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Information leakage model

Information leakage from arbitrary disclosure can be described as the

following model:
X - M(X) € R4

» X: data/messages/files

* M(X), the information disclosed
= Statistics (mean/median) of a sensitive dataset X
" Neural networks learned from samples X
= Side channel info: traffic/memory patterns X



What is privacy?

In words, adversary cannot guess (recover) your secret

correctly (approximately correctly)

* For what kind of adversary and with what kind of power
= Computation restriction
" Prior knowledge

* Mathematical quantification of the inference hardness
" Impossibility of what kind of inference task
" Measurement of the hardness



Classic Security Definitions
Data-independent privacy/security

e Shannon Perfect Secrecy (statistical indistinguishability): for any
possible inputs X and X’, the distributions of M (X) and M (X') are
identical

* Computational Indistinguishability: for any possible inputs X and X”,
the distributions of M (X) and M (X") are indistinguishable for a
computationally-bounded adversary

* Differential Privacy (DP): for any two adjacent datasets X and X’, the
divergence of distributