Modeling sparsity in classical and deep latent variable models

Clint P. George

School of Mathematics and Computer Science Indian Institute of Technology Goa

November 8, 2023

Introduction

Modeling sparsity — gene expressions

- Given $(x_i, y_i), i = 1, ..., n$, select a subset of features $(x_1, x_2, ..., x_p)$
- Interpretability

Understanding or interpreting data

- We have some measurements of some properties from two instruments.
- Interpretation: search for a pattern—e.g., one instrument consistency measures higher

Understanding or interpreting data

- We have some measurements of some properties from two instruments.
- Interpretation: search for a pattern—e.g., one instrument consistency measures higher
- Statistical modeling
 - systematic effects aims to summarize data
 - random effects aims to summarize the nature and magnitude of unexplained or random variation

Modeling patterns

 Goal: generate patterns of numbers that can replace the data at some point

Modeling patterns

- Goal: generate patterns of numbers that can replace the data at some point
- Consider a simple model^a

$$y = \beta x + \alpha$$

- Connects y and x via the parameter pair (α, β)
- Models straight-line relationship between y and x

^adates back to Gauss and Legendre's work on astronomical data

Modeling patterns

- ▶ If we have $x_1, x_2, ..., x_n$, given (α, β) , y takes the values $\beta x_1 + \alpha, \beta x_2 + \alpha, ..., \beta x_n + \alpha$.
- In practice, y has measurement error and the relation x-y is approximately linear

$$y = \beta x + \alpha + \epsilon$$

Statistical modeling of patterns¹

The observation vector y with n components y₁, y₂,..., y_n is a realization of a r.v. Y, whose components are independently distributed with means μ

$$oldsymbol{\mu} = \sum_{j=1}^p oldsymbol{x}_jeta_j,$$

where β_j s are unknown parameters. And,

$$E[Y_i] = \mu_i = \sum_{j=1}^p x_{ij}\beta_j; i = 1, 2, \dots, n$$

• The errors follow a Gaussian with constant variance σ^2

¹McCullagh and Nelder (1989). Generalized Linear Models

Estimating β

Maximize the likelihood of the parameters for the observed data
Let f(y_i; β) be the density for observation y_i given β, then

$$\mathcal{L}(\boldsymbol{\mu}; \boldsymbol{y}) = \sum_{i=1}^{n} \log f(y_i; \boldsymbol{\beta})$$

Assuming normality with constant variance,

$$\mathcal{L}(\mu_i; y_i) = \frac{1}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \underbrace{(y_i - \mu_i)^2}_{\text{residual squares}},$$

for observation i

Shrinkage methods

Ridge regression

Shrinks the regression coefficients by imposing a penalty².

$$\hat{\boldsymbol{\beta}}_{\mathsf{ridge}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \left\{ \sum_{i=1}^{n} \left(y_i - \sum_{\substack{j=1\\\mu_i}}^{p} x_{ij}\beta_j \right)^2 + \underbrace{\lambda \sum_{j=1}^{p} \beta_j^2}_{\mathsf{penalty term}} \right\}, \lambda \ge 0$$

²Hoerl & Kennard (1970). *Ridge regression: Biased estimation for* ...

Ridge regression

Shrinks the regression coefficients by imposing a penalty².

$$\hat{\boldsymbol{\beta}}_{\mathsf{ridge}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \left\{ \sum_{i=1}^{n} \left(y_i - \sum_{\substack{j=1\\\mu_i}}^{p} x_{ij}\beta_j \right)^2 + \underbrace{\lambda \sum_{j=1}^{p} \beta_j^2}_{\mathsf{penalty term}} \right\}, \lambda \ge 0$$

Solution is a linear function of y

$$\hat{\boldsymbol{\beta}}_{\mathsf{ridge}} = \left(\boldsymbol{X}^T \boldsymbol{X} + \lambda \mathsf{I}\right)^{-1} \boldsymbol{X}^T \boldsymbol{y} \tag{1}$$

 \boldsymbol{X} is standardized $n \times p$ matrix.

²Hoerl & Kennard (1970). *Ridge regression: Biased estimation for* ...

