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Information leakage model

Information leakage from arbitrary disclosure can be described as the 
following model: 

𝑋 → 𝑀 𝑋 	∈ ℝ!

• 𝑋:	 data/messages/files

• 𝑀 𝑋 , the information disclosed
§ Statistics (mean/median) of a sensitive dataset 𝑋
§ Neural networks learned from samples 𝑋
§ Side channel info: traffic/memory patterns 𝑋



What is privacy?

• For what kind of adversary and with what kind of power 
§ Computation restriction 
§ Prior knowledge 

• Mathematical quantification of the inference hardness
§ Impossibility of what kind of inference task
§ Measurement of the hardness 

In words, adversary cannot guess (recover) your secret 
correctly (approximately correctly) 



Classic Security Definitions 
Data-independent privacy/security
• Shannon Perfect Secrecy (statistical indistinguishability): for any 

possible inputs 𝑋 and 𝑋’, the distributions of 𝑀 𝑋  and 𝑀 𝑋′  are 
identical
• Computational Indistinguishability: for any possible inputs 𝑋 and 𝑋’, 

the distributions of 𝑀 𝑋  and 𝑀 𝑋′  are indistinguishable for a 
computationally-bounded adversary
• Differential Privacy (DP): for any two adjacent datasets 𝑋 and 𝑋’, the 

divergence of distributions under some divergence function 
𝐷"(Ρ# $ ∥ Ρ# $! ) is bounded



A bridge between semantic privacy interpretation and 
mathematical quantification  

A high-level picture of PAC Privacy:
Instance-based privacy



A bridge between semantic privacy interpretation and 
mathematical quantification  
1. Determine adversary’s prior knowledge on 𝑋
• The adversary knows all public parameter setups
• The adversary knows your secret images are about pets or portraits 

2. Set an adversarial inference task of interest and a lower bound of failure rate
• Adversary cannot guess one bit of 𝑋 correctly with probability more than ¾
• Adversary cannot recover any single sample of 𝑋 with error in 𝑙! norm 

smaller than 1 with probability more than ½
3. Provide a privacy-preserving scheme on the objective processing function M

A high-level picture of PAC Privacy:
Instance-based privacy
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Mathematical preparation to quantify inference 
hardness
• Adversary’s guessing 4𝑋 on sensitive data 𝑋
• A success criterion 𝜌: 𝜌 4𝑋, 𝑋 = 1 iff the adversary produces satisfied 

inference
• Optimal prior success rate: 1 − 𝛿%

& or minimal prior failure rate 𝛿%
&, 

determined by 𝜌 and prior knowledge
• Posterior success rate 1 − 𝛿: the adversary can return satisfied 4𝑋, 

such that 𝜌 4𝑋, 𝑋 = 1, after observing the release 𝑀 𝑋  with 
probability 1 − 𝛿
• Posterior advantage is 𝛿%

& − 𝛿



PAC Privacy:
Instance-based privacy

We borrow the idea of PAC learning and describe the attack as a 
learning problem. 

Definition 1 [(δ, ρ, D) PAC Privacy]. For a data processing mechanism 
𝑀, given some data distribution D, and a measurement/criterion ρ(·, ·), 
we say 𝑀	satisfies (δ, ρ, D)-PAC Privacy if the following experiment is 
impossible:
A user generates data X from distribution D and sends 𝑀(X) to an 
adversary. The adversary who knows D and 𝑀	is asked to return an 
estimation 4𝑋 on 𝑋 such that with probability at least (1−𝛿), 𝜌( 4𝑋, 𝑋) = 1



Mutual Information and Entropy

• Mutual information is extensively studied in information theory
§ For two random variables 𝑥 and 𝑤 in some joint distribution, the 

mutual information 𝑀𝐼 𝑥;𝑤 is defined as
                           𝑀𝐼 𝑥;𝑤  = 𝐷'((𝑃),+ ∥ 𝑃$ ⊗𝑃+)
i.e., the KL-divergence between the joint distribution of 𝑥, 𝑤  and the 
product of the marginal distributions of 𝑥 and 𝑤, respectively 

