Modeling sparsity in classical and deep latent variable models

Clint P. George

School of Mathematics and Computer Science Indian Institute of Technology Goa

November 8, 2023

Introduction

Modeling sparsity - gene expressions

Tissue samples

- Given $\left(\boldsymbol{x}_{i}, y_{i}\right), i=1, \ldots, n$, select a subset of features $\left(x_{1}, x_{2}, \ldots, x_{p}\right)$
- Interpretability

Understanding or interpreting data

- We have some measurements of some properties from two instruments.
- Interpretation: search for a pattern-e.g., one instrument consistency measures higher

Understanding or interpreting data

- We have some measurements of some properties from two instruments.
- Interpretation: search for a pattern-e.g., one instrument consistency measures higher
- Statistical modeling
- systematic effects - aims to summarize data
- random effects - aims to summarize the nature and magnitude of unexplained or random variation

Modeling patterns

- Goal: generate patterns of numbers that can replace the data at some point

Modeling patterns

- Goal: generate patterns of numbers that can replace the data at some point
- Consider a simple modela ${ }^{\text {a }}$

$$
y=\beta x+\alpha
$$

- Connects y and x via the parameter pair (α, β)

- Models straight-line relationship between y and x

[^0]
Modeling patterns

- If we have $x_{1}, x_{2}, \ldots, x_{n}$, given $(\alpha, \beta), y$ takes the values $\beta x_{1}+\alpha, \beta x_{2}+\alpha, \ldots, \beta x_{n}+\alpha$.
- In practice, y has measurement error and the relation $x-y$ is approximately linear

$$
y=\beta x+\alpha+\epsilon
$$

Statistical modeling of patterns ${ }^{1}$

- The observation vector \boldsymbol{y} with n components $y_{1}, y_{2}, \ldots, y_{n}$ is a realization of a r.v. \boldsymbol{Y}, whose components are independently distributed with means $\boldsymbol{\mu}$

$$
\boldsymbol{\mu}=\sum_{j=1}^{p} \boldsymbol{x}_{j} \beta_{j}
$$

where β_{j} s are unknown parameters. And,

$$
E\left[Y_{i}\right]=\mu_{i}=\sum_{j=1}^{p} x_{i j} \beta_{j} ; i=1,2, \ldots, n
$$

- The errors follow a Gaussian with constant variance σ^{2}

[^1]
Estimating $\boldsymbol{\beta}$

- Maximize the likelihood of the parameters for the observed data
- Let $f\left(y_{i} ; \boldsymbol{\beta}\right)$ be the density for observation y_{i} given $\boldsymbol{\beta}$, then

$$
\mathcal{L}(\boldsymbol{\mu} ; \boldsymbol{y})=\sum_{i=1}^{n} \log f\left(y_{i} ; \boldsymbol{\beta}\right)
$$

- Assuming normality with constant variance,

$$
\mathcal{L}\left(\mu_{i} ; y_{i}\right)=\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \underbrace{\left(y_{i}-\mu_{i}\right)^{2}}_{\text {residual squares }}
$$

for observation i

Shrinkage methods

Ridge regression

- Shrinks the regression coefficients by imposing a penalty ${ }^{2}$.

$$
\hat{\boldsymbol{\beta}}_{\text {ridge }}=\underset{\boldsymbol{\beta}}{\arg \min }\{\sum_{i=1}^{n}(y_{i}-\underbrace{\sum_{j=1}^{p} x_{i j} \beta_{j}}_{\mu_{i}})^{2}+\underbrace{\lambda \sum_{j=1}^{p} \beta_{j}^{2}}_{\text {penalty term }}\}, \lambda \geq 0
$$

[^2]
Ridge regression

- Shrinks the regression coefficients by imposing a penalty ${ }^{2}$.

$$
\hat{\boldsymbol{\beta}}_{\text {ridge }}=\underset{\boldsymbol{\beta}}{\arg \min }\{\sum_{i=1}^{n}(y_{i}-\underbrace{\sum_{j=1}^{p} x_{i j} \beta_{j}}_{\mu_{i}})^{2}+\underbrace{\lambda \sum_{j=1}^{p} \beta_{j}^{2}}_{\text {penalty term }}\}, \lambda \geq 0
$$

- Solution is a linear function of \boldsymbol{y}

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}_{\text {ridge }}=\left(\boldsymbol{X}^{T} \boldsymbol{X}+\lambda \mathbf{I}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y} \tag{1}
\end{equation*}
$$

\boldsymbol{X} is standardized $n \times p$ matrix.
${ }^{2}$ Hoerl \& Kennard (1970). Ridge regression: Biased estimation for ...

LASSO regression ${ }^{3}$

- The penalty term is different

$$
\hat{\boldsymbol{\beta}}_{\mathrm{LASSO}}=\underset{\boldsymbol{\beta}}{\arg \min }\{\sum_{i=1}^{n}(y_{i}-\underbrace{\sum_{j=1}^{p} x_{i j} \beta_{j}}_{\mu_{i}})^{2}+\underbrace{\lambda \sum_{j=1}^{p}\left|\beta_{j}\right|}_{\text {penalty term }}\}, \lambda \geq 0
$$

- The solution is not a linear function of \boldsymbol{y}
- It can threshold some coefficients to zero.

[^3]\[

\min \sum_{i=1}^{n}\left(y_{i}-\mu_{i}\right)^{2} \quad such that $$
\begin{cases}\sum_{j=1}^{p} \beta_{j}^{2} \leq t & \text { ridge } \\ \sum_{j=1}^{p}\left|\beta_{j}\right| \leq t & \text { lasso }\end{cases}
$$
\]

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $\left|\beta_{1}\right|+\left|\beta_{2}\right| \leq t$ and $\beta_{1}^{2}+\beta_{2}^{2} \leq t^{2}$, respectively, while the red ellipses are the contours of the least squares error function.

Hastie et al. (2009, ESL)

Diabetes data (Efron et al. 2004) - 442 samples, 10 features

Bayesian approach

Bayes theorem

$$
p(\beta \mid x)=\frac{p(x \mid \beta) p(\beta)}{p(x)} \propto p(x \mid \beta) p(\beta)
$$

Bayesian approach

Bayes theorem

$$
p(\beta \mid x)=\frac{p(x \mid \beta) p(\beta)}{p(x)} \propto p(x \mid \beta) p(\beta)
$$

where

$$
\begin{aligned}
p(\beta \mid x) & \text { posterior } \\
p(x \mid \beta) & \text { likelihood } \\
p(\beta) & \text { prior }
\end{aligned}
$$

Bayesian ridge regression

- Coefficients $\boldsymbol{\beta}$ have the prior

$$
p(\boldsymbol{\beta} \mid \alpha)=N\left(\boldsymbol{\beta} \mid 0, \alpha^{-1} I\right) \propto \frac{\alpha}{2 \pi}^{M / 2} \exp \left\{\frac{-\alpha}{2} \boldsymbol{\beta}^{T} \boldsymbol{\beta}\right\}
$$

- Find $\boldsymbol{\beta}$: the most probable value of $\boldsymbol{\beta}$ given the data-i.e., maximize the posterior (MAP)

Bayesian ridge regression

- Coefficients $\boldsymbol{\beta}$ have the prior

$$
p(\boldsymbol{\beta} \mid \alpha)=N\left(\boldsymbol{\beta} \mid 0, \alpha^{-1} I\right) \propto \frac{\alpha}{2 \pi}^{M / 2} \exp \left\{\frac{-\alpha}{2} \boldsymbol{\beta}^{T} \boldsymbol{\beta}\right\}
$$

- Find $\boldsymbol{\beta}$: the most probable value of $\boldsymbol{\beta}$ given the data-i.e., maximize the posterior (MAP)
- Maximizing the log-posterior is equivalent to minimizing

$$
\sum_{i=1}^{n}\left(y_{i}-\mu_{i}\right)^{2}+\frac{\alpha}{2} \sum_{j=1}^{p} \beta_{j}{ }^{2}
$$

Bayesian LASSO

- Lasso minimizes

$$
\sum_{i=1}^{n}\left(y_{i}-\mu_{i}\right)^{2}+\frac{\lambda}{2} \sum_{j=1}^{p}\left|\beta_{j}\right|
$$

- Lasso estimates as MAP estimates when $\boldsymbol{\beta}$ have the priors ${ }^{4}$

$$
p_{\tau}(\boldsymbol{\beta})=\left(\frac{\tau}{2}\right)^{p} \exp \left(-\tau\|\boldsymbol{\beta}\|_{1}\right)
$$

and the data likelihood is

$$
p_{\sigma}(\boldsymbol{y} \mid \boldsymbol{\beta})=N\left(\boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right)
$$

Spike and slab priors

- Variable selection under the normal linear model; Bayesian LASSO is ineffective ${ }^{5}$
- Coefficients $\boldsymbol{\beta}$ have Spike and Slab priors ${ }^{6}$

$$
\beta_{j} \sim\left(1-\gamma_{j}\right) \underbrace{\delta_{0}}_{\text {spike }}+\gamma_{j} \underbrace{p\left(\beta_{j} \mid \tau^{2}\right)}_{\text {slab }}
$$

$$
\gamma_{j} \sim \operatorname{Bernoulli}(\lambda)
$$

[^4]
Spike and slab priors

- This prior is considered ideal for sparse Bayesian problems ${ }^{7}$
- Exploring the full posterior over the entire model space can be challenging due to the combinatorial complexity of updating discrete indicators $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{p}\right)$
- Solutions in the literature - stochastic search, variational inference

Sparse deep learning

- Deep neural networks can model complex patterns
- Network compression, before deployment to tiny devices
- Variable selection

Deep neural network

Weights w are typically ON all the time

Deep neural network - formal representation

- We model data via L-hidden layer network; each layer l has p_{l} neurons/nodes
- The weight matrix and bias vector in each layer $l=1,2, \ldots, L$ are

$$
W_{i} \in \mathbb{R}^{p_{l-1} \times p_{l}}, \quad \boldsymbol{b}_{i} \in \mathbb{R}^{p_{l}},
$$

which we denote by $\boldsymbol{\theta}$

Deep neural network - formal representation

- We model data via L-hidden layer network; each layer l has p_{l} neurons/nodes
- The weight matrix and bias vector in each layer $l=1,2, \ldots, L$ are

$$
W_{i} \in \mathbb{R}^{p_{l-1} \times p_{l}}, \quad \boldsymbol{b}_{i} \in \mathbb{R}^{p_{l}},
$$

which we denote by $\boldsymbol{\theta}$

- The network can be written as

$$
f_{\boldsymbol{\theta}}(\boldsymbol{x})=W_{L+1} \sigma_{L}\left(W_{L} \sigma_{L-1}\left(\quad \cdots \quad \sigma_{1}\left(W_{1} \boldsymbol{x}\right)\right)+\boldsymbol{b}_{L}\right)+\boldsymbol{b}_{L+1}
$$

where $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{L}$ are the activation functions

Sparse deep learning

- We approximate the familiar regression model

$$
y_{i}=f_{0}\left(\boldsymbol{x}_{i}\right)+\epsilon_{i}, i=1,2, \ldots
$$

where $\boldsymbol{x}_{i} \in \mathbb{R}^{p}, \epsilon_{i} \stackrel{\text { iid }}{\sim} N\left(0, \sigma^{2}\right)$, with a sparse neural network $f_{\boldsymbol{\theta}}{ }^{8}$

[^5]
Sparse deep learning

- We approximate the familiar regression model

$$
y_{i}=f_{0}\left(\boldsymbol{x}_{i}\right)+\epsilon_{i}, i=1,2, \ldots,
$$

where $\boldsymbol{x}_{i} \in \mathbb{R}^{p}, \epsilon_{i} \stackrel{\text { iid }}{\sim} N\left(0, \sigma^{2}\right)$, with a sparse neural network $f_{\boldsymbol{\theta}}{ }^{8}$

- We assume spike and slab prior for each θ-i.e., weight or bias.

$$
\begin{aligned}
& \theta \sim(1-\gamma) \underbrace{\delta_{0}(\theta)}_{\text {spike }}+\gamma \underbrace{N\left(0, \tau^{2}\right)}_{\text {slab }} \\
& \gamma \sim \operatorname{Bernoulli}(\lambda)
\end{aligned}
$$

[^6]
Sparse deep learning

Weights w are ON/OFF based on $\gamma \in\{0,1\}$

Variational Bayes inference

- Inferences from the posterior

$$
p(\boldsymbol{\theta} \mid \boldsymbol{X}) \propto p(\boldsymbol{X} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})
$$

is challenging-so people use MCMC, variational methods

Variational Bayes inference

- Inferences from the posterior

$$
p(\boldsymbol{\theta} \mid \boldsymbol{X}) \propto p(\boldsymbol{X} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})
$$

is challenging-so people use MCMC, variational methods

- Given a variational family of distributions \mathcal{Q}, we find a member closest to the true posterior by

$$
\underset{q(\boldsymbol{\theta}) \in \mathcal{Q}}{\arg \min } \mathrm{KL}(q(\boldsymbol{\theta}) \| p(\boldsymbol{\theta} \mid \boldsymbol{X}))
$$

Variational Bayes inference

- Inferences from the posterior

$$
p(\boldsymbol{\theta} \mid \boldsymbol{X}) \propto p(\boldsymbol{X} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})
$$

is challenging-so people use MCMC, variational methods

- Given a variational family of distributions \mathcal{Q}, we find a member closest to the true posterior by

$$
\underset{q(\boldsymbol{\theta}) \in \mathcal{Q}}{\arg \min } \mathrm{KL}(q(\boldsymbol{\theta}) \| p(\boldsymbol{\theta} \mid \boldsymbol{X}))
$$

- Equivalent to minimizing the negative ELBO:

$$
\Omega=-E_{q(\boldsymbol{\theta})}[\log p(\boldsymbol{X} \mid \boldsymbol{\theta})]+\mathrm{KL}(q(\boldsymbol{\theta}) \| p(\boldsymbol{\theta}))
$$

Variational inference via SGD ${ }^{9}$

$$
\Omega=\underbrace{-E_{q(\boldsymbol{\theta})}[\log p(\boldsymbol{X} \mid \boldsymbol{\theta})]}_{\text {reconstruction error }}+\underbrace{\mathrm{KL}(q(\boldsymbol{\theta}) \| p(\boldsymbol{\theta}))}_{\text {regularizer }}
$$

- Integrate the KL term analytically
- Compute the reconstruction error by Monte Carlo estimation

[^7]
Variational inference via SGD ${ }^{9}$

$$
\Omega=\underbrace{-E_{q(\boldsymbol{\theta})}[\log p(\boldsymbol{X} \mid \boldsymbol{\theta})]}_{\text {reconstruction error }}+\underbrace{\mathrm{KL}(q(\boldsymbol{\theta}) \| p(\boldsymbol{\theta}))}_{\text {regularizer }}
$$

- Integrate the KL term analytically
- Compute the reconstruction error by Monte Carlo estimation
- Variational family distributions are reparametrized by some differential function $g(\omega, \nu)$ and random variable ν, for back-propagation

$$
\tilde{\Omega}^{m}(\omega)=-\frac{n}{m} \frac{1}{K} \sum_{i=1}^{m} \sum_{k=1}^{K} \log p_{g(\omega, \nu)}\left(\boldsymbol{x}_{i}\right)+\mathrm{KL}\left(q_{\omega}(\boldsymbol{\theta}) \| p(\boldsymbol{\theta})\right)
$$

[^8]
Sparse deep learning

- The variational family \mathcal{Q} follow spike and slab family. The ELBO Ω is approximated by

$$
\tilde{\Omega}=\underbrace{-E_{q(\boldsymbol{\theta} \mid \gamma) q(\gamma)}[\log p(\boldsymbol{X} \mid \boldsymbol{\theta})]}_{\text {reconstruction error }}
$$

$$
+\underbrace{\sum_{t=1}^{T}\left[\mathrm{KL}\left(q\left(\gamma_{t}\right) \| p\left(\gamma_{t}\right)\right)+q\left(\gamma_{t}=1\right) \mathrm{KL}\left(N\left(a_{i}, b_{i}^{2}\right) \| N\left(0, \tau^{2}\right)\right)\right]}_{\text {regularizer }}
$$

${ }^{10}$ Maddison et al. (2017), Jang et al. (2017); Bai et al. (2020, SDL)

Sparse deep learning

- The variational family \mathcal{Q} follow spike and slab family. The $\operatorname{ELBO} \Omega$ is approximated by

$$
\tilde{\Omega}=\underbrace{-E_{q(\boldsymbol{\theta} \mid \gamma) q(\gamma)}[\log p(\boldsymbol{X} \mid \boldsymbol{\theta})]}_{\text {reconstruction error }}
$$

$$
+\underbrace{\sum_{t=1}^{T}\left[\mathrm{KL}\left(q\left(\gamma_{t}\right) \| p\left(\gamma_{t}\right)\right)+q\left(\gamma_{t}=1\right) \mathrm{KL}\left(N\left(a_{i}, b_{i}^{2}\right) \| N\left(0, \tau^{2}\right)\right)\right]}_{\text {regularizer }}
$$

- Approximate the discrete variable γ sampling by ${ }^{10}$

$$
\tilde{\gamma} \sim \operatorname{Gumbel}-\operatorname{softmax}(\phi, c),
$$

c (temperature) controls the convergence to γ.
${ }^{10}$ Maddison et al. (2017), Jang et al. (2017); Bai et al. (2020, SDL)

Thank you!

clint@iitgoa.ac.in

[^0]: ${ }^{a}$ dates back to Gauss and Legendre's work on astronomical data

[^1]: ${ }^{1}$ McCullagh and Nelder (1989). Generalized Linear Models

[^2]: ${ }^{2}$ Hoerl \& Kennard (1970). Ridge regression: Biased estimation for ...

[^3]: ${ }^{3}$ Tibshirani (1996). The least absolute shrinkage and selection operator.

[^4]: ${ }^{5}$ Ghosh et al. (2016), Castilo et al. (2015)
 ${ }^{6}$ Lempers (1971), Mitchel \& Beauchamp (1988), George \& McCullagh (1993)

[^5]: ${ }^{8}$ Bai et al. (2018). Efficient variational inference for sparse deep learning ...

[^6]: ${ }^{8}$ Bai et al. (2018). Efficient variational inference for sparse deep learning ...

[^7]: ${ }^{9}$ Kigma \& Welling (2014). Autoencoding variational Bayes.

[^8]: ${ }^{9}$ Kigma \& Welling (2014). Autoencoding variational Bayes.

