVbDbeYhLLpFWrehfV2v1lpX6Tp1SEEziFc/DgCupwBw1oAgEJL/AKb86z8+58OJ/z1oKTzxzDPzhfvxlumjI=</latexit>

Local
Accented ASR L<latexit sha1_base64="82PvolTfddVoZs+lYnwjvFoScas=">AAACCXicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BLx48RDAPSJYwO5lNhszsLDOzQljyBZ696jd4E69+hZ/gXzib7EGTFDQUVd10dwUxZ9q47rdTWFvf2Nwqbpd2dvf2D8qHRy0tE0Vok0guVSfAmnIW0aZhhtNOrCgWAaftYHyb+e0nqjST0aOZxNQXeBixkBFsrNTtCWxGBPP0ftovV9yqOwNaJl5OKpCj0S//9AaSJIJGhnCsdddzY+OnWBlGOJ2WeommMSZjPKRdSyMsqPbT2clTdGaVAQqlshUZNFP/TqRYaD0Rge3MTtSLXiau9AKxSu4mJrz2UxbFiaERme8PE46MRFksaMAUJYZPLMFEMfsCIiOsMDE2vJLNxltMYpm0alXvolp7uKzUb/KUinACp3AOHlxBHe6gAU0gIOEFXuHNeXbenQ/nc95acPKZY/gH5+sX1iaamA==</latexit>

Inference

X
<latexit sha1_base64="tclmv0MBcfQqqHYzV4JVK6f09IM=">AAACCHicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BLx4jmAcmS5idzCZDZmaXmVkhLPkBz171G7yJV//CT/AvnE32oEkKGoqqbrq7gpgzbVz32ymsrW9sbhW3Szu7e/sH5cOjlo4SRWiTRDxSnQBrypmkTcMMp51YUSwCTtvB+Dbz209UaRbJBzOJqS/wULKQEWys9NgT2IyCMO1M++WKW3VnQMvEy0kFcjT65Z/eICKJoNIQjrXuem5s/BQrwwin01Iv0TTGZIyHtGupxIJqP51dPEVnVhmgMFK2pEEz9e9EioXWExHYzuxCvehl4kovEKvkbmLCaz9lMk4MlWS+P0w4MhHKUkEDpigxfGIJJorZFxAZYYWJsdmVbDbeYhLLpFWrehfV2v1lpX6Tp1SEEziFc/DgCupwBw1oAgEJL/AKb86z8+58OJ/z1oKTzxzDPzhfvxlumjI=</latexit>

 KJAS’20 K. Khandelwal, P. Jyothi, A. Awasthi and S. Sarawagi, Black-box Adaptation of ASR for Accented Speech, Interspeech 2020

 KJAS’20

Adapting Black-box ASR systems to Accented Speech

• We propose a guided inference algorithm (FineMerge)

• Build a local ASR system specific to the target accent

• Predicts character distributions for T input frames at test time

• Align service characters from to each frame using to get

• Revise to selectively support service characters

L
P

s P
P → Ps

• Guided inference to adapt a black-box ASR system to speech from a target accent

S1, . . . , ST
<latexit sha1_base64="0jrmGp2B2p27uTvaWCJT2ar2Bt8=">AAACDHicbZDLSgMxGIUzXmu9VV26CRbBRSkzVdBl0Y3LSq/QjkMmk2lDcxmSjFCGvoJrt/oM7sSt7+Aj+Baml4W2PRD4OOf/SXLChFFtXPfbWVvf2Nzazu3kd/f2Dw4LR8ctLVOFSRNLJlUnRJowKkjTUMNIJ1EE8ZCRdji8m+TtJ6I0laJhRgnxOeoLGlOMjLUe64FX6rFIGl2qB42gUHTL7lRwGbw5FMFctaDw04skTjkRBjOkdddzE+NnSBmKGRnne6kmCcJD1CddiwJxov1s+uoxPLdOBGOp7BEGTt2/GxniWo94aCc5MgO9mE3MlVnIV9nd1MQ3fkZFkhoi8Oz+OGXQSDhpBkZUEWzYyALCitovQDxACmFj+8vbbrzFJpahVSl7l+XKw1WxejtvKQdOwRm4AB64BlVwD2qgCTBQ4AW8gjfn2Xl3PpzP2eiaM985Af/kfP0Cwpqa/w==</latexit>

P1, . . . , PT ,
<latexit sha1_base64="LruNEheuA1tOo9Sykgr/E23hWa4=">AAACGnicbZDNSgMxFIUz/tb6N+pON8EiuChlpgq6LLpxWaF/0JYhk0nb0ExmTO4IZSj4IK7d6jO4E7dufATfwrSdhbY9EDiccy/hfn4suAbH+bZWVtfWNzZzW/ntnd29ffvgsKGjRFFWp5GIVMsnmgkuWR04CNaKFSOhL1jTH95O+uYjU5pHsgajmHVD0pe8xykBE3n2cdVzix0RRKCLVa+GO6A4kX3BHrBnF5ySMxVeNG5mCihT1bN/OkFEk5BJoIJo3XadGLopUcCpYON8J9EsJnRI+qxtrCQh0910esMYn5kkwL1ImScBT9O/GykJtR6FvpkMCQz0fDcJl3Z+uCxuJ9C77qZcxgkwSWf/9xKBIcITTjjgilEQI2MIVdycgOmAKELB0MwbNu48iUXTKJfci1L5/rJQucko5dAJOkXnyEVXqILuUBXVEUVP6AW9ojfr2Xq3PqzP2eiKle0coX+yvn4BToOgBQ==</latexit>

accents for training a single model [15] to more recent work that
uses adversarial learning objectives to extract accent-invariant
feature representations from speech [16, 17]. A second cate-
gory of methods are accent dependent methods that adapt to the
speaker’s accent. Early approaches were HMM-based acoustic
model adaptation and pronunciation model augmentation with
accent-specific pronunciations [18, 19]. Within neural models,
accent adaptation was achieved via accent-specific output lay-
ers [3, 4] and hierarchical models in a multitask learning set-
ting [8]. A more recent work jointly learns an accent classifier
and accent-dependent models [5, 6, 7]. Our method is also ac-
cent dependent but we need to adapt a black-box service model.
We build local accent-adapted ASR systems, which are in turn
guided during inference by service predictions.
Black box ASR Systems. Speech transcription services have
seen widespread use in recent years. However, the underlying
ASR systems in these services are black box systems. Adapting
such models to a client’s needs would be of great utility but prior
work in this area is sparse. [20] shows how to optimize black
box ASR systems. and [21] shows how to improve confidence
estimates produced by such black-box systems. Another closely
related work [10] is to use a domain-specific language model
and a semantic parser to rescore the hypotheses from a black-
box ASR system. Unlike their method, we achieve a more fine-
grained integration of our client model with the service.
System Combination Approaches. Ours can be viewed as
a type of system combination approach which has seen wide
use in ASR. ROVER (Recognizer Output Voting Error Reduc-
tion) [13] is one of the most popular techniques that first com-
bines predictions from different systems using an alignment
step followed by a weighted voting step. Prior work on dialectal
speech recognition [14] observed that using the best output from
a dialect-specific model is more accurate than techniques like
ROVER. Unlike ROVER that considers each individual system
as a black-box, our method that leverages white-box access to
a local accent-adapted ASR system is more targeted to correct
accent errors and ultimately more accurate.

3. Our Approach

Given an audio signal x, we invoke the service model S on x
and get the transcript s comprising of tokens s1, . . . , sk, along
with token-level confidences p1, . . . , pk. In addition the client
can invoke a local white-box model C that has been trained/fine-
tuned on a limited accented labeled data. On input x, let c =
c1, . . . , cr denote the transcript from the local model C with
token-level confidences q = q1, . . . , qr . In general the number
of tokens in the two outputs (k, r) could be different.

One option to merge the transcripts of the two models is
using a word-level aligner like Rover [13]. However, for accent
errors we expect the service to be wrong only on a sub-part of a
word, say a ’t’ being wrongly identified as a ’d’. The local tran-
script c might correct some accent errors while missing out on
other parts of the word. In general, the local model is expected
to be weaker than the service on all but the accent errors, for
the client to want to pay for the service. As an example con-
sider the first sentence in Table 3 showing the gold transcript
y, service transcript s, and local transcript c for an Indian ac-
cented model. The service model fails to recognize the t in
toasted and outputs posted. The local model recognizes
the t but yields tostate. To reconstruct the correct word in
such cases we need a finer-grained splicing at sub-word level.

Given the prevalence of character-level models in modern
ASR systems we then sought to splice the two transcripts at

1 St p o s t e d d
Pt(St) 6e-5 1e-11 1 0.34 0.01 0.93 0.99 0.44 0.29 0.98

2 dt t t o o s t a t d
Pt(dt) 0.99 0.99 1.0 0.63 0.98 0.93 0.99 0.55 0.64 0.98

3 rt t t o s t e d d
P s
t (rt) 0.62 0.99 1.0 0.59 0.61 0.93 0.99 0.66 0.57 0.98

Pt(rt) 0.99 0.99 1.0 0.34 0.98 0.93 0.99 0.44 0.29 0.98
Frame t 1 2 3 4 5 6 7 8 9 10

Table 1: Example: Client model revising frame-level charac-
ter distribution P ! Ps using service transcript s=’posted’
in FineMerge. dt = argmaxcPt(c) and rt = argmaxcP

s
t (c).

First row shows aligned service characters and their probabil-
ity from P, second row shows the modes of the P distribution,
third row shows the argmax rt of the revised distribution and its
probability from the revised and original distribution.

the character-level. Designing a good character-level merging
strategy is challenging because of large divergences between
the two outputs both because of the differential strengths of
their acoustic models and the introduction of unheard characters
when biasing with their respective language models. Strategies
like combining the characters from the two outputs using Rover-
like algorithms fail to distinguish between the two types of er-
rors in the absence of accurate character-level confidence from
the service. For example, aligning the characters in posted
with tostate yielded toosttd

We finally designed an algorithm that exploits white-box
access to the local model C to guide its decoding using the ser-
vice transcript s, instead of merging a fixed c from C.

We assume the local model C is trained using the standard
CTC loss invoked on frame-level character distributions [22]
that maximizes likelihood of the target y by marginalizing over
all alignments compatible with y. During inference, the trained
model generates the distribution over alignments for an input
x and predicts character distributions P1, . . . , PT , P at each
of the T frames of the input. From these probability distribu-
tions, an output sequence c is recovered using beam-decoding
in conjunction with a language model (LM).

We guide this inference using the service transcript in two
steps: First align the service characters with each frame of the
local model using its frame-level probability distributions P.
Next revise P to selectively support s. We elaborate these steps
next. A pseudo code appears in Algorithm 1.