LASSO regression³

The penalty term is different

$$\hat{\boldsymbol{\beta}}_{\text{LASSO}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \left\{ \sum_{i=1}^{n} \left(y_i - \sum_{\substack{j=1\\\mu_i}}^{p} x_{ij}\beta_j \right)^2 + \underbrace{\lambda \sum_{j=1}^{p} |\beta_j|}_{\text{penalty term}} \right\}, \lambda \ge 0$$

- \blacktriangleright The solution is not a linear function of y
- It can threshold some coefficients to zero.

³Tibshirani (1996). The least absolute shrinkage and selection operator.

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

Hastie et al. (2009, ESL)

Diabetes data (Efron et al. 2004) - 442 samples, 10 features

Bayesian approach

Bayes theorem

$$p(\beta|x) = \frac{p(x|\beta)p(\beta)}{p(x)} \propto p(x|\beta)p(\beta)$$

Bayesian approach

Bayes theorem

$$p(\beta|x) = \frac{p(x|\beta)p(\beta)}{p(x)} \propto p(x|\beta)p(\beta)$$

where

$p(\beta x)$	posterior
$p(x \beta)$	likelihood
p(eta)	prior

Bayesian ridge regression

• Coefficients β have the prior

$$p(\boldsymbol{\beta}|\alpha) = N(\boldsymbol{\beta}|0, \alpha^{-1}I) \propto \frac{\alpha}{2\pi}^{M/2} \exp\left\{\frac{-\alpha}{2}\boldsymbol{\beta}^T\boldsymbol{\beta}\right\}$$

 Find β: the most probable value of β given the data—i.e., maximize the posterior (MAP)

Bayesian ridge regression

• Coefficients β have the prior

$$p(\boldsymbol{\beta}|\alpha) = N(\boldsymbol{\beta}|0, \alpha^{-1}I) \propto \frac{\alpha}{2\pi}^{M/2} \exp\left\{\frac{-\alpha}{2}\boldsymbol{\beta}^T\boldsymbol{\beta}\right\}$$

- Find β: the most probable value of β given the data—i.e., maximize the posterior (MAP)
- Maximizing the log-posterior is equivalent to minimizing

$$\sum_{i=1}^{n} (y_i - \mu_i)^2 + \frac{\alpha}{2} \sum_{j=1}^{p} \beta_j^2$$

Bayesian LASSO

Lasso minimizes

$$\sum_{i=1}^{n} (y_i - \mu_i)^2 + \frac{\lambda}{2} \sum_{j=1}^{p} |\beta_j|$$

 \blacktriangleright Lasso estimates as MAP estimates when eta have the priors⁴

$$p_{\tau}(\boldsymbol{\beta}) = \left(\frac{\tau}{2}\right)^p \exp(-\tau \|\boldsymbol{\beta}\|_1)$$

and the data likelihood is

$$p_{\sigma}(\boldsymbol{y}|\boldsymbol{\beta}) = N(\boldsymbol{y}|\boldsymbol{X}\boldsymbol{\beta},\sigma^2 \mathbf{I})$$

⁴Tibshirani 1996

Spike and slab priors

- Variable selection under the normal linear model; Bayesian LASSO is ineffective⁵
- Coefficients β have Spike and Slab priors⁶

$$\beta_j \sim (1 - \gamma_j) \underbrace{\delta_0}_{\text{spike}} + \gamma_j \underbrace{p(\beta_j | \tau^2)}_{\text{slab}}$$

 $\gamma_j \sim \mathsf{Bernoulli}(\lambda)$

 ⁵Ghosh et al. (2016), Castilo et al. (2015)
⁶Lempers (1971), Mitchel & Beauchamp (1988), George & McCullagh (1993)

Spike and slab priors

- This prior is considered ideal for sparse Bayesian problems⁷
- Exploring the full posterior over the entire model space can be challenging due to the combinatorial complexity of updating discrete indicators γ = (γ₁, γ₂,..., γ_p)
- Solutions in the literature stochastic search, variational inference

Sparse deep learning

- Deep neural networks can model complex patterns
- Network compression, before deployment to tiny devices
- Variable selection

Deep neural network

 $y_i = f_ heta(ec{x}_i) + \epsilon_i; \quad \epsilon \sim N(0,\sigma^2)$

Weights w are typically ON all the time

Deep neural network — formal representation

- We model data via L-hidden layer network; each layer l has p_l neurons/nodes
- The weight matrix and bias vector in each layer $l = 1, 2, \dots, L$ are

$$W_i \in \mathbb{R}^{p_{l-1} \times p_l}, \quad \boldsymbol{b}_i \in \mathbb{R}^{p_l},$$

which we denote by heta

Deep neural network — formal representation

- We model data via L-hidden layer network; each layer l has p_l neurons/nodes
- The weight matrix and bias vector in each layer $l = 1, 2, \dots, L$ are

$$W_i \in \mathbb{R}^{p_{l-1} \times p_l}, \quad \boldsymbol{b}_i \in \mathbb{R}^{p_l},$$

which we denote by heta

The network can be written as

$$f_{\boldsymbol{\theta}}(\boldsymbol{x}) = W_{L+1}\sigma_L(W_L\sigma_{L-1}(\cdots \sigma_1(W_1\boldsymbol{x})) + \boldsymbol{b}_L) + \boldsymbol{b}_{L+1}$$

where $\sigma_1, \sigma_2, \ldots, \sigma_L$ are the activation functions

Sparse deep learning

► We approximate the familiar regression model

$$y_i = f_0(\boldsymbol{x}_i) + \epsilon_i, i = 1, 2, \dots,$$

where $\boldsymbol{x}_i \in \mathbb{R}^p, \epsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$, with a sparse neural network $f_{\boldsymbol{\theta}}{}^{8}$

⁸Bai et al. (2018). Efficient variational inference for sparse deep learning ...

Sparse deep learning

We approximate the familiar regression model

$$y_i = f_0(\boldsymbol{x}_i) + \epsilon_i, i = 1, 2, \dots,$$

where $\boldsymbol{x}_i \in \mathbb{R}^p, \epsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$, with a sparse neural network $f_{\boldsymbol{\theta}}^8$ \triangleright We assume spike and slab prior for each θ —i.e., weight or bias.

$$\boldsymbol{\theta} \sim (1-\gamma) \underbrace{\delta_0(\boldsymbol{\theta})}_{\text{spike}} + \gamma \underbrace{N(\boldsymbol{0},\tau^2)}_{\text{slab}}$$

 $\gamma \sim \mathsf{Bernoulli}(\lambda)$

⁸Bai et al. (2018). Efficient variational inference for sparse deep learning ...

Weights w are ON/OFF based on $\gamma \in \{0, 1\}$

Variational Bayes inference

Inferences from the posterior

```
p(\boldsymbol{\theta}|\boldsymbol{X}) \propto p(\boldsymbol{X}|\boldsymbol{\theta})p(\boldsymbol{\theta})
```

is challenging-so people use MCMC, variational methods

Variational Bayes inference

Inferences from the posterior

 $p(\boldsymbol{\theta}|\boldsymbol{X}) \propto p(\boldsymbol{X}|\boldsymbol{\theta})p(\boldsymbol{\theta})$

is challenging—so people use MCMC, variational methods

 Given a variational family of distributions Q, we find a member closest to the true posterior by

$$\mathop{\arg\min}_{\boldsymbol{q}(\boldsymbol{\theta})\in\mathcal{Q}}\mathsf{KL}(\boldsymbol{q}(\boldsymbol{\theta})\|\boldsymbol{p}(\boldsymbol{\theta}|\boldsymbol{X}))$$

Variational Bayes inference

Inferences from the posterior

 $p(\boldsymbol{\theta}|\boldsymbol{X}) \propto p(\boldsymbol{X}|\boldsymbol{\theta})p(\boldsymbol{\theta})$

is challenging—so people use MCMC, variational methods

 Given a variational family of distributions Q, we find a member closest to the true posterior by

 $\mathop{\arg\min}_{q(\boldsymbol{\theta})\in\mathcal{Q}}\mathsf{KL}(q(\boldsymbol{\theta})\|p(\boldsymbol{\theta}|\boldsymbol{X}))$

Equivalent to minimizing the negative ELBO:

 $\Omega = -E_{q(\boldsymbol{\theta})}[\log p(\boldsymbol{X}|\boldsymbol{\theta})] + \mathsf{KL}(q(\boldsymbol{\theta})||p(\boldsymbol{\theta}))$

Variational inference via SGD⁹

$$\Omega = \underbrace{-E_{q(\boldsymbol{\theta})}[\log p(\boldsymbol{X}|\boldsymbol{\theta})]}_{\text{reconstruction error}} + \underbrace{\mathsf{KL}(q(\boldsymbol{\theta})\|p(\boldsymbol{\theta}))}_{\text{regularizer}}$$

Integrate the KL term analytically

Compute the reconstruction error by Monte Carlo estimation

⁹Kigma & Welling (2014). Autoencoding variational Bayes.

Variational inference via SGD⁹

$$\Omega = \underbrace{-E_{q(\boldsymbol{\theta})}[\log p(\boldsymbol{X}|\boldsymbol{\theta})]}_{\text{reconstruction error}} + \underbrace{\mathsf{KL}(q(\boldsymbol{\theta})\|p(\boldsymbol{\theta}))}_{\text{regularizer}}$$

Integrate the KL term analytically

Compute the reconstruction error by Monte Carlo estimation

Variational family distributions are reparametrized by some differential function g(ω, ν) and random variable ν, for back-propagation

 $\tilde{\Omega}^{m}(\omega) = -\frac{n}{m} \frac{1}{K} \sum_{i=1}^{m} \sum_{k=1}^{K} \log p_{g(\omega,\nu)}(\boldsymbol{x}_{i}) + \mathsf{KL}(q_{\omega}(\boldsymbol{\theta}) \| p(\boldsymbol{\theta}))$

⁹Kigma & Welling (2014). Autoencoding variational Bayes.

Sparse deep learning

The variational family Q follow spike and slab family. The ELBO Ω is approximated by

$$\begin{split} \tilde{\Omega} &= \underbrace{-E_{q(\boldsymbol{\theta}|\boldsymbol{\gamma})q(\boldsymbol{\gamma})}[\log p(\boldsymbol{X}|\boldsymbol{\theta})]}_{\text{reconstruction error}} \\ &+ \underbrace{\sum_{t=1}^{T} \left[\mathsf{KL}(q(\boldsymbol{\gamma}_{t}) \| p(\boldsymbol{\gamma}_{t})) + q(\boldsymbol{\gamma}_{t} = 1)\mathsf{KL}(N(a_{i}, b_{i}^{2}) \| N(0, \tau^{2}))\right]}_{\text{regularizer}} \end{split}$$

¹⁰Maddison et al. (2017), Jang et al. (2017); Bai et al. (2020, SDL)

Sparse deep learning

The variational family Q follow spike and slab family. The ELBO Ω is approximated by

$$\begin{split} \tilde{\Omega} = \underbrace{-E_{q(\boldsymbol{\theta}|\boldsymbol{\gamma})q(\boldsymbol{\gamma})}[\log p(\boldsymbol{X}|\boldsymbol{\theta})]}_{\text{reconstruction error}} \\ + \underbrace{\sum_{t=1}^{T} \left[\mathsf{KL}(q(\boldsymbol{\gamma}_{t}) \| p(\boldsymbol{\gamma}_{t})) + q(\boldsymbol{\gamma}_{t} = 1)\mathsf{KL}(N(a_{i},b_{i}^{2}) \| N(0,\tau^{2}))\right]}_{\text{regularizer}} \end{split}$$

• Approximate the discrete variable γ sampling by¹⁰

 $\tilde{\gamma} \sim \text{Gumbel-softmax}(\phi, c),$

c (temperature) controls the convergence to γ . ¹⁰Maddison et al. (2017), Jang et al. (2017); Bai et al. (2020, SDL)

Thank you!

clint@iitgoa.ac.in