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Motivation

Benchmark datasets and task performance
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Image classification, ImageNet dataset Speech Recognition, Switchboard-1 data

Deep Learning for Medical Imaging
Fares Poorly on External Data

Deep learning may not assess medical images from external
organizations as accurately as data from the institution where it is
trained.
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Distribution shifts in Dataset bias ampilification in Real-world adversarial attacks in
medical imaging recidivism prediction autonomous driving
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,’ This talk

1. Why are neural networks (NNs) brittle?

2. How do we make them robust?

New conceptual and algorithmic insights.




Thought Experiment

How do we distinguish swans and bears?

® Several features available: color, background, shape, organs etc.

® Humans look at these holistically. What does an NN learn?




Neural Networks Learn Only Some Features

Texture bias Geirhos et al. (2018) Shortcut learning DeGrave et al. (2021)
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(a) Texture image (b) Content image (c) Texture-shape cue conflict 8 O
81.4%  Indian elephant 71.1%  tabby cat 63.9%  Indian elephant
10.3% indri 173% grey fox 26.4% indri
8.2% black swan 3.3% Siamese cat 9.6% black swan

Why do NNs learn only some features?

Which features do NNs learn?




Simplicity Bias (SB) [STRJN, NeurlPS 2020]

NNs learn simplest features useful for classification

C|a$_8ifier has Iarger margin Compared to Simplicity Bias in Neural Networks (NNs)
green classifier. s A R SR
® NNs have the capacity to learn classifier. 7§
. o 2 = Complex
® |n practice however, NNs learn the green classifier. § —
L

® Rigorous proof for 1-hidden layer NN.
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NNs Provably Exhibit Simplicity Bias
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® |nitialization: wj ~ N (0, a[) Simplicity Bias in Neural Networks (NNs)
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Towards Real Datasets
MNIST-CIFAR dataset and randomization tests

GooglLeNet Logits on MNIST-CIFAR
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CIFAR randomized: Randomize the CIFAR part of the image

Class 0 Image Class 1 Image

CIFAR-10 block

* Logits do not change = Prediction does not depend at all on CIFAR part



Consequences of SB

SB leads to brittleness to distribution shifts and adversarial examples

Simplicity Bias in Neural Networks (NNs)
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Feature ¢,
® Model learns only the simplest features = poor adversarial robustness

* (Simple features # true features) = Poor out of distribution performance

* Can sometimes lead to poor in-domain performance



Fix SB using standard approaches?
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Class 0 Image  Class 1 Image
Ensembles on MS-5 and LMS-7 Model 0., budget ¢ Test Accuracy e-Robust Accuracy
U casis Liiail LLAALLLAALALLELLARE Standard SGD /., Adv. Training Standard SGD /., Adv. Training
0.95F MobileNetV2 0.30 0.999 + 0.001 0.999 + 0.000 0.000 £ 0.000 0.991 £ 0.000
0.90k DenseNet121 0.30 1.000 £ 0.000 0.999 £ 0.000 0.000 £ 0.000 0.981 £ 0.003
a ' ResNet50 0.30 1.000 £ 0.000 0.999 £ 0.001 0.001 £ 0.000 0.982 £ 0.002
© 0.85}
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8 0.80r
< o7t -o- o CIFAR10-Randomized Accuracy
o7l V.. . T—Ms=5 — [Ms-7 -
ki i — Test  eeees Train Standard SGD /., Adv. Training
0.65- , , .
1 3 5 10 0.493 £+ 0.005 0.493 + 0.001

Ensemble Size

0.494 £ 0.005 0.501 £+ 0.003
0.501 +£0.001 0.499 £+ 0.002

Simplicity Bias in Neural Networks (NNs)
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To fix SB,

need to understand its precise manifestation ...



Test-bed dataset: ColoredMNIST

VS

Task: Classify red O vs

High correlation between color and digit (label).




Key insight |: Feature replication

(ICLR 2023)
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e Some features (e.g., color) are replicated multiple times in the

feature space compared to other features (e.g., digit shape).

e Final linear classifier relies more on such replicated features.

e 3layer CNN with 32 penultimate
features has more color features than
shape features.

e Outputis more dependent on color

features than shape features.