• Equivalently, mutual information can also be expressed by entropy:
𝑀𝐼 𝑥;𝑤 = H x − H x w = H w − H(w|x)



Bounding Posterior 
Advantage



The Bridge: Posterior advantage can be captured by f-
divergence

Theorem: For any processing function 𝑀 : 𝛸∗ → 𝑌, and any f-
divergence, 

∆-𝛿 = 𝐷. 1/ ∥ 1/"# = 𝑖𝑛𝑓0$ 𝐷. 𝑃($,#($)) ∥ 𝑃$ ⊗𝑃+ ,

for any random variable w ∈ 𝑌

When we select 𝐷. to be KL-divergence and 𝑃+  = 𝑃#($), then
∆'(𝛿 ≤ 𝑀𝐼(𝑋;𝑀 𝑋 )   

R. H. S. 
does not 
have 𝜌



Noise is not necessary for PAC Privacy 

When data is of sufficient entropy and the processing 
has a closed form 



Noise is not necessary for PAC Privacy 

When data is of sufficient entropy and the processing 
has a closed form 
Example 1 [Mean estimation of Gaussian data]: Suppose a sensitive 

data 𝑥~Ν(0,1) and other 𝑛 − 1   i.i.d. samples 𝑥3, 𝑥4, …, 𝑥563 
~Ν(0,1) are used to produce a mean estimation

𝑀 𝑥 = 3
5
⋅ (∑783563 𝑥7 + 𝑥)

Then, 

𝑀𝐼 𝑥;𝑀 𝑥 = 𝐻 𝑀 𝑥 − 𝐻 𝑀 𝑥 𝑥 = 0.5 log 1 + 3
563

Can use this bound to show privacy



Differentially-Private (Input-Independent) Mean 
Estimation

M(X) = Mean(X), where each of n records is a scalar in [0, 1]

Global Sensitivity of M = 1/n

Laplace Mechanism:

           Output   M(X) + Z,    where   Z  ∼  1/(ne) Lap(0, 1)

           No noise  à no privacy,  e = ∞
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Automatic Privacy 
Analysis 



Automatic Privacy Analysis 

• We have reduced the privacy proof to control 𝑀𝐼(𝑋;𝑀(𝑋))
• Noise 𝐵, especially continuous noise, can help us derive tractable upper 

bound of 𝑀𝐼(𝑋;𝑀 𝑋 + 𝐵) in the general case
• What we want:
• The processing mechanism M can be a black-box: no algorithmic 

analysis is needed  
• Automatic privatization protocol: when 𝑀𝐼(𝑋;𝑀(𝑋)) is not 

sufficiently small, we can automatically generate a scheme to perturb 
𝑀(𝑋) until it produces satisfied security parameters 
• In particular, if we only focus on the posterior advantage, the data 

distribution/generation can also be black-box 



Theorem: Automatic Analysis 

Theorem: For an arbitrary deterministic mechanism M and
 a Gaussian noise B ∼ N (0, Σ9)

𝑀𝐼 𝑋;𝑀 𝑋 + 𝐵 ≤ 3
4
log det 𝐼! + Σ# $ Σ963  

Let the eigenvalues of Σ#($) be (𝜆3, … , 𝜆!),	then there exists some Σ9  such 
that Ε 𝐵 ≤ (∑:83! 𝜆:)4and 𝑀𝐼 𝑋;𝑀 𝑋 + 𝐵 ≤ 3

4
 

• The noise B fits the geometry of the distribution of 𝑀 𝑋
• The magnitude of noise B is not explicitly dependent on the dimension:

when ∑:83! 𝜆:= O(1), we only need to add constant noise

𝑑×𝑑	Covariance
Matrices



Main Algorithm (I): Learning from your data and 
the processing

Sample 𝑿𝟏, … , 𝑿𝒎 i.i.d. from 𝑫

Evaluate 𝐌(𝑿𝟏), … ,𝑴(𝑿𝒎) 	 ∈ ℝ𝒅

Determine the Empirical 
Covariance -𝚺𝑴(𝑿)	of	
𝐌(𝑿𝟏), … ,𝑴(𝑿𝒎)

Determine the eigenvalues 
1𝒆𝟏, 1𝒆𝟐, … , 1𝒆𝒅,

and the eigenvectors
3𝒗𝟏, 3𝒗𝟐, … , 3𝒗𝒅.