Aligning service characters Our first step is to expand out
the characters in s over the T frames by repeating characters or
inserting blanks so as to maximize the probability of the aligned
characters as per P1, . . . , PT . Let S denote the highest proba-
bility expanded character sequence. An example is shown in
Table 1 where s = posted is aligned over T = 10 frames
and the resulting S is shown in the first row. The full P cannot
be shown but we show the probability of the aligned character
below it and the maximizing character probability in the sec-
ond row. Such a forced alignment of s with P can be solved
optimally using a simple Viterbi-like dynamic programming al-
gorithm. The algorithm processes s time-synchronously over
the T frames such that either a symbol from s or a blank is pro-
duced as output at each frame. This is referred to as “Viterbi-
align” in Algorithm 1. Successfully aligning the service char-
acters requires an additional consideration. The server’s output
s contains characters that can be attributed to both accent errors
and cascaded language model errors. We therefore smooth P
distribution by adding a small constant 10�20 to all probability

accents for training a single model [15] to more recent work that
uses adversarial learning objectives to extract accent-invariant
feature representations from speech [16, 17]. A second cate-
gory of methods are accent dependent methods that adapt to the
speaker’s accent. Early approaches were HMM-based acoustic
model adaptation and pronunciation model augmentation with
accent-specific pronunciations [18, 19]. Within neural models,
accent adaptation was achieved via accent-specific output lay-
ers [3, 4] and hierarchical models in a multitask learning set-
ting [8]. A more recent work jointly learns an accent classifier
and accent-dependent models [5, 6, 7]. Our method is also ac-
cent dependent but we need to adapt a black-box service model.
We build local accent-adapted ASR systems, which are in turn
guided during inference by service predictions.
Black box ASR Systems. Speech transcription services have
seen widespread use in recent years. However, the underlying
ASR systems in these services are black box systems. Adapting
such models to a client’s needs would be of great utility but prior
work in this area is sparse. [20] shows how to optimize black
box ASR systems. and [21] shows how to improve confidence
estimates produced by such black-box systems. Another closely
related work [10] is to use a domain-specific language model
and a semantic parser to rescore the hypotheses from a black-
box ASR system. Unlike their method, we achieve a more fine-
grained integration of our client model with the service.
System Combination Approaches. Ours can be viewed as
a type of system combination approach which has seen wide
use in ASR. ROVER (Recognizer Output Voting Error Reduc-
tion) [13] is one of the most popular techniques that first com-
bines predictions from different systems using an alignment
step followed by a weighted voting step. Prior work on dialectal
speech recognition [14] observed that using the best output from
a dialect-specific model is more accurate than techniques like
ROVER. Unlike ROVER that considers each individual system
as a black-box, our method that leverages white-box access to
a local accent-adapted ASR system is more targeted to correct
accent errors and ultimately more accurate.

3. Our Approach

Given an audio signal x, we invoke the service model S on x
and get the transcript s comprising of tokens s1, . . . , sk, along
with token-level confidences p1, . . . , pk. In addition the client
can invoke a local white-box model C that has been trained/fine-
tuned on a limited accented labeled data. On input x, let c =
c1, . . . , cr denote the transcript from the local model C with
token-level confidences q = q1, . . . , qr . In general the number
of tokens in the two outputs (k, r) could be different.

One option to merge the transcripts of the two models is
using a word-level aligner like Rover [13]. However, for accent
errors we expect the service to be wrong only on a sub-part of a
word, say a ’t’ being wrongly identified as a ’d’. The local tran-
script c might correct some accent errors while missing out on
other parts of the word. In general, the local model is expected
to be weaker than the service on all but the accent errors, for
the client to want to pay for the service. As an example con-
sider the first sentence in Table 3 showing the gold transcript
y, service transcript s, and local transcript c for an Indian ac-
cented model. The service model fails to recognize the t in
toasted and outputs posted. The local model recognizes
the t but yields tostate. To reconstruct the correct word in
such cases we need a finer-grained splicing at sub-word level.

Given the prevalence of character-level models in modern
ASR systems we then sought to splice the two transcripts at

1 St p o s t e d d
Pt(St) 6e-5 1e-11 1 0.34 0.01 0.93 0.99 0.44 0.29 0.98

2 dt t t o o s t a t d
Pt(dt) 0.99 0.99 1.0 0.63 0.98 0.93 0.99 0.55 0.64 0.98

3 rt t t o s t e d d
P s
t (rt) 0.62 0.99 1.0 0.59 0.61 0.93 0.99 0.66 0.57 0.98

Pt(rt) 0.99 0.99 1.0 0.34 0.98 0.93 0.99 0.44 0.29 0.98
Frame t 1 2 3 4 5 6 7 8 9 10

Table 1: Example: Client model revising frame-level charac-
ter distribution P ! Ps using service transcript s=’posted’
in FineMerge. dt = argmaxcPt(c) and rt = argmaxcP

s
t (c).

First row shows aligned service characters and their probabil-
ity from P, second row shows the modes of the P distribution,
third row shows the argmax rt of the revised distribution and its
probability from the revised and original distribution.

the character-level. Designing a good character-level merging
strategy is challenging because of large divergences between
the two outputs both because of the differential strengths of
their acoustic models and the introduction of unheard characters
when biasing with their respective language models. Strategies
like combining the characters from the two outputs using Rover-
like algorithms fail to distinguish between the two types of er-
rors in the absence of accurate character-level confidence from
the service. For example, aligning the characters in posted
with tostate yielded toosttd

We finally designed an algorithm that exploits white-box
access to the local model C to guide its decoding using the ser-
vice transcript s, instead of merging a fixed c from C.

We assume the local model C is trained using the standard
CTC loss invoked on frame-level character distributions [22]
that maximizes likelihood of the target y by marginalizing over
all alignments compatible with y. During inference, the trained
model generates the distribution over alignments for an input
x and predicts character distributions P1, . . . , PT , P at each
of the T frames of the input. From these probability distribu-
tions, an output sequence c is recovered using beam-decoding
in conjunction with a language model (LM).

We guide this inference using the service transcript in two
steps: First align the service characters with each frame of the
local model using its frame-level probability distributions P.
Next revise P to selectively support s. We elaborate these steps
next. A pseudo code appears in Algorithm 1.

Aligning service characters Our first step is to expand out
the characters in s over the T frames by repeating characters or
inserting blanks so as to maximize the probability of the aligned
characters as per P1, . . . , PT . Let S denote the highest proba-
bility expanded character sequence. An example is shown in
Table 1 where s = posted is aligned over T = 10 frames
and the resulting S is shown in the first row. The full P cannot
be shown but we show the probability of the aligned character
below it and the maximizing character probability in the sec-
ond row. Such a forced alignment of s with P can be solved
optimally using a simple Viterbi-like dynamic programming al-
gorithm. The algorithm processes s time-synchronously over
the T frames such that either a symbol from s or a blank is pro-
duced as output at each frame. This is referred to as “Viterbi-
align” in Algorithm 1. Successfully aligning the service char-
acters requires an additional consideration. The server’s output
s contains characters that can be attributed to both accent errors
and cascaded language model errors. We therefore smooth P
distribution by adding a small constant 10�20 to all probability

accents for training a single model [15] to more recent work that
uses adversarial learning objectives to extract accent-invariant
feature representations from speech [16, 17]. A second cate-
gory of methods are accent dependent methods that adapt to the
speaker’s accent. Early approaches were HMM-based acoustic
model adaptation and pronunciation model augmentation with
accent-specific pronunciations [18, 19]. Within neural models,
accent adaptation was achieved via accent-specific output lay-
ers [3, 4] and hierarchical models in a multitask learning set-
ting [8]. A more recent work jointly learns an accent classifier
and accent-dependent models [5, 6, 7]. Our method is also ac-
cent dependent but we need to adapt a black-box service model.
We build local accent-adapted ASR systems, which are in turn
guided during inference by service predictions.
Black box ASR Systems. Speech transcription services have
seen widespread use in recent years. However, the underlying
ASR systems in these services are black box systems. Adapting
such models to a client’s needs would be of great utility but prior
work in this area is sparse. [20] shows how to optimize black
box ASR systems. and [21] shows how to improve confidence
estimates produced by such black-box systems. Another closely
related work [10] is to use a domain-specific language model
and a semantic parser to rescore the hypotheses from a black-
box ASR system. Unlike their method, we achieve a more fine-
grained integration of our client model with the service.
System Combination Approaches. Ours can be viewed as
a type of system combination approach which has seen wide
use in ASR. ROVER (Recognizer Output Voting Error Reduc-
tion) [13] is one of the most popular techniques that first com-
bines predictions from different systems using an alignment
step followed by a weighted voting step. Prior work on dialectal
speech recognition [14] observed that using the best output from
a dialect-specific model is more accurate than techniques like
ROVER. Unlike ROVER that considers each individual system
as a black-box, our method that leverages white-box access to
a local accent-adapted ASR system is more targeted to correct
accent errors and ultimately more accurate.

3. Our Approach

Given an audio signal x, we invoke the service model S on x
and get the transcript s comprising of tokens s1, . . . , sk, along
with token-level confidences p1, . . . , pk. In addition the client
can invoke a local white-box model C that has been trained/fine-
tuned on a limited accented labeled data. On input x, let c =
c1, . . . , cr denote the transcript from the local model C with
token-level confidences q = q1, . . . , qr . In general the number
of tokens in the two outputs (k, r) could be different.

One option to merge the transcripts of the two models is
using a word-level aligner like Rover [13]. However, for accent
errors we expect the service to be wrong only on a sub-part of a
word, say a ’t’ being wrongly identified as a ’d’. The local tran-
script c might correct some accent errors while missing out on
other parts of the word. In general, the local model is expected
to be weaker than the service on all but the accent errors, for
the client to want to pay for the service. As an example con-
sider the first sentence in Table 3 showing the gold transcript
y, service transcript s, and local transcript c for an Indian ac-
cented model. The service model fails to recognize the t in
toasted and outputs posted. The local model recognizes
the t but yields tostate. To reconstruct the correct word in
such cases we need a finer-grained splicing at sub-word level.

Given the prevalence of character-level models in modern
ASR systems we then sought to splice the two transcripts at

1 St p o s t e d d
Pt(St) 6e-5 1e-11 1 0.34 0.01 0.93 0.99 0.44 0.29 0.98

2 dt t t o o s t a t d
Pt(dt) 0.99 0.99 1.0 0.63 0.98 0.93 0.99 0.55 0.64 0.98

3 rt t t o s t e d d
P s
t (rt) 0.62 0.99 1.0 0.59 0.61 0.93 0.99 0.66 0.57 0.98

Pt(rt) 0.99 0.99 1.0 0.34 0.98 0.93 0.99 0.44 0.29 0.98
Frame t 1 2 3 4 5 6 7 8 9 10

Table 1: Example: Client model revising frame-level charac-
ter distribution P ! Ps using service transcript s=’posted’
in FineMerge. dt = argmaxcPt(c) and rt = argmaxcP

s
t (c).

First row shows aligned service characters and their probabil-
ity from P, second row shows the modes of the P distribution,
third row shows the argmax rt of the revised distribution and its
probability from the revised and original distribution.

the character-level. Designing a good character-level merging
strategy is challenging because of large divergences between
the two outputs both because of the differential strengths of
their acoustic models and the introduction of unheard characters
when biasing with their respective language models. Strategies
like combining the characters from the two outputs using Rover-
like algorithms fail to distinguish between the two types of er-
rors in the absence of accurate character-level confidence from
the service. For example, aligning the characters in posted
with tostate yielded toosttd

We finally designed an algorithm that exploits white-box
access to the local model C to guide its decoding using the ser-
vice transcript s, instead of merging a fixed c from C.

We assume the local model C is trained using the standard
CTC loss invoked on frame-level character distributions [22]
that maximizes likelihood of the target y by marginalizing over
all alignments compatible with y. During inference, the trained
model generates the distribution over alignments for an input
x and predicts character distributions P1, . . . , PT , P at each
of the T frames of the input. From these probability distribu-
tions, an output sequence c is recovered using beam-decoding
in conjunction with a language model (LM).

We guide this inference using the service transcript in two
steps: First align the service characters with each frame of the
local model using its frame-level probability distributions P.
Next revise P to selectively support s. We elaborate these steps
next. A pseudo code appears in Algorithm 1.

Aligning service characters Our first step is to expand out
the characters in s over the T frames by repeating characters or
inserting blanks so as to maximize the probability of the aligned
characters as per P1, . . . , PT . Let S denote the highest proba-
bility expanded character sequence. An example is shown in
Table 1 where s = posted is aligned over T = 10 frames
and the resulting S is shown in the first row. The full P cannot
be shown but we show the probability of the aligned character
below it and the maximizing character probability in the sec-
ond row. Such a forced alignment of s with P can be solved
optimally using a simple Viterbi-like dynamic programming al-
gorithm. The algorithm processes s time-synchronously over
the T frames such that either a symbol from s or a blank is pro-
duced as output at each frame. This is referred to as “Viterbi-
align” in Algorithm 1. Successfully aligning the service char-
acters requires an additional consideration. The server’s output
s contains characters that can be attributed to both accent errors
and cascaded language model errors. We therefore smooth P
distribution by adding a small constant 10�20 to all probability

 KJAS’20 K. Khandelwal, P. Jyothi, A. Awasthi and S. Sarawagi, Black-box Adaptation of ASR for Accented Speech, Interspeech 2020

 KJAS’20

Black-box ASR Adaptation

[1] “Black-box Adaptation of ASR for Accented Speech”, K. Khandelwal, P. Jyothi, A. Awasthi, S. Sarawagi, Interspeech 2020

Method WER
(Indian En)

WER
(Australian En)

WER
(British En)

Local 27.99 24.41 25.06

Service 22.32 23.52 20.82

Rover 21.12 18.04 18.10

FineMerge 18.45 16.90 16.47

Black-box ASR Adaptation

[1] “Black-box Adaptation of ASR for Accented Speech”, K. Khandelwal, P. Jyothi, A. Awasthi, S. Sarawagi, Interspeech 2020

Indian Australian

Gold 
Service 
Local 
Rover 

FineMerge

 
for a brief time … 
soda beef time … 

for a breeze time …  
for a beef time … 
for a brief time …  

 
… rope a bull while on a 

… work a bowl while on a 
… rope the ball while on a 
… work a bowl while on a 
… rope a bull while on a 

Method WER
(Indian En)

WER
(Australian En)

WER
(British En)

Local 27.99 24.41 25.06

Service 22.32 23.52 20.82

Rover 21.12 18.04 18.10

FineMerge 18.45 16.90 16.47

Black-box ASR Adaptation

• Words with highest reductions in
error on Indian-accented test
samples

• “however”: Contains the
diphthong /aw/ that has many
phonetic realizations

• “were”: /v/ and /w/ usually overlap
in usage by Indian-accented English
speakers

Personalization: Accent Adaptation For a Specific Speaker

• For personalised ASR, collect speech by asking users to read out selected samples

• How do we select samples? Can we do better than random selection?

X (speech signal)

Selected 
Samples

Sentence Selection

Finding sentences that are ASR error-prone:

1. Learn an “error model” that identifies phonemes in a sentence
that ASR may misrecognize

2. Use a small seed set to train the error model

3. Assign higher scores to sentences with more errors using the

error model

Pick examples that are more (ASR) error-prone

 AKSJ’21 A. Awasthi, A. Kansal, S. Sarawagi, P. Jyothi Error-driven Fixed-budget ASR Personalization for Accented Speakers, ICASSP 2021

 AKSJ’21

“with bang”
yi

Training the Error Model

Next few slides made by Abhijeet Awasthi

“with bang”
yi

“wit bank” ŷi

ASR System

xi

Grapheme to Phoneme

W IH T B AE NG K p̂i

Grapheme to Phoneme

W IH DH B AE NGpi

q0 q1 q2 q3 q4 q5 q6qi

Error Model (BiLSTM)

Training the Error Model

Grapheme to Phoneme

“with bang”

W IH DH B AE NGpi

yi

q0 q1 q2 q3 q4 q5 q6qi

Grapheme to Phoneme

“wit bank”

W IH T B AE NG K p̂i

ŷi

ASR System

xi

Aligned Error Labels

0 0 1 0 0 0 1 ei

Error Model (BiLSTM)

Training the Error Model

Grapheme to Phoneme

“with bang”

W IH DH B AE NGpi

yi

q0 q1 q2 q3 q4 q5 q6qi

Grapheme to Phoneme

“wit bank”

W IH T B AE NG K p̂i

ŷi

ASR System

xi

Aligned Error Labels

0 0 1 0 0 0 1 ei

Error Model (BiLSTM)

Training the Error Model

Grapheme to Phoneme

“with bang”

W IH DH B AE NGpi

yi

q0 q1 q2 q3 q4 q5 q6qi

Grapheme to Phoneme

“wit bank”

W IH T B AE NG K p̂i

ŷi

ASR System

xi

Aligned Error Labels

0 0 1 0 0 0 1 ei

Error Model (BiLSTM)

Training the Error Model

Grapheme to Phoneme

“with bang”

W IH DH B AE NGpi

yi

q0 q1 q2 q3 q4 q5 q6qi

Grapheme to Phoneme

“wit bank”

W IH T B AE NG K p̂i

ŷi

ASR System

xi

Aligned Error Labels

0 0 1 0 0 0 1 ei

Error Model (BiLSTM)

Training the Error Model

Grapheme to Phoneme

“with bang”

W IH DH B AE NGpi

yi

q0 q1 q2 q3 q4 q5 q6qi

Grapheme to Phoneme

“wit bank”

W IH T B AE NG K p̂i

ŷi

ASR System

xi

Aligned Error Labels

0 0 1 0 0 0 1 ei

Error Model (BiLSTM)

Training the Error Model

Grapheme to Phoneme

“with bang”

W IH DH B AE NGpi

yi

q0 q1 q2 q3 q4 q5 q6qi

Grapheme to Phoneme

“wit bank”

W IH T B AE NG K p̂i

ŷi

ASR System

xi

Aligned Error Labels

0 0 1 0 0 0 1 ei

Error Model (BiLSTM)

Training the Error Model

Grapheme to Phoneme

“with bang”

W IH DH B AE NGpi

yi

q0 q1 q2 q3 q4 q5 q6qi

Grapheme to Phoneme

“wit bank”

W IH T B AE NG K p̂i

ŷi

ASR System

xi

Aligned Error Labels

0 0 1 0 0 0 1 ei

Error Model (BiLSTM)

Training the Error Model

Grapheme to Phoneme

“with bang”

W IH DH B AE NGpi

yi

q0 q1 q2 q3 q4 q5 q6qi

Grapheme to Phoneme

“wit bank”

W IH T B AE NG K p̂i

ŷi

ASR System

xi

Aligned Error Labels

0 0 1 0 0 0 1 ei

Error Model (BiLSTM)

Training the Error Model

Grapheme to Phoneme

“with bang”

W IH DH B AE NGpi

yi

q0 q1 q2 q3 q4 q5 q6qi

Grapheme to Phoneme

“wit bank”

W IH T B AE NG K p̂i

ŷi

ASR System

xi

Aligned Error Labels

0 0 1 0 0 0 1 ei

Error Model (BiLSTM)

Cross Entropy Loss

Training the Error Model

Grapheme to Phoneme

“with bang”

p0 p1 p2 p3 p4 p5 p6p

y

q0 q1 q2 q3 q4 q5 q6qi

Error Model (BiLSTM)

Scoring and Selecting Utterances using Error Model

Grapheme to Phoneme

“with bang”

p0 p1 p2 p3 p4 p5 p6p

y

q0 q1 q2 q3 q4 q5 q6qi

Error Model (BiLSTM)

Scoring and Selecting Utterances using Error Model

Grapheme to Phoneme

“with bang”

p0 p1 p2 p3 p4 p5 p6p

y

q0 q1 q2 q3 q4 q5 q6qi

Error Model (BiLSTM)

Prevents bias
towards longer
sentences

Scoring and Selecting Utterances using Error Model

Grapheme to Phoneme

“with bang”

p0 p1 p2 p3 p4 p5 p6p

y

q0 q1 q2 q3 q4 q5 q6qi

Error Model (BiLSTM)

Reduces diversity by selecting repetitive patterns

Prevents bias
towards longer
sentences

Scoring and Selecting Utterances using Error Model

Grapheme to Phoneme

“with bang”

p0 p1 p2 p3 p4 p5 p6p

y

q0 q1 q2 q3 q4 q5 q6qi

Error Model (BiLSTM)

Scoring and Selecting Utterances using Error Model

Grapheme to Phoneme

“with bang”

p0 p1 p2 p3 p4 p5 p6p

y

q0 q1 q2 q3 q4 q5 q6qi

Error Model (BiLSTM)

Scoring and Selecting Utterances using Error Model

Grapheme to Phoneme

“with bang”

p0 p1 p2 p3 p4 p5 p6p

y

q0 q1 q2 q3 q4 q5 q6qi

Error Model (BiLSTM)

Scoring and Selecting Utterances using Error Model

Already selected sentences

Grapheme to Phoneme

“with bang”

p0 p1 p2 p3 p4 p5 p6p

y

q0 q1 q2 q3 q4 q5 q6qi

Error Model (BiLSTM)

Diminishing returns for selecting a phone which
already has a good count in the selected set

Scoring and Selecting Utterances using Error Model

Already selected sentences

Grapheme to Phoneme

“with bang”

p0 p1 p2 p3 p4 p5 p6p

y

q0 q1 q2 q3 q4 q5 q6qi

Error Model (BiLSTM)

Diminishing returns for selecting a phone which
already has a good count in the selected set

Scoring and Selecting Utterances using Error Model

(Submodular Function)

Fine-tuned ASR Using Selected Samples

Selection using our
error models
provide consistent
gains over

random selection

 UJJ’20 V. Unni, N. Joshi and P. Jyothi, “Coupled training of sequence-to-sequence models for accented speech recognition”, ICASSP 2020

 UJJ’20 Accent-Agnostic Speech Recognition

• Natural idea: Learn an internal representation that is accent-invariant

• Coupled training using parallel speech data  
(same text, differently accented speakers)

• Leads to consistent performance improvements 
even on challenging Indian-accented samples

• But availability of parallel speech data is limited
Shared
Weights

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

..

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

..

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

DAHLetal.:CONTEXT-DEPENDENTPRE-TRAINEDDEEPNEURALNETWORKSFORLVSR35

Fig.1.Diagramofourhybridarchitectureemployingadeepneuralnetwork.
TheHMMmodelsthesequentialpropertyofthespeechsignal,andtheDNN
modelsthescaledobservationlikelihoodofallthesenones(tiedtri-phone
states).ThesameDNNisreplicatedoverdifferentpointsintime.

A.ArchitectureofCD-DNN-HMMs

Fig.1illustratesthearchitectureofourproposedCD-DNN-
HMMs.Thefoundationofthehybridapproachistheuseofa
forcedalignmenttoobtainaframelevellabelingfortrainingthe
ANN.ThekeydifferencebetweentheCD-DNN-HMMarchi-
tectureandearlierANN-HMMhybridarchitectures(andcon-
text-independentDNN-HMMs)isthatwemodelsenonesasthe
DNNoutputunitsdirectly.Theideaofusingsenonesasthe
modelingunithasbeenproposedin[22]wheretheposterior
probabilitiesofsenoneswereestimatedusingdeep-structured
conditionalrandomfields(CRFs)andonlyoneaudioframe
wasusedastheinputoftheposteriorprobabilityestimator.
Thischangeofferstwoprimaryadvantages.First,wecanim-
plementaCD-DNN-HMMsystemwithonlyminimalmodifica-
tionstoanexistingCD-GMM-HMMsystem,aswewillshow
inSectionII-B.Second,anyimprovementsinmodelingunits
thatareincorporatedintotheCD-GMM-HMMbaselinesystem,
suchascross-wordtriphonemodels,willbeaccessibletothe
DNNthroughtheuseofthesharedtraininglabels.

IfDNNscanbetrainedtobetterpredictsenones,then
CD-DNN-HMMscanachievebetterrecognitionaccu-
racythantri-phoneGMM-HMMs.Moreprecisely,inour
CD-DNN-HMMs,thedecodedwordsequenceisdetermined
as

(13)

whereisthelanguagemodel(LM)probability,and

(14)

(15)

istheacousticmodel(AM)probability.Notethattheobserva-
tionprobabilityis

(16)

whereisthestate(senone)posteriorprobabilityesti-
matedfromtheDNN,isthepriorprobabilityofeachstate
(senone)estimatedfromthetrainingset,andisindepen-
dentofthewordsequenceandthuscanbeignored.Although
dividingbythepriorprobability(calledscaledlikelihood
estimationby[38],[40],[41])maynotgiveimprovedrecog-
nitionaccuracyundersomeconditions,wehavefoundittobe
veryimportantinalleviatingthelabelbiasproblem,especially
whenthetrainingutterancescontainlongsilencesegments.

B.TrainingProcedureofCD-DNN-HMMs

CD-DNN-HMMscanbetrainedusingtheembeddedViterbi
algorithm.ThemainstepsinvolvedaresummarizedinAlgo-
rithm1,whichtakesadvantageofthetriphonetyingstructures
andtheHMMsoftheCD-GMM-HMMsystem.Notethatthe
logicaltriphoneHMMsthatareeffectivelyequivalentareclus-
teredandrepresentedbyaphysicaltriphone(i.e.,severallog-
icaltriphonesaremappedtothesamephysicaltriphone).Each
physicaltriphonehasseveral(typically3)stateswhicharetied
andrepresentedbysenones.Eachsenoneisgivena
asthelabeltofine-tunetheDNN.Themappingmaps
eachphysicaltriphonestatetothecorresponding.

Algorithmic1MainStepstoTrainCD-DNN-HMMs

1)Trainabesttied-stateCD-GMM-HMMsystemwhere
statetyingisdeterminedbasedonthedata-driven
decisiontree.DenotetheCD-GMM-HMMgmm-hmm.

2)Parsegmm-hmmandgiveeachsenonenamean
orderedstartingfrom0.Thewill
beservedasthetraininglabelforDNNfine-tuning.

3)Parsegmm-hmmandgenerateamappingfrom
eachphysicaltri-phonestate(e.g.,b-aht.s2)to
thecorresponding.Denotethismapping

.
4)Convertgmm-hmmtothecorresponding

CD-DNN-HMM–byborrowingthe
tri-phoneandsenonestructureaswellasthetransition
probabilitiesfrom–.

5)Pre-traineachlayerintheDNNbottom-uplayerby
layerandcalltheresultptdnn.

6)Use–togenerateastate-levelalignmenton
thetrainingset.Denotethealignment–.

7)Convert–towhereeachphysical
tri-phonestateisconvertedto.

8)Usetheassociatedwitheachframein
tofine-tunetheDBNusingback-propagationorother
approaches,startingfrom.DenotetheDBN

.
9)Estimatethepriorprobability,where

isthenumberofframesassociatedwithsenone
inandisthetotalnumberofframes.

10)Re-estimatethetransitionprobabilitiesusingand
–tomaximizethelikelihoodofobserving

thefeatures.DenotethenewCD-DNN-HMM
–.

11)Exitifnorecognitionaccuracyimprovementis
observedinthedevelopmentset;Otherwiseuse

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

..

DAHLetal.:CONTEXT-DEPENDENTPRE-TRAINEDDEEPNEURALNETWORKSFORLVSR35

Fig.1.Diagramofourhybridarchitectureemployingadeepneuralnetwork.
TheHMMmodelsthesequentialpropertyofthespeechsignal,andtheDNN
modelsthescaledobservationlikelihoodofallthesenones(tiedtri-phone
states).ThesameDNNisreplicatedoverdifferentpointsintime.

A.ArchitectureofCD-DNN-HMMs

Fig.1illustratesthearchitectureofourproposedCD-DNN-
HMMs.Thefoundationofthehybridapproachistheuseofa
forcedalignmenttoobtainaframelevellabelingfortrainingthe
ANN.ThekeydifferencebetweentheCD-DNN-HMMarchi-
tectureandearlierANN-HMMhybridarchitectures(andcon-
text-independentDNN-HMMs)isthatwemodelsenonesasthe
DNNoutputunitsdirectly.Theideaofusingsenonesasthe
modelingunithasbeenproposedin[22]wheretheposterior
probabilitiesofsenoneswereestimatedusingdeep-structured
conditionalrandomfields(CRFs)andonlyoneaudioframe
wasusedastheinputoftheposteriorprobabilityestimator.
Thischangeofferstwoprimaryadvantages.First,wecanim-
plementaCD-DNN-HMMsystemwithonlyminimalmodifica-
tionstoanexistingCD-GMM-HMMsystem,aswewillshow
inSectionII-B.Second,anyimprovementsinmodelingunits
thatareincorporatedintotheCD-GMM-HMMbaselinesystem,
suchascross-wordtriphonemodels,willbeaccessibletothe
DNNthroughtheuseofthesharedtraininglabels.

IfDNNscanbetrainedtobetterpredictsenones,then
CD-DNN-HMMscanachievebetterrecognitionaccu-
racythantri-phoneGMM-HMMs.Moreprecisely,inour
CD-DNN-HMMs,thedecodedwordsequenceisdetermined
as

(13)

whereisthelanguagemodel(LM)probability,and

(14)

(15)

istheacousticmodel(AM)probability.Notethattheobserva-
tionprobabilityis

(16)

whereisthestate(senone)posteriorprobabilityesti-
matedfromtheDNN,isthepriorprobabilityofeachstate
(senone)estimatedfromthetrainingset,andisindepen-
dentofthewordsequenceandthuscanbeignored.Although
dividingbythepriorprobability(calledscaledlikelihood
estimationby[38],[40],[41])maynotgiveimprovedrecog-
nitionaccuracyundersomeconditions,wehavefoundittobe
veryimportantinalleviatingthelabelbiasproblem,especially
whenthetrainingutterancescontainlongsilencesegments.

B.TrainingProcedureofCD-DNN-HMMs

CD-DNN-HMMscanbetrainedusingtheembeddedViterbi
algorithm.ThemainstepsinvolvedaresummarizedinAlgo-
rithm1,whichtakesadvantageofthetriphonetyingstructures
andtheHMMsoftheCD-GMM-HMMsystem.Notethatthe
logicaltriphoneHMMsthatareeffectivelyequivalentareclus-
teredandrepresentedbyaphysicaltriphone(i.e.,severallog-
icaltriphonesaremappedtothesamephysicaltriphone).Each
physicaltriphonehasseveral(typically3)stateswhicharetied
andrepresentedbysenones.Eachsenoneisgivena
asthelabeltofine-tunetheDNN.Themappingmaps
eachphysicaltriphonestatetothecorresponding.

Algorithmic1MainStepstoTrainCD-DNN-HMMs

1)Trainabesttied-stateCD-GMM-HMMsystemwhere
statetyingisdeterminedbasedonthedata-driven
decisiontree.DenotetheCD-GMM-HMMgmm-hmm.

2)Parsegmm-hmmandgiveeachsenonenamean
orderedstartingfrom0.Thewill
beservedasthetraininglabelforDNNfine-tuning.

3)Parsegmm-hmmandgenerateamappingfrom
eachphysicaltri-phonestate(e.g.,b-aht.s2)to
thecorresponding.Denotethismapping

.
4)Convertgmm-hmmtothecorresponding

CD-DNN-HMM–byborrowingthe
tri-phoneandsenonestructureaswellasthetransition
probabilitiesfrom–.

5)Pre-traineachlayerintheDNNbottom-uplayerby
layerandcalltheresultptdnn.

6)Use–togenerateastate-levelalignmenton
thetrainingset.Denotethealignment–.

7)Convert–towhereeachphysical
tri-phonestateisconvertedto.

8)Usetheassociatedwitheachframein
tofine-tunetheDBNusingback-propagationorother
approaches,startingfrom.DenotetheDBN

.
9)Estimatethepriorprobability,where

isthenumberofframesassociatedwithsenone
inandisthetotalnumberofframes.

10)Re-estimatethetransitionprobabilitiesusingand
–tomaximizethelikelihoodofobserving

thefeatures.DenotethenewCD-DNN-HMM
–.

11)Exitifnorecognitionaccuracyimprovementis
observedinthedevelopmentset;Otherwiseuse

..

..

