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Introduction



Modeling sparsity — gene expressions
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Understanding or interpreting data

» We have some measurements of some properties from two
instruments.

» Interpretation: search for a pattern—e.g., one instrument
consistency measures higher
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consistency measures higher

» Statistical modeling

» systematic effects — aims to summarize data
» random effects — aims to summarize the nature and magnitude of
unexplained or random variation



Modeling patterns

» Goal: generate patterns of numbers
that can replace the data at some
point




Modeling patterns

» Goal: generate patterns of numbers
that can replace the data at some
point

» Consider a simple model®

y =Pz +a«a

» Connects y and x via the parameter
pair (a, )

» Models straight-line relationship
between y and x

“dates back to Gauss and Legendre's work on
astronomical data




Modeling patterns

» If we have x1,z9,...,x,, given («, B), y takes the values
Bxr1+ o, Bre+a,...,Bxr, + a.

» In practice, y has measurement error and the relation z—y is
approximately linear

y=pr+a+e



Statistical modeling of patterns?

» The observation vector y with n components y1,%2,...,%n iS a
realization of a r.v. Y, whose components are independently
distributed with means u

p
p= E x;Bj,
Jj=1
where ;s are unknown parameters. And,

p
E[Y] :Mi:ZIL‘z’jﬁj;i: 1,2,....n
=1

» The errors follow a Gaussian with constant variance o2

!McCullagh and Nelder (1989). Generalized Linear Models



Estimating 3

> Maximize the likelihood of the parameters for the observed data
» Let f(y;;8) be the density for observation y; given 3, then

n
L(p;y) =Y log f(yi; B)
i=1
» Assuming normality with constant variance,

1
L(pi3y) = 5 log(2ma?) — (yi — 1i)°

residual squares

202

for observation ¢



Shrinkage methods



Ridge regression

» Shrinks the regression coefficients by imposing a penalty?.

2
n p p
ﬁrldge - argml Z injﬁj + )‘ZﬁjQ 7)\ > 0
= = =
i penalty term

?Hoerl & Kennard (1970). Ridge regression: Biased estimation for . ..



Ridge regression

» Shrinks the regression coefficients by imposing a penalty?.

2
n p p
ﬁrldge - argml Z injﬁj + )‘ZﬁjQ 7)\ > 0
i=1 — -
i penalty term
» Solution is a linear function of y
p —1
IBridge = (XTX =+ )‘I) XTy (1)

X is standardized n x p matrix.

?Hoerl & Kennard (1970). Ridge regression: Biased estimation for . ..



LASSO regression?

» The penalty term is different

2

n p p
BLasso = argml Z i = wBi | A B P A= 0

S—— ——
i penalty term

» The solution is not a linear function of y

» It can threshold some coefficients to zero.

3Tibshirani (1996). The least absolute shrinkage and selection operator.



n P B;2 <t ridge

minz (yi — 1) such that
i=1
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FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions || + |B2] < t and B} + B3 < t2, respectively,
while the red ellipses are the contours of the least squares error function.

Hastie et al. (2009, ESL)



LASSO - Coefficients
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Diabetes data (Efron et al. 2004) — 442 samples, 10 features
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Bayes theorem

Bayesian approach

p(Bla) =L

(=B)p(B)

p(z)

o p(z|B)p(5)

11



Bayesian approach

Bayes theorem

(=B)p(B)

b
p(Blz) = @) > p(z|B)p(B)
where
p(B|x) posterior
p(z|5) likelihood

p(B) prior

11



Bayesian ridge regression

» Coefficients 3 have the prior

pBle) = N0, 1) x - e { 7

> Find B: the most probable value of 3 given the data—i.e., maximize
the posterior (MAP)
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Bayesian ridge regression

» Coefficients 3 have the prior

pBle) = N0, 1) x - e { 7

> Find B: the most probable value of 3 given the data—i.e., maximize
the posterior (MAP)

» Maximizing the log-posterior is equivalent to minimizing

n p

2 [0
Z (yi — i)™ + 2; B;?

=1
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Bayesian LASSO

» Lasso minimizes
n

> (yi — i) Z\ﬁg

=1

» Lasso estimates as MAP estimates when 3 have the priors*

T

pr(8) = (5)" exp(=7l18ll)

and the data likelihood is

po(y1B) = N(y|XB,0%)

*Tibshirani 1996

13



Spike and slab priors

» Variable selection under the normal linear model; Bayesian LASSO is
ineffective®

» Coefficients 3 have Spike and Slab priors®

B ~ (1 — Vj)jg_ﬁ%‘ p(B;7°)

spike slab

7v; ~ Bernoulli(X)

®Ghosh et al. (2016), Castilo et al. (2015)

®Lempers (1971), Mitchel & Beauchamp (1988), George & McCullagh (1993)
14



Spike and slab priors

» This prior is considered ideal for sparse Bayesian problems’

» Exploring the full posterior over the entire model space can be
challenging due to the combinatorial complexity of updating discrete
indicators v = (v1,72, .-, %)

» Solutions in the literature — stochastic search, variational inference

"Bai et al. (2020)
15



Sparse deep learning



» Deep neural networks can model complex patterns
» Network compression, before deployment to tiny devices

» Variable selection

16



Deep neural network

yi = fo(ZF:) +e; €~ N(0,0%)

Weights w are typically ON all the time

17



Deep neural network — formal representation

» We model data via L-hidden layer network; each layer [ has p;
neurons/nodes

» The weight matrix and bias vector in each layer [ = 1,2,..., L are
Wi c Rpl—lx]?l’ bi c Rpl,

which we denote by 6

18



Deep neural network — formal representation

We model data via L-hidden layer network; each layer [ has p;
neurons/nodes

The weight matrix and bias vector in each layer [ =1,2,..., L are
Wi c Rpl—IXpl’ bi c Rpl,

which we denote by 6

The network can be written as

fo(x) =Wrpior(Wrop—1( -+ o1(Wix)) +br) + by

where 01,09, ...,0y, are the activation functions

18



Sparse deep learning
> We approximate the familiar regression model

yi:fO(mi)+€i7/L’:1’27"°v

iid .
where ; € RP, ¢; ~ N(0,0?), with a sparse neural network fg®

®Baj et al. (2018). Efficient variational inference for sparse deep learning . ..
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Sparse deep learning

> We approximate the familiar regression model

Yi = fO(ml)+627/L — 1527"'7
where z; € RP, ¢; 'S N(0,0?), with a sparse neural network fa®

» We assume spike and slab prior for each —i.e., weight or bias.
6 ~ (1 —7)380(8) +y N(0,7°)
~—~— ~—
spike slab

~ ~ Bernoulli())

®Bai et al. (2018). Efficient variational inference for sparse deep learning . ..
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Sparse deep learning

i = fo(&:) + e;; e~ N(0,0%)

Weights w are ON/OFF based on v € {0,1}

20



Variational Bayes inference
» Inferences from the posterior
p(6]X) o p(X|6)p(0)

is challenging—so people use MCMC, variational methods

21



Variational Bayes inference

» Inferences from the posterior
p(6]X) o p(X|6)p(0)
is challenging—so people use MCMC, variational methods
» Given a variational family of distributions Q, we find a member
closest to the true posterior by

arg min KL(q(8)|p(0| X))
q(0)eQ

Xing, 10-708
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Variational Bayes inference
Inferences from the posterior
p(6]X) o p(X|6)p(0)

is challenging—so people use MCMC, variational methods

Given a variational family of distributions Q, we find a member
closest to the true posterior by

arg min KL(¢(0)||p(0]X))
9(0)eQ

Equivalent to minimizing the negative ELBO:

Q= —Eqy)[log p(X6)] + KL(q(6)]|p(8))

21



Variational inference via SGD?

Q= —Eyg)llogp(X|6)] + KL(¢(0)|p(6))

reconstruction error regularizer

P Integrate the KL term analytically

» Compute the reconstruction error by Monte Carlo estimation

°Kigma & Welling (2014). Autoencoding variational Bayes.
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Variational inference via SGD?

Q= —Eyg)llogp(X|6)] + KL(¢(0)|p(6))

regularizer

reconstruction error

P Integrate the KL term analytically

» Compute the reconstruction error by Monte Carlo estimation

» Variational family distributions are reparametrized by some
differential function g(w, v) and random variable v, for
back-propagation

m K
Qm ZZ nggwu wZ) + KL(qUJ< )Hp<9))
=1 k=1

3\3

°Kigma & Welling (2014). Autoencoding variational Bayes.
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Sparse deep learning

» The variational family Q follow spike and slab family. The ELBO
is approximated by

Q = —Eyop)q( log p(X|0)]

reconstruction error

T
+ 3 [KL@@() Ip(n)) + alye = DKLN (az, 52) | N (0, 72))]
t=1

regularizer

®Maddison et al. (2017), Jang et al. (2017); Bai et al. (2020, SDL)
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Sparse deep learning

» The variational family Q follow spike and slab family. The ELBO
is approximated by

Q = —Eyop)q( log p(X|0)]

reconstruction error

T
+ 3 [KL@@() Ip(n)) + alye = DKLN (az, 52) | N (0, 72))]
t=1

regularizer
» Approximate the discrete variable v sampling by®
4 ~ Gumbel-softmax(¢, c),

¢ (temperature) controls the convergence to 7.

®Maddison et al. (2017), Jang et al. (2017); Bai et al. (2020, SDL)
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Thank you!

clint@iitgoa.ac.in
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