Main Algorithm (I): Learning from your data and 
the processing
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Sample 𝑿𝟏, … , 𝑿𝒎 i.i.d. from 𝑫

Evaluate 𝐌(𝑿𝟏), … ,𝑴(𝑿𝒎) 	∈ ℝ𝒅

Determine the Empirical 
Covariance C𝚺𝑴(𝑿)	of	
𝐌(𝑿𝟏), … ,𝑴(𝑿𝒎)

Determine the eigenvalues 
G𝒆𝟏, G𝒆𝟐, … , G𝒆𝒅,

and the eigenvectors
I𝒗𝟏, I𝒗𝟐, … , I𝒗𝒅.

Eigenvalues and Eigenvectors: 
The power of output 

distribution along each 
direction in ℝ𝒅

“Fake” data: 𝑿𝟏, … , 𝑿𝒎



Main Algorithm (II): Confident Release 
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Sample 𝑿 from 𝑫

Generate an Anisotropic 
Gaussian Noise 𝑩:

The variance of 𝑩	along I𝒗𝒊 is 
proportional to G𝒆𝒊

Release 𝑴 𝑿 + 𝑩

Necessary noise along each 
direction '𝒗𝒊 proportional to the 

distribution power of 𝑴 𝑿  
along '𝒗𝒊 



Examples



Supervised Learning Toy Example

• Train a three-layer fully-connected neural network on the MNIST 
dataset, which contains 70, 000 28×28 handwritten-digit images
• Data generation X by randomly sampling 35, 000 samples out of the 

entire data set
• Strong interpretation: even if the adversary knows the universe, he 

cannot identify/recover your sensitive data used for a trained model

End-to-end privacy analysis: 
Black-box deep learning algorithm



Supervised Learning Toy Example - 2 

• Small noise but strong privacy for the entire set
• An independent Gaussian noise Ε 𝐵  = 3.7 is sufficient to 

ensure MI(X; M(X) + B) ≤ 1
• Non-privately, the trained-out neural network achieves 

94.8% classification accuracy
• Under the perturbation to ensure PAC privacy, we achieve an 

accuracy of 93.5%



K Means 
Clustering 



K Means Clustering 

Given a set of observations S = {𝑥3, … , 𝑥5},	we aim to partition 𝑆 into 
K subsets, 𝑆3, 𝑆4, … , 𝑆N, whose means are 𝜇3, … , 𝜇N  such that 

argOmin∑783N ∑)	∈	P% 𝑥 − 𝜇7
4   (*)

• Output of K centroids;
• Given a selection of (𝜇3, … , 𝜇N), to minimize (*), each 𝑥7  should be 

assigned to the closest clustering. 



Algorithm Specifics 

• Run black-box K-means algorithm on a 𝑛-subsampled subset of the entire 
MNIST dataset
• Use resultant K centroids to determine clustering for all data points
• Random initialization in non-convex optimization leads to local minima
• Different random initializations result in large output variation even for the same 

input data
• To improve robustness, standard strategy is to average the results over many 

random trials, so results don’t strongly depend on random initialization

• Averaging also reduces variance of results for different subsamplings
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How do Parameters Influence Stability?
K Means on MNIST
For a fixed 𝑀𝐼(𝑋;𝑀 𝑋 )=1:

# Selected Samples n
                      \# K clusterings

K = 2 K=5 K=10

n = 1,000 0.034 0.117 0.562

n = 5,000 0.013 0.047 0.313

n = 10,000 0.012 0.042 0.250

L2 norm of noise divided by L2 norm of K centroids



Final Observations

• Need to assume private data is from some distribution
• Conservative strategy: Assume data is public, and subsample to 

produce private data with entropy
• Distribution can be arbitrarily complex – just need to sample from it
• Benefits: O(1) noise, automatic privacy analysis

• PAC Privacy can be used to define notions of algorithm stability, 
and small mutual information implies low generalization error
• Stable, private, generalizable machine learning models?
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