
Modeling sparsity in classical and deep latent variable
models

Clint P. George

School of Mathematics and Computer Science
Indian Institute of Technology Goa

November 8, 2023



Introduction



Modeling sparsity — gene expressions
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▶ Given (xi, yi), i = 1, . . . , n,
select a subset of features
(x1, x2, . . . , xp)

▶ Interpretability
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Understanding or interpreting data

▶ We have some measurements of some properties from two
instruments.

▶ Interpretation: search for a pattern—e.g., one instrument
consistency measures higher

▶ Statistical modeling
▶ systematic effects — aims to summarize data
▶ random effects — aims to summarize the nature and magnitude of

unexplained or random variation
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Modeling patterns

▶ Goal: generate patterns of numbers
that can replace the data at some
point
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Modeling patterns

▶ Goal: generate patterns of numbers
that can replace the data at some
point

▶ Consider a simple modela

y = βx+ α

▶ Connects y and x via the parameter
pair (α, β)

▶ Models straight-line relationship
between y and x

adates back to Gauss and Legendre’s work on
astronomical data
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Modeling patterns

▶ If we have x1, x2, . . . , xn, given (α, β), y takes the values
βx1 + α, βx2 + α, . . . , βxn + α.

▶ In practice, y has measurement error and the relation x–y is
approximately linear

y = βx+ α+ ϵ
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Statistical modeling of patterns1

▶ The observation vector y with n components y1, y2, . . . , yn is a
realization of a r.v. Y , whose components are independently
distributed with means µ

µ =

p∑
j=1

xjβj ,

where βjs are unknown parameters. And,

E[Yi] = µi =

p∑
j=1

xijβj ; i = 1, 2, . . . , n

▶ The errors follow a Gaussian with constant variance σ2

1McCullagh and Nelder (1989). Generalized Linear Models
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Estimating β

▶ Maximize the likelihood of the parameters for the observed data

▶ Let f(yi;β) be the density for observation yi given β, then

L(µ;y) =
n∑

i=1

log f(yi;β)

▶ Assuming normality with constant variance,

L(µi; yi) =
1

2
log(2πσ2)− 1

2σ2
(yi − µi)

2︸ ︷︷ ︸
residual squares

,

for observation i
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Shrinkage methods



Ridge regression

▶ Shrinks the regression coefficients by imposing a penalty2.

β̂ridge = argmin
β


n∑

i=1

yi −
p∑

j=1

xijβj︸ ︷︷ ︸
µi


2

+ λ

p∑
j=1

βj
2

︸ ︷︷ ︸
penalty term


, λ ≥ 0

▶ Solution is a linear function of y

β̂ridge = (XTX + λI)
−1

XTy (1)

X is standardized n× p matrix.

2Hoerl & Kennard (1970). Ridge regression: Biased estimation for . . .
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LASSO regression3

▶ The penalty term is different

β̂LASSO = argmin
β


n∑

i=1

yi −
p∑

j=1

xijβj︸ ︷︷ ︸
µi


2

+ λ

p∑
j=1

|βj |︸ ︷︷ ︸
penalty term


, λ ≥ 0

▶ The solution is not a linear function of y

▶ It can threshold some coefficients to zero.

3Tibshirani (1996). The least absolute shrinkage and selection operator.
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min

n∑
i=1

(yi − µi)
2 such that


∑p

j=1 βj
2 ≤ t ridge

∑p
j=1 |βj | ≤ t lasso

Hastie et al. (2009, ESL)
9
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Diabetes data (Efron et al. 2004) — 442 samples, 10 features
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Bayesian approach

Bayes theorem

p(β|x) = p(x|β)p(β)
p(x)

∝ p(x|β)p(β)

where

p(β|x) posterior

p(x|β) likelihood

p(β) prior
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Bayesian ridge regression

▶ Coefficients β have the prior

p(β|α) = N(β|0, α−1I) ∝ α

2π

M/2
exp

{
−α

2
βTβ

}

▶ Find β: the most probable value of β given the data—i.e., maximize
the posterior (MAP)

▶ Maximizing the log-posterior is equivalent to minimizing

n∑
i=1

(yi − µi)
2 +

α

2

p∑
j=1

βj
2
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Bayesian LASSO

▶ Lasso minimizes
n∑

i=1

(yi − µi)
2 +

λ

2

p∑
j=1

|βj |

▶ Lasso estimates as MAP estimates when β have the priors4

pτ (β) =
(τ
2

)p
exp(−τ∥β∥1)

and the data likelihood is

pσ(y|β) = N(y|Xβ, σ2I)