Lpair

EncoderEncoder

xx0

y LASR

Decoder

ŷ
<latexit sha1_base64="SxldGTA42qXaGQV1Mhbx6okoZyU=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiRV0GXRjcsK9gFNKJPppB06mYSZSSGE/okbF4q49U/c+TdO2iy09cDA4Zx7uWdOkHCmtON8W5WNza3tnepubW//4PDIPj7pqjiVhHZIzGPZD7CinAna0Uxz2k8kxVHAaS+Y3hd+b0alYrF40llC/QiPBQsZwdpIQ9v2JljnXoT1JAjzbD4f2nWn4SyA1olbkjqUaA/tL28UkzSiQhOOlRq4TqL9HEvNCKfzmpcqmmAyxWM6MFTgiCo/XySfowujjFAYS/OERgv190aOI6WyKDCTRUS16hXif94g1eGtnzORpJoKsjwUphzpGBU1oBGTlGieGYKJZCYrIhMsMdGmrJopwV398jrpNhvuVaP5eF1v3ZV1VOEMzuESXLiBFjxAGzpAYAbP8ApvVm69WO/Wx3K0YpU7p/AH1ucPWNmUHw==</latexit>

ŷ0
<latexit sha1_base64="XvnHRbQagZ4J2865KKGRwcSuvZ0=">AAAB+nicbVDLSsNAFL3xWesr1aWbYBFdlaQKuiy6cVnBPqAJZTKdtEMnkzAzUULMp7hxoYhbv8Sdf+OkzUJbDwwczrmXe+b4MaNS2fa3sbK6tr6xWdmqbu/s7u2btYOujBKBSQdHLBJ9H0nCKCcdRRUj/VgQFPqM9PzpTeH3HoiQNOL3Ko2JF6IxpwHFSGlpaNbcCVKZGyI18YMsPc3zoVm3G/YM1jJxSlKHEu2h+eWOIpyEhCvMkJQDx46VlyGhKGYkr7qJJDHCUzQmA005Con0sln03DrRysgKIqEfV9ZM/b2RoVDKNPT1ZJFRLnqF+J83SFRw5WWUx4kiHM8PBQmzVGQVPVgjKghWLNUEYUF1VgtPkEBY6baqugRn8cvLpNtsOOeN5t1FvXVd1lGBIziGM3DgElpwC23oAIZHeIZXeDOejBfj3fiYj64Y5c4h/IHx+QO/OpRQ</latexit>

Attention
<latexit sha1_base64="sfIywWOu1dYHs1gMIkwGo0JC6sA=">AAAB+3icbVDLSsNAFL3xWesr1qWbYBFclaQKuqy6cVnBPqANZTKdtEMnD2ZupCXkV9y4UMStP+LOv3HSZqGtBwYO59zD3Hu8WHCFtv1trK1vbG5tl3bKu3v7B4fmUaWtokRS1qKRiGTXI4oJHrIWchSsG0tGAk+wjje5y/3OE5OKR+EjzmLmBmQUcp9TgloamJU+sikqmt4gsjDXsoFZtWv2HNYqcQpShQLNgfnVH0Y0CXSeCqJUz7FjdFMikVPBsnI/USwmdEJGrKdpSAKm3HS+e2adaWVo+ZHUL0Rrrv5OpCRQahZ4ejIgOFbLXi7+5/US9K/dlIdxog+ji4/8RFgYWXkR1pBLRlHMNCFUcr2rRcdEEoq6rrIuwVk+eZW06zXnolZ/uKw2bos6SnACp3AODlxBA+6hCS2gMIVneIU3IzNejHfjYzG6ZhSZY/gD4/MH9PGVCA==</latexit>

Accent-Aware Speech Recognition

• Alternate approach: Learn to handle different accents differently

• Plan: Actively extract and use “accent information”

• Accent information obtained in two ways:

• Accent embedding produced by an accent classifier trained

separately

• Tapped from an accent classifier trained alongside ASR 

(multi-task training)

• And fed into an appropriate layer in the ASR network

• Significantly lower error rates compared to a multi-accent baseline:

• 15% on seen accents

• 9% on a new accent

ASR
Accent

Classification

L
L

Lphone
Laccent

x

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

DAHLetal.:CONTEXT-DEPENDENTPRE-TRAINEDDEEPNEURALNETWORKSFORLVSR35

Fig.1.Diagramofourhybridarchitectureemployingadeepneuralnetwork.
TheHMMmodelsthesequentialpropertyofthespeechsignal,andtheDNN
modelsthescaledobservationlikelihoodofallthesenones(tiedtri-phone
states).ThesameDNNisreplicatedoverdifferentpointsintime.

A.ArchitectureofCD-DNN-HMMs

Fig.1illustratesthearchitectureofourproposedCD-DNN-
HMMs.Thefoundationofthehybridapproachistheuseofa
forcedalignmenttoobtainaframelevellabelingfortrainingthe
ANN.ThekeydifferencebetweentheCD-DNN-HMMarchi-
tectureandearlierANN-HMMhybridarchitectures(andcon-
text-independentDNN-HMMs)isthatwemodelsenonesasthe
DNNoutputunitsdirectly.Theideaofusingsenonesasthe
modelingunithasbeenproposedin[22]wheretheposterior
probabilitiesofsenoneswereestimatedusingdeep-structured
conditionalrandomfields(CRFs)andonlyoneaudioframe
wasusedastheinputoftheposteriorprobabilityestimator.
Thischangeofferstwoprimaryadvantages.First,wecanim-
plementaCD-DNN-HMMsystemwithonlyminimalmodifica-
tionstoanexistingCD-GMM-HMMsystem,aswewillshow
inSectionII-B.Second,anyimprovementsinmodelingunits
thatareincorporatedintotheCD-GMM-HMMbaselinesystem,
suchascross-wordtriphonemodels,willbeaccessibletothe
DNNthroughtheuseofthesharedtraininglabels.

IfDNNscanbetrainedtobetterpredictsenones,then
CD-DNN-HMMscanachievebetterrecognitionaccu-
racythantri-phoneGMM-HMMs.Moreprecisely,inour
CD-DNN-HMMs,thedecodedwordsequenceisdetermined
as

(13)

whereisthelanguagemodel(LM)probability,and

(14)

(15)

istheacousticmodel(AM)probability.Notethattheobserva-
tionprobabilityis

(16)

whereisthestate(senone)posteriorprobabilityesti-
matedfromtheDNN,isthepriorprobabilityofeachstate
(senone)estimatedfromthetrainingset,andisindepen-
dentofthewordsequenceandthuscanbeignored.Although
dividingbythepriorprobability(calledscaledlikelihood
estimationby[38],[40],[41])maynotgiveimprovedrecog-
nitionaccuracyundersomeconditions,wehavefoundittobe
veryimportantinalleviatingthelabelbiasproblem,especially
whenthetrainingutterancescontainlongsilencesegments.

B.TrainingProcedureofCD-DNN-HMMs

CD-DNN-HMMscanbetrainedusingtheembeddedViterbi
algorithm.ThemainstepsinvolvedaresummarizedinAlgo-
rithm1,whichtakesadvantageofthetriphonetyingstructures
andtheHMMsoftheCD-GMM-HMMsystem.Notethatthe
logicaltriphoneHMMsthatareeffectivelyequivalentareclus-
teredandrepresentedbyaphysicaltriphone(i.e.,severallog-
icaltriphonesaremappedtothesamephysicaltriphone).Each
physicaltriphonehasseveral(typically3)stateswhicharetied
andrepresentedbysenones.Eachsenoneisgivena
asthelabeltofine-tunetheDNN.Themappingmaps
eachphysicaltriphonestatetothecorresponding.

Algorithmic1MainStepstoTrainCD-DNN-HMMs

1)Trainabesttied-stateCD-GMM-HMMsystemwhere
statetyingisdeterminedbasedonthedata-driven
decisiontree.DenotetheCD-GMM-HMMgmm-hmm.

2)Parsegmm-hmmandgiveeachsenonenamean
orderedstartingfrom0.Thewill
beservedasthetraininglabelforDNNfine-tuning.

3)Parsegmm-hmmandgenerateamappingfrom
eachphysicaltri-phonestate(e.g.,b-aht.s2)to
thecorresponding.Denotethismapping

.
4)Convertgmm-hmmtothecorresponding

CD-DNN-HMM–byborrowingthe
tri-phoneandsenonestructureaswellasthetransition
probabilitiesfrom–.

5)Pre-traineachlayerintheDNNbottom-uplayerby
layerandcalltheresultptdnn.

6)Use–togenerateastate-levelalignmenton
thetrainingset.Denotethealignment–.

7)Convert–towhereeachphysical
tri-phonestateisconvertedto.

8)Usetheassociatedwitheachframein
tofine-tunetheDBNusingback-propagationorother
approaches,startingfrom.DenotetheDBN

.
9)Estimatethepriorprobability,where

isthenumberofframesassociatedwithsenone
inandisthetotalnumberofframes.

10)Re-estimatethetransitionprobabilitiesusingand
–tomaximizethelikelihoodofobserving

thefeatures.DenotethenewCD-DNN-HMM
–.

11)Exitifnorecognitionaccuracyimprovementis
observedinthedevelopmentset;Otherwiseuse

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

DAHLetal.:CONTEXT-DEPENDENTPRE-TRAINEDDEEPNEURALNETWORKSFORLVSR35

Fig.1.Diagramofourhybridarchitectureemployingadeepneuralnetwork.
TheHMMmodelsthesequentialpropertyofthespeechsignal,andtheDNN
modelsthescaledobservationlikelihoodofallthesenones(tiedtri-phone
states).ThesameDNNisreplicatedoverdifferentpointsintime.

A.ArchitectureofCD-DNN-HMMs

Fig.1illustratesthearchitectureofourproposedCD-DNN-
HMMs.Thefoundationofthehybridapproachistheuseofa
forcedalignmenttoobtainaframelevellabelingfortrainingthe
ANN.ThekeydifferencebetweentheCD-DNN-HMMarchi-
tectureandearlierANN-HMMhybridarchitectures(andcon-
text-independentDNN-HMMs)isthatwemodelsenonesasthe
DNNoutputunitsdirectly.Theideaofusingsenonesasthe
modelingunithasbeenproposedin[22]wheretheposterior
probabilitiesofsenoneswereestimatedusingdeep-structured
conditionalrandomfields(CRFs)andonlyoneaudioframe
wasusedastheinputoftheposteriorprobabilityestimator.
Thischangeofferstwoprimaryadvantages.First,wecanim-
plementaCD-DNN-HMMsystemwithonlyminimalmodifica-
tionstoanexistingCD-GMM-HMMsystem,aswewillshow
inSectionII-B.Second,anyimprovementsinmodelingunits
thatareincorporatedintotheCD-GMM-HMMbaselinesystem,
suchascross-wordtriphonemodels,willbeaccessibletothe
DNNthroughtheuseofthesharedtraininglabels.

IfDNNscanbetrainedtobetterpredictsenones,then
CD-DNN-HMMscanachievebetterrecognitionaccu-
racythantri-phoneGMM-HMMs.Moreprecisely,inour
CD-DNN-HMMs,thedecodedwordsequenceisdetermined
as

(13)

whereisthelanguagemodel(LM)probability,and

(14)

(15)

istheacousticmodel(AM)probability.Notethattheobserva-
tionprobabilityis

(16)

whereisthestate(senone)posteriorprobabilityesti-
matedfromtheDNN,isthepriorprobabilityofeachstate
(senone)estimatedfromthetrainingset,andisindepen-
dentofthewordsequenceandthuscanbeignored.Although
dividingbythepriorprobability(calledscaledlikelihood
estimationby[38],[40],[41])maynotgiveimprovedrecog-
nitionaccuracyundersomeconditions,wehavefoundittobe
veryimportantinalleviatingthelabelbiasproblem,especially
whenthetrainingutterancescontainlongsilencesegments.

B.TrainingProcedureofCD-DNN-HMMs

CD-DNN-HMMscanbetrainedusingtheembeddedViterbi
algorithm.ThemainstepsinvolvedaresummarizedinAlgo-
rithm1,whichtakesadvantageofthetriphonetyingstructures
andtheHMMsoftheCD-GMM-HMMsystem.Notethatthe
logicaltriphoneHMMsthatareeffectivelyequivalentareclus-
teredandrepresentedbyaphysicaltriphone(i.e.,severallog-
icaltriphonesaremappedtothesamephysicaltriphone).Each
physicaltriphonehasseveral(typically3)stateswhicharetied
andrepresentedbysenones.Eachsenoneisgivena
asthelabeltofine-tunetheDNN.Themappingmaps
eachphysicaltriphonestatetothecorresponding.

Algorithmic1MainStepstoTrainCD-DNN-HMMs

1)Trainabesttied-stateCD-GMM-HMMsystemwhere
statetyingisdeterminedbasedonthedata-driven
decisiontree.DenotetheCD-GMM-HMMgmm-hmm.

2)Parsegmm-hmmandgiveeachsenonenamean
orderedstartingfrom0.Thewill
beservedasthetraininglabelforDNNfine-tuning.

3)Parsegmm-hmmandgenerateamappingfrom
eachphysicaltri-phonestate(e.g.,b-aht.s2)to
thecorresponding.Denotethismapping

.
4)Convertgmm-hmmtothecorresponding

CD-DNN-HMM–byborrowingthe
tri-phoneandsenonestructureaswellasthetransition
probabilitiesfrom–.

5)Pre-traineachlayerintheDNNbottom-uplayerby
layerandcalltheresultptdnn.

6)Use–togenerateastate-levelalignmenton
thetrainingset.Denotethealignment–.

7)Convert–towhereeachphysical
tri-phonestateisconvertedto.

8)Usetheassociatedwitheachframein
tofine-tunetheDBNusingback-propagationorother
approaches,startingfrom.DenotetheDBN

.
9)Estimatethepriorprobability,where

isthenumberofframesassociatedwithsenone
inandisthetotalnumberofframes.

10)Re-estimatethetransitionprobabilitiesusingand
–tomaximizethelikelihoodofobserving

thefeatures.DenotethenewCD-DNN-HMM
–.

11)Exitifnorecognitionaccuracyimprovementis
observedinthedevelopmentset;Otherwiseuse

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

 JUJ’18 A. Jain, M. Upreti and P. Jyothi, “Improved Accented Speech Recognition using Accent Embeddings and Multi-task Learning”, Interspeech 2018

 JUJ’18

Understanding Accent in Neural Networks
• How do neural networks handle accents?

• A study of DeepSpeech2 using different measures and tools

• Gradients based: While outputting each word, how well the network “focuses” on the
correct segment.

• Information in layers: Amount of information that representations at various layers carry
about the accent, and for each accent, about the phones.

• Information theoretic: Measured using mutual information (after clustering the
representations).

• Classifier based: Measured using the accuracy of a classifier that takes the
representations as inputs.

• Improving ASR systems using such analysis while designing them
 PJ’20 A. Prasad, P. Jyothi, “How Accents Confound: Probing for Accent Information in End-to-End Speech Recognition Systems”, ACL 2020

 PJ’20

`

Canadian:

African:

Scottish:

Indian:

Lowest

Highest

Accent EMD
Canadian 40.9

US 42.6
African 44.3
English 44.3
Scottish 43.3

Australian 45.9
Indian 50.3

Understanding Accent Information in Neural Networks

Ideally should
fit this window

Actual attribution for a word
(normalized as a distribution)

A. Prasad, P. Jyothi, “How Accents Confound: Probing for Accent Information in End-to-End Speech Recognition Systems”, ACL 2020

Spillage/gap measured using
Earth Mover Distance

 Accuracy of phone probes across layers

Layers and Accents: Classifier-Based Analysis

Understanding Accent Information in Neural Networks

Accuracy of accent probes across layers

Canadian 
US

Indian

A. Prasad, P. Jyothi, “How Accents Confound: Probing for Accent Information in End-to-End Speech Recognition Systems”, ACL 2020 PJ’20 A. Prasad, P. Jyothi, “How Accents Confound: Probing for Accent Information in End-to-End Speech Recognition Systems”, ACL 2020

 PJ’20

Low-Resource
SLT

Non-native
language effects

Noisy
Environments

Constrained
Devices/

Platforms

Speech and Language Technologies (SLT) for India

Multilingual
Systems Multimodal

Data

AccentCode-
switching

Code-Switching

• Switching between different languages within/across sentences 

• Widely prevalent in multilingual countries like India

• An emerging sub-area in SLT

• Just treat it like a new language?

• Hard to get access to large amounts of code-switched data

• Large diversity in how code-switching manifests

Piya Tose Naina Laage का Amazing Rendition Deliver िकया इस Audition पे

But laughter therapy ने really में मेरी life change कर दी

पर हसंी therapy ने मेरी life बदल िदया वास्तव में

But laughter therapy ने मेरी life बदल दी really

• Recall code-switching issues: 
 
 

• Two high-level ideas for fixing them: 
 
 
 

• Dual Language Models

• n-gram language model

• Recurrent Neural Network model 

Dual Language Model

Hard to get access to large amounts
of code-switched data

Large diversity in how code-switching
manifests

Should exploit monolingual data in
each language

Should model both languages separately in
addition to modeling how switching occurs

synergistic

 GPJ’18a Garg et al., “Dual Language Models for Code Switched Speech Recognition”, INTERSPEECH 2018

 GPJ’18a

 GPJ’18b

 GPJ’18b Garg et al., “Code-switched Language Models Using Dual RNNs and Same-Source Pretraining”, EMNLP 2018

• n-gram language models, represented as Weighted Finite-State Transducers (WFST)

• Standard for “conventional” ASR models

• Can also be integrated into neural network models

• We combine two such LMs, switching between 
them via a “switching gadget"

• Switches with state-specific probabilities, 
which can be learnt from a relatively  
small amount of data

• Even without using mono-lingual text, out-performs  
a monolithic LM that treats code-switched language  
as a “new” language

Dual Language Model : With n-grams

 GPJ’18a Garg et al., “Dual Language Models for Code Switched Speech Recognition”, INTERSPEECH 2018

 GPJ’18a

“Switching gadget”

• Could we do better?

• Neural network models tend to out-perform n-gram models

• Also, the n-gram Dual LM dropped all contextual information during a switch

• An RNN that has two different units (LSTM cells) for handling sequences in the two different
languages 
 
 
 
 

• Can train using mono-lingual text and code-switched text

• A problem: We don’t have enough code-switched text

Dual Language Model : With RNNs GPJ’18b

 GPJ’18b Garg et al., “Code-switched Language Models Using Dual RNNs and Same-Source Pretraining”, EMNLP 2018

a distribution
over combined

vocabulary

encoded inputw1 w3w2 w4 w5

LSTM0

LSTM1

LSTM0

LSTM1

LSTM0

LSTM1

LSTM0

LSTM1

LSTM0

LSTM1

prediction

Multiplexers
implement routing

• A problem: We don’t have enough code-switched text

• Solution: Use “synthetic data” (possibly of lower quality)  
to pre-train the RNN

• But how do we synthesize code-switched data?

• Use a generator trained on the (low amounts of) real data

• Note: Same source used for both training and for  
generating data for pre-training

• Works!

Dual Language Model : With RNNs GPJ’18b

 GPJ’18b Garg et al., “Code-switched Language Models Using Dual RNNs and Same-Source Pretraining”, EMNLP 2018

Train

Synthesize
Pre-train

Real code-switched
data

perplexity
(low is good) RNN +Dual

RNN 68.2 66.3

+Synth 63.8 63.6

And Same-Source Pre-Training

• A problem: We don’t have enough code-switched text

• Solution: Use “synthetic data” (possibly of lower quality)  
to pre-train the RNN

• But how do we synthesize code-switched data?

• Use a generator trained on the (low amounts of) real data

• Note: Same source used for both training and for  
generating data for pre-training

• Works!

Dual Language Model : With RNNs GPJ’18b

 GPJ’18b Garg et al., “Code-switched Language Models Using Dual RNNs and Same-Source Pretraining”, EMNLP 2018

Train

Synthesize
Pre-train

Real code-switched
data

Mono-lingual data

perplexity
(low is good) RNN +Dual

RNN 59.0 59.0

+Synth 55.7 55.6

And Same-Source Pre-Training

• Can effectively exploit mono-lingual data too

• Generating synthetic, but realistic 
code-switched text is an important 
problem on its own

• Can we leverage more resources?

• A different idea: Treat it as a translation task!

• E.g., Convert a monolingual Hindi sentence to a Hindi-English sentence

Generating Code-switched Text

 TKJ’21 Tarunesh et al., “From Machine Translation to Code-Switching: Generating High-Quality Code-Switched Text”, ACL 2021

 TKJ’21

Monolingual Text

Parallel Text
Bilingual Lexicons Synthesize

 TCS
पर हसंी िचिकत्सा ने मेरा  
जीवन बदल िदया वास्तव में

 But laughter therapy
 ने मेरी life बदल दी really

Translation for  
Code-Switching

• Based on an unsupervised MT architecture

• Can use monolingual text and code-switched  
text. Parallel text is optional for training.

• We also employ (simplistically generated) 
synthetic code-switched text

• LEX: Use a bilingual lexicon to replace a  
random Hindi word by its English translation

• EMT: Replace embedded sentence clauses or subordinate clauses in English
sentences with Hindi translations

• Supervised version TCS(S) using a new dataset for parallel code-switched & Hindi text

Generating Code-switched Text: Translation to Code-Switching

 TKJ’21 Tarunesh et al., “From Machine Translation to Code-Switching: Generating High-Quality Code-Switched Text”, ACL 2021

 TKJ’21

LXX’18

“Unsupervised Machine Translation Using Monolingual Corpora Only”, Lample, G. et al., ICLR 2018LXX’18

ENCCS DECCS

ENCHi DECHi

• Contains 21K+2.5K train+test instances

• Partitioned into two subsets:  
 Movie-CS and Treebank-CS 

• Many of the CS sentences are crowdsourced using MTurk

• For sentences in Treebank-CS, Turkers were asked to
translate at least one Hindi chunk into English

Generating Code-switched Text: Translation to Code-Switching

A new Hindi-English CS Dataset

1SFUSBJOJOH $PSQVT | 5SBJO | 5FTU 11- 5FTU 11-
0Q4VC "MM�$4

0Q4VC � 0Q4VC�-&9 ����. ����� ������
0Q4VC � 0Q4VC�&.5 ����. ����� ������

0Q4VC � 7"$4W� ����. ����� ������
0Q4VC � 7"$4W� ����. ����� ������

0Q4VC � 4FR("/W� ����. ����� ������
0Q4VC � 4FR("/W� ����. ����� ������

0Q4VC � 5$4 	6
 ����. ����� ������
0Q4VC � 5$4 	4
 ����. ����� ������

5BCMF �� 5FTU QFSQMFYJUJFT PO "MM�$4 VTJOH EJGGFSFOU QSFUSBJO�
JOH EBUBTFUT�

�����)VNBO &WBMVBUJPO
8F FWBMVBUFE UIF RVBMJUZ PG TFOUFODFT HFOFSBUFE CZ
5$4 VTJOH B IVNBO FWBMVBUJPO TUVEZ� 8F TBNQMFE
��� TFOUFODFT FBDI
 VTJOH CPUI 5$4 	6
 BOE 5$4
	4

 TUBSUJOH GSPN NPOPMJOHVBM)JOEJ TFOUFODFT JO
UIF FWBMVBUJPO TFUT PG "MM�$4� 5IF TFOUFODFT XFSF
DIPTFO TVDI UIBU UIFZ XFSF DPOTJTUFOU XJUI UIF
MFOHUI EJTUSJCVUJPO PG "MM�$4� 'PS UIF TBLF PG DPN�
QBSJTPO
 DPSSFTQPOEJOH UP UIF BCPWF�NFOUJPOFE
��� NPOPMJOHVBM)JOEJ TBNQMFT
 XF BMTP DIPTF
��� $4 TFOUFODFT FBDI GSPN "MM�$4�-&9 BOE "MM�
$4�&.5� "MPOH XJUI UIF HSPVOE�USVUI $4 TFO�
UFODFT GSPN "MM�$4
 UIJT SFTVMUFE JO B UPUBM PG ���
TFOUFODFT�� 5IFTF TFOUFODFT XFSF HJWFO UP UISFF
MJOHVJTUJD FYQFSUT JO)JOEJ BOE UIFZ XFSF BTLFE
UP QSPWJEF TDPSFT SBOHJOH CFUXFFO � BOE � 	� GPS
XPSTU
 � GPS CFTU
 VOEFS UISFF IFBET� i4ZOUBDUJD
DPSSFDUOFTTw
 i4FNBOUJD DPSSFDUOFTTw BOE i/BUV�
SBMOFTTw� 5BCMF � TIPXT UIBU UIF TFOUFODFT HFOFS�
BUFE VTJOH 5$4 	4
 BOE 5$4 	6
 BSF GBS TVQFSJPS
UP UIF &.5 BOE -&9 TFOUFODFT PO BMM UISFF DSJUF�
SJB� 5$4 	4
 JT RVJUF DMPTF JO PWFSBMM RVBMJUZ UP UIF
SFBM TFOUFODFT BOE 5$4 	6
 GBSFT XPSTF
 CVU POMZ
CZ B TNBMM NBSHJO�

5BCMF � TIPXT TPNF JMMVTUSBUJWF FYBNQMFT PG
DPEF�TXJUDIJOH VTJOH 5$4 	6
 PO UFTU TBNQMFT�
8F BMTP TIPX TPNF FYBNQMFT PG DPEF�TXJUDIJOH

�8F POMZ DIPTF $4 TFOUFODFT GSPN 5$4 UIBU EJE OPU FY�
BDUMZ NBUDI UIF HSPVOE�USVUI $4 UFYU�

.FUIPE 4ZOUBDUJD 4FNBOUJD /BUVSBMOFTT

3FBM ����±���� ����±���� ����±����
5$4 	4
 ����±���� ����±���� ����±����
5$4 	6
 ����±���� ����±���� ����±����
&.5 ����±���� ����±���� ����±����
-&9 ����±���� ����±���� ����±����

5BCMF �� .FBO BOE TUBOEBSE EFWJBUJPO PG TDPSFT 	CFUXFFO �
BOE �
 GSPN � BOOPUBUPST GPS ��� TBNQMFT GSPN � EBUBTFUT�

(FOFSBUFE VTJOH .PWJF$4

�ɇ �Ǖ� ¡Ǘȱ �Ǖ��ȯ �ȪǑ� Ǒ��ȡ
	* BN HMBE ZPV OPUJDFE

J BN IBQQZ �Ǖ��ȯ OPUJDF Ǒ��ȡ
�¡ȣȲ �ɇ �Ǖ� ȯ �¡Ǖ� Ü�ȡ� ���ȡ ¡Ǘȱ � �Ʌ �ȯǑ�� Ǔ �[f� �Ȫè� �ȧ ��¡
	/P J SFBMMZ MPWF ZPV CVU KVTU MJLF B GSJFOE

�¡ȣȲ J MPWF ZPV WFSZ NVDI � �Ʌ CVU Ǔ �[f� GSJFOE �ȧ ��¡

(FOFSBUFE VTJOH 5SFFCBOL$4

�Ȱ�� \��ȯ ¡ā�ȯ ¡Ȫ�ȯ �ȧ Ȳ�ȡ��ȡ ¡Ȱ
	.FFUJOH XJMM MJLFMZ CF OFYU XFFL

NFFUJOH OFYU XFFL ¡Ȫ�ȯ �ȧ QPTTJCJMJUZ ¡Ȱ
`Û¡ɉ�ȯ �¡ȡ Ǒ� ^��ȡ �ȡ� �ȯ�ȡ `Ǔ�� �¡ȣȲ ¡Ȫ�ȡ �ȯǑ�� �¡ è�ƴ ¡Ȱ
)F TBJE UIBU JU XPVME OPU CF BQQSPQSJBUF UP OBNF UIFN
CVU JU JT DMFBS

`Û¡ɉ�ȯ �¡ȡ Ǒ� ^��ȡ �ȡ� �ȯ�ȡ GBJS �¡ȣȲ ¡Ȫ�ȡ CVU JU JT DMFBS

(FOFSBUFE VTJOH 0Q4VC

]��Ȫ \��ȯ �Ȣ�� `� �ȡ��ȡjȲ �Ȫ Ȳ ȡǓ�� ���ȯ �ȯ Ǔ�f �Ǖ� �Ȫ
 �� �ȯ�ȡ ¡Ȫ�ȡ
	:PV IBWF UP HJWF ZPVSTFMG UJNF UP QSPDFTT UIPTF GFFMJOHT
XJUIJO ZPV

]��Ȫ \��ȯ �Ȣ�� `� FNPUJPOT �Ȫ QSPDFTT ���ȯ �ȯ Ǔ�f �Ǖ� �Ȫ
UJNF �ȯ�ȡ ¡Ȫ�ȡ
È�ɉǑ� �Ǖ�ȯ ��ȡ ¡Ȱ Ǒ� �ǕÉ� ���ȡ� È�ȡ ¡Ȫ�ȡ
	#FDBVTF J LOPX XIBU UIF NBJO EJTI XJMM CF

CFDBVTF J LOPX NBJO EJTI È�ȡ ¡Ȫ�ȡ

5BCMF �� &YBNQMFT HFOFSBUFE CZ 5$4 	6
 PO WBMJEBUJPO BOE
UFTU EBUB� 'PS FBDI FYBNQMF UIF GJSTU MJOF JT UIF NPOPMJOHVBM
TFOUFODF
 GPMMPXFE CZ JUT &OHMJTI USBOTMBUJPO BOE GJOBMMZ UIF
USBOTMBUJPO GSPN 5$4 	6
� .PSF FYBNQMFT BSF JO "QQFOEJY '�

XJUIJO NPOPMJOHVBM TFOUFODFT GSPN 0Q4VC� 8F
PCTFSWF UIBU UIF NPEFM JT BCMF UP JOUSPEVDF MPOH
DPOUJHVPVT TQBOT PG &OHMJTI XPSET 	F�H� iNFFUJOH
OFYU XFFLw
 iCVU JU JT DMFBSw
 FUD�
� 5IF NPEFM BMTP
EJTQMBZT UIF BCJMJUZ UP NFBOJOHGVMMZ TXJUDI NVMUJ�
QMF UJNFT XJUIJO UIF TBNF TFOUFODF 	F�H�
 iJ MPWF
ZPV WFSZ NVDIw
 iCVUw
 iGSJFOEw
� 5IFSF BSF BMTP
JOUFSFTUJOH DBTFT PG &OHMJTI TFHNFOUT UIBU BQQFBS
UP CF VOHSBNNBUJDBM CVU NBLF TFOTF JO UIF $4 DPO�
UFYU 	F�H�
 iCFDBVTF J LOPX NBJO EJTIw
 FUD�
�

����� (-6&$P4 #FODINBSL
(-6&$P4 	,IBOVKB FU BM�
 ����
 JT BO FWBMVBUJPO
CFODINBSL TQBOOJOH TJY OBUVSBM MBOHVBHF UBTLT GPS
DPEF�TXJUDIFE &OHMJTI�)JOEJ BOE &OHMJTI�4QBOJTI
EBUB� 5IF BVUIPST PCTFSWF UIBU .�#&35 	1JSFT
FU BM�
 ����
 DPOTJTUFOUMZ PVUQFSGPSNT DSPTT�MJOHVBM
FNCFEEJOH UFDIOJRVFT� 'VSUIFSNPSF
 QSFUSBJOJOH
.�#&35 PO TNBMM BNPVOUT PG DPEF�TXJUDIFE UFYU
JNQSPWFT JUT QFSGPSNBODF JO NPTU DBTFT� 'PS PVS
FWBMVBUJPO
 XF TFMFDU UXP UBTLT UIBU SFRVJSF TFNBO�
UJD VOEFSTUBOEJOH� /BUVSBM -BOHVBHF *OGFSFODF
	/-*
 BOE 4FOUJNFOU "OBMZTJT 	4"
�

8F TBNQMF ���, NPOPMJOHVBM TFOUFODFT GSPNSyntactic Correctness: Is the sentence grammatically valid?

Semantic Correctness: Is the sentence semantically meaningful?

Naturalness: Does the sentence look naturally code-switched?

Human Evaluation

Human Evaluation

 TCS
नहीं मैं तुमसे बहुत प्यार करता हँू सच में
लेिकन िसफर् एक दोस्त की तरह

नहीं i love you very much सच में
but िसफर् एक friend की तरह

 TCS
क्या बात ह ैतुमने आखरी बार कब पाटीर्
की थी

क्या बात ह ैतुमन े last time party
कब की थी

 TCS
सू्कलों में तो िनयिमत रूप से सुरक्षा
अभ्यास कराए जाने लगे हैं

schools में तो regularly security
practice िकये जाने लग ेहैं

TCS: Example Sentences

Evaluation using Objective Measures

 TKJ’21 Tarunesh et al., “From Machine Translation to Code-Switching: Generating High-Quality Code-Switched Text”, ACL 2021

 TKJ’21

Objective Measures

Measure LEX EMT TCS(S)

BLEU 15.23 17.73 43.15

LM Perplexity 332.66 276.56 254.37

GLUECoS - NLI 58.67 58.96 59.57

GLUECoS - SA 58.40 58.79 59.39

BERT-Score 0.785 0.633 0.813

BERT-Classifier 96.52 97.83 88.62

Recall Diversity in Code-switching
• Diversity in code-switching caused by:

• Sociolinguistic factors. E.g., 1st
generation immigrants vs. younger
immigrants

• Formality in the rendered text. E.g.,
news vs. social media posts

But laughter therapy ने really में मेरी life change कर दी

पर हसंी therapy ने मेरी life बदल िदया वास्तव में

But laughter therapy ने मेरी life बदल दी

• We focus on three dimensions of diversity in code-switched text:

Code-mixing Index (CMI): Ratio of L1/L2 words  

Switch-point Index (SPI): Freq. of L1/L2 switches 

Formality: Style, tone, choice of words

0.29 Gracias for the lovely gift, está awesome!

0.14 Gracias por el hermoso regalo, está awesome!

0.50 Gracias for the lovely gift, está awesome!

0.33 Thanks por el hermoso regalo, it’s awesome!

formal इस पर comprehensive plan prepare की जा रही है

informal इस पे detailed planning ready की जा रही है

Recall Diversity in Code-switching
• Diversity in code-switching caused by:

• Sociolinguistic factors. E.g., 1st
generation immigrants vs. younger
immigrants

• Formality in the rendered text. E.g.,
news vs. social media posts

But laughter therapy ने really में मेरी life change कर दी

पर हसंी therapy ने मेरी life बदल िदया वास्तव में

But laughter therapy ने मेरी life बदल दी

• We focus on three dimensions of diversity in code-switched text:

Code-mixing Index (CMI): Ratio of L1/L2 words  

Switch-point Index (SPI): Freq. of L1/L2 switches 

Formality: Style, tone, choice of words

COCOA: An Encoder-Decoder Model for
Controllable Code-switched Generation

Sneha Mondal1, Ritika.2⇤, Shreya Pathak2⇤, Preethi Jyothi2, Aravindan Raghuveer1
1Google Research 2IIT Bombay

{snehamondal, araghuveer}@google.com,
{ritikagoyal, shreyapathak, pjyothi}@cse.iitb.ac.in

Abstract

Code-switching has seen growing interest in
recent years as an important multilingual NLP
phenomenon. Generating code-switched text
for data augmentation has been sufficiently
well-explored. However, there is no prior
work on generating code-switched text with
fine-grained control on the degree of code-
switching and the lexical choices used to
convey formality. We present COCOA, an
encoder-decoder translation model that con-
verts monolingual Hindi text to Hindi-English
code-switched text with both encoder-side
and decoder-side interventions to achieve fine-
grained controllable generation. COCOA can
be invoked at test-time to synthesize code-
switched text that is simultaneously faithful
to syntactic and lexical attributes relevant to
code-switching. COCOA outputs were sub-
jected to rigorous subjective and objective
evaluations. Human evaluations establish that
our outputs are of superior quality while be-
ing faithful to desired attributes. We show sig-
nificantly improved BLEU scores when com-
pared with human-generated code-switched
references. Compared to competitive base-
lines, we show 10% reduction in perplexity
on a language modeling task and also demon-
strate clear improvements on a downstream
code-switched sentiment analysis task.

1 Introduction

Bilingual speakers form a significant portion (cur-
rent estimates of 43%1) of the world’s population.
To cater to the human-computer interaction needs
of this user segment, Natural Language Genera-
tion (NLG) and Natural Language Understanding
(NLU) tasks for code-switching (CS) are receiving
increasing amount of attention from the research
community (Zhang et al., 2021). Code-switching in

* Equal contribution
1https://ilanguages.org/bilingual.php

(a) CMI (b) SPI (c) Formality

Figure 1: Distribution of CMI, SPI and formality scores
over CS samples in the ALLCS test set.

a sentence typically involves switching between a
matrix language L1 and an embedded language L2.
A key challenge in CS that has not been previously
addressed by generation models is to explicitly con-
trol for syntactic and lexical diversity (Doğruöz
et al., 2021). Such controllable NLG models would
help build robust computational models for CS text.
We draw attention to three specific dimensions of
diversity that are commonly observed in CS text. In
this work, we aim to generate text that specifically
spans these three CS dimensions.
1. Language Mix Ratio: The first syntactic di-
mension of diversity refers to the varying number
of L1 and L2 words in a CS sentence that depends
on a number of factors like language pair, socio-
economic context, etc. For instance, Al-Azami
(2006) find that among immigrant Bengalis in the
UK, first-generation immigrants tend to use Ben-
gali and English as L1 and L2 respectively, while
the order is reversed for younger generation immi-
grants. Code-mixing index (CMI) (Gambäck and
Das, 2014) is commonly used to quantify the ratio
of L1 vs. L2.
2. Language Burstiness: The second syntac-
tic dimension of diversity captures burstiness, i.e.
the length of homogenous spans of L1 and L2,
in CS text. This is also a function of the lan-
guages involved and social contexts. For instance,
Czech-English speakers switch to English for high-
information content words in prominent prosodic
positions while speaking Czech (Myslín and Levy,

 MRPJR’22 Mondal et al., “COCOA: An Encoder-Decoder Model for Controllable Code-switched Generation”, EMNLP 2022

 MRPJR’22

CoCoa: Generating code-switched text
from monolingual text while providing
inference-time controls for CMI, SPI and
formality

Why is Diversity Computationally Important?

Understanding Diversity
Set an alarm for 8 am tomorrow

Kal subah 8 baje ka alarm set karo

Please kal 8 am ka alarm laga dein

 

Tomorrow 8 am alarm set kar dijiye

Generating Diversity
Set an alarm for 8 am tomorrow

create_alarm (datetime (next_day 8 AM))

Please kal 8 am ka  
alarm laga dein

thee hai tomorrow 8  
am ka alarm laga diya

Tomorrow 8 am alarm
set kar dijiye

okay alarm set  
kiya for 8 am

Slide by Sneha Mondal

CoCoa: Controllable Code-switched Generation

 MRPJR’22 Mondal et al., “COCOA: An Encoder-Decoder Model for Controllable Code-switched Generation”, EMNLP 2022

 MRPJR’22

Control attributes responsible for
diversity at inference

● Encoder side control

● Decoder side control

Modified sequence to sequence model

Encoder Decoder

Thanks for the gift, it is
awesome!INPUT

Gracias for the gift,
está awesome!OUTPUT

Encoder side
control

Decoder side
control

Encoder-side Control

Encoder-side control

X = जरा जानकारी चािहए थी

Encoder

0.25 * Vcmi

 Decoder

Y = जरा information चािहए था
CMI = 0.25

z

 (Zara jankari chahiye thi)
 (Zara information chahiye tha)

• Used with attributes for
which we have parallel
monolingual to code-
switched text with attribute
values

• Learn a vector embedding
for each attribute, scale it
with a weight (proportional
to the attribute value) and
add to the encoder
representation SVSF’21

“Controlling machine translation for multiple attributes with additive interventions”,Schioppa et al., EMNLP 2021SVSF’21

Decoder-side Control

• Used with attributes, like
formality, for which we do
not have parallel text

• Predict using a binary
attribute classifier whether
each prefix string, on
completion, will satisfy
attribute or not

• Multiply probabilities from
attribute classifier with
output probability
distributions and
renormalize

YK’21

“FUDGE: Controlled text generation with future discriminators.”,Yang and Klein, NAACL 2021YK’21

Decoder-side control

जरा

Decoder
P(x2 | x1)

 x1
P(formal | x1, x2)

जरा counsel

जरा counsel

जरा facts

…

0.9

0.2

…

information

facts

counsel

0.3

0.1

 0.1

 x1 x2

CoCoa: Generation Quality

• BLEU measures the quality of
generated text

• Pearson correlation between
attribute values of human
references and model outputs

CoCoa: Human Evaluations

• Naturalness

• Meaning Preservation

• Encoder-based control produces more
natural and consistent outputs

• Decoder-based control achieves attribute
faithfulness at the cost of naturalness

CoCoa: Examples of Generations

Hindi: उसे भाग लेने की इजाजत नहीं थी

cmi-low: उसे भाग लेने की permission नहीं थी

cmi-high: उसे participate लेने की permission नहीं थी

Hindi: उन्होंने मुझसे कहा की अंत में एक व्यिक्त से मीिटंग करनी होगी

cmi-low: उन्होंने मुझसे कहा की end में एक व्यिक्त से meeting करनी होगी

cmi-high: they told me की end में एक व्यिक्त से meeting करनी होगी

Synthesizing Code-switched Speech?

• Hard to access large amounts of code-switched data

• Can we leverage monolingual speech to construct
synthetic code-switched speech?

• Create synthetic speech that mimics phonetic constraints
of real code-switched speech at switching boundaries

• Can we use text-to-speech synthesis systems to
generate synthetic code-switched speech?

Code-switched
Text

Monolingual
Speech Corpora

Monolingual
Segments

Concatenation
Algorithm

Switching
Statistics

Synthetic Code-switched
Speech

 TGJA’19 “Exploiting Monolingual Speech Corpora for Code-mixed Speech Recognition”, K. Taneja, S. Guha, P. Jyothi, B. Abraham, Interspeech 2019

 TGJA’19

SATJ’20

SATJ’20 “Improving Low-resource Code-switched ASR using Augmented Code-switched TTS”, Y. Sharma, B. Abraham, K. Taneja, P. Jyothi, Interspeech 2020

Summary

• ASR on accented speech from underrepresented users remains unsolved

• Code-switched inputs are still hard for computational models to proces

~78%
Google witnessed a whopping  
78% jump in voice search  
from 2021 to 2022

Critical to ensure more inclusive  
adoption of speech technologies

Voice-based inputs make technology  
accessible to those who cannot type 
in their native languages

Thanks to all my collaborators!

Abhijeet Awasthi Aman Kansal Kartik Khandelwal Archiki Prasad Syamantak Kumar Ishan Tarunesh Ritika Shreya Pathak

Sneha Mondal Aravindan Raghuveer Sunita Sarawagi

Vinit Unni