Type of Number Outpu_t

feature correlation
Color 26 0.81
Shape 4 0.61




Max-Margin Classifier under Feature Replication

SVM, 0-Rep SVM, 5-Rep e SGD trained networks converge
to the max-margin solution.
e When features are replicated,

max-margin classifier gives more

weight to the replicated feature.

=1 0 1

Max margin classifierin =~ @ Becomes worse with increasing
replicated feature ] .
space - w = [%,--- 2] dimensions!



Feature Reconstruction Regularizer (FRR)

e Reconstruct features from logits
e Minimize the reconstruction loss
e Mathematical formulation -

Lerr (2,0, W, ¢) = || fo(x) = To(W? fo(z))|l,
e Ensures that logits contain

information about all features.




FRR under Feature Replication

FRR (Ours), 5-Rep FRR (Ours), 5>-Rep o ERR gives equal weightage to
replicated and unreplicated features
e Some caveats-
o Needs relatively diverse

representations

o Needs some conditional
variance between core and

spurious features.



Key insight Il: Replicated features are often non-robust

Ol /.

e The replicated features (e.g. color) learned and used by models are
often brittle to small perturbations.

e We train two models on data with perfect shape and color
correlation respectively, and compute

jcheir accuracy on adversarially perturbed Feature Test A‘Lcn‘::fy
Images. u;i:l:?, Accuracy perturbation
e The performance of a model dependent =01
on color features sees a huge drop. Color 99% 53%
Shape 99% 85%




Adversarial Examples

These are examples generated by
1 ~ ex wT T
solving max;ep, (z) log 228 p(wg fo(#))

exp(w] fo(#))
EEEI II - |I _ I i.e. the image in the ball of an input
clean __H image for which the cross-entropy
!]EI II o |[ loss is maximized
n
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Can we use adversarial training?

£>-trained {>-trained
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Prior work [1] has shown that
adversarial robustness is negatively
correlated with clean accuracy.
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# Training Samples # Training Samples
(b) CIFAR-10 (c) Restricted ImageNet

[1] Towards Deep Learning Models Resistant to Adversarial Attacks by Madry et al



Can we use adversarial training?

. CIFAR-10.2 o MOW-WILDS _ Prior work has shown that
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S 8401 7 adversarial robustness is negatively
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Miller et al



Adversarial Fine-tuning: The sweet spot

Flower

We freeze the backbone of an ERM
trained network and fine-tune the
final linear layer using adversarial
training.




Pushing the boundaries - Distillation

e Distill the knowledge of teacher

Std Teacher Adv FT Teacher
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into a small student model to

transfer robustness.

Flower

e Careful implementation to: ) el
“_Adv FT Teacher Student Mode| 4

o ensure adversarial Teacher Training Student Training

fi netuning leads to Figure 1: DAFT overview. We pre-train a teacher, followed by adversarial fine-tuning using £s00th
(2). We then distill a student from both standard and adversarial teachers. The Comp operator outputs
gOOd teachers Uadv 1f adversarial teacher’s prediction is correct, else it outputs ;4.

ensure poorer in domain accuracy of teacher is mitigated
o ensure incorrect logits of teacher are informative

e A smaller model with DAFT can outperform larger ERM trained models.



Our results

DomainBed is a large scale benchmark Improvement
Method I Clr over previous
with multiple domain shift datasets. DomainBed SOTA
Sketch Cartoon Art painting E RM 63 . 3 -
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"ﬁ'ain\i(ng set Test set DAFT [1] 669 01
. FRR [2 67.9 1.1
We achieve a new state of the art on 2]
. FRR+DAFT 68.4 1.6
this benchmark.

[1] Draft on arxiv; [2] Accepted to ICLR 2023.



Conclusion & Open Questions

e Non-robust features and Feature replication: Two empirically
grounded hypotheses for OOD brittleness of neural networks.

e Two methods to alleviate these issues-
o FRR utilizes all learned features, even under feature replication
[accepted to ICLR 2023]
o DAFT combines adversarial fine-tuning and distillation to learn
robust features

e New SOTA on large scale OOD benchmark.

e Open directions: Do foundation models suffer from SB? If yes, how
does it manifest? How can we make foundation models more robust?




Thank youl!

https://arxiv.org/abs/2210.01360 https://arxiv.org/abs/2208.09139
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