4Tibshirani 1996
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Spike and slab priors

▶ Variable selection under the normal linear model; Bayesian LASSO is
ineffective5

▶ Coefficients β have Spike and Slab priors6

βj ∼ (1− γj) δ0︸︷︷︸
spike

+γj p(βj |τ2)︸ ︷︷ ︸
slab

γj ∼ Bernoulli(λ)

5Ghosh et al. (2016), Castilo et al. (2015)
6Lempers (1971), Mitchel & Beauchamp (1988), George & McCullagh (1993)
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Spike and slab priors

▶ This prior is considered ideal for sparse Bayesian problems7

▶ Exploring the full posterior over the entire model space can be
challenging due to the combinatorial complexity of updating discrete
indicators γ = (γ1, γ2, . . . , γp)

▶ Solutions in the literature — stochastic search, variational inference

7Bai et al. (2020)
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Sparse deep learning



▶ Deep neural networks can model complex patterns

▶ Network compression, before deployment to tiny devices

▶ Variable selection

16



Deep neural network

Weights w are typically ON all the time
17



Deep neural network — formal representation

▶ We model data via L-hidden layer network; each layer l has pl
neurons/nodes

▶ The weight matrix and bias vector in each layer l = 1, 2, . . . , L are

Wi ∈ Rpl−1×pl , bi ∈ Rpl ,

which we denote by θ

▶ The network can be written as

fθ(x) = WL+1σL(WLσL−1( · · · σ1(W1x)) + bL) + bL+1

where σ1, σ2, . . . , σL are the activation functions

18
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Sparse deep learning

▶ We approximate the familiar regression model

yi = f0(xi) + ϵi, i = 1, 2, . . . ,

where xi ∈ Rp, ϵi
iid∼ N(0, σ2), with a sparse neural network fθ

8

▶ We assume spike and slab prior for each θ—i.e., weight or bias.

θ ∼ (1− γ) δ0(θ)︸ ︷︷ ︸
spike

+γ N(0, τ2)︸ ︷︷ ︸
slab

γ ∼ Bernoulli(λ)

8Bai et al. (2018). Efficient variational inference for sparse deep learning . . .
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Sparse deep learning

Weights w are ON/OFF based on γ ∈ {0, 1}
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Variational Bayes inference

▶ Inferences from the posterior

p(θ|X) ∝ p(X|θ)p(θ)

is challenging—so people use MCMC, variational methods

▶ Given a variational family of distributions Q, we find a member
closest to the true posterior by

argmin
q(θ)∈Q

KL(q(θ)∥p(θ|X))

21
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Variational Bayes inference

▶ Inferences from the posterior

p(θ|X) ∝ p(X|θ)p(θ)

is challenging—so people use MCMC, variational methods

▶ Given a variational family of distributions Q, we find a member
closest to the true posterior by

argmin
q(θ)∈Q

KL(q(θ)∥p(θ|X))

▶ Equivalent to minimizing the negative ELBO:

Ω = −Eq(θ)[log p(X|θ)] + KL(q(θ)∥p(θ))
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Variational inference via SGD9

Ω = −Eq(θ)[log p(X|θ)]︸ ︷︷ ︸
reconstruction error

+KL(q(θ)∥p(θ))︸ ︷︷ ︸
regularizer

▶ Integrate the KL term analytically

▶ Compute the reconstruction error by Monte Carlo estimation

▶ Variational family distributions are reparametrized by some
differential function g(ω, ν) and random variable ν, for
back-propagation

Ω̃m(ω) = − n

m

1

K

m∑
i=1

K∑
k=1

log pg(ω,ν)(xi) + KL(qω(θ)∥p(θ))

9Kigma & Welling (2014). Autoencoding variational Bayes.
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Sparse deep learning

▶ The variational family Q follow spike and slab family. The ELBO Ω
is approximated by

Ω̃ = −Eq(θ|γ)q(γ)[log p(X|θ)]︸ ︷︷ ︸
reconstruction error

+

T∑
t=1

[
KL(q(γt)∥p(γt)) + q(γt = 1)KL(N(ai, b

2
i )∥N(0, τ2))

]
︸ ︷︷ ︸

regularizer

▶ Approximate the discrete variable γ sampling by10

γ̃ ∼ Gumbel-softmax(ϕ, c),

c (temperature) controls the convergence to γ.

10Maddison et al. (2017), Jang et al. (2017); Bai et al. (2020, SDL)
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Thank you!

clint@iitgoa.ac.in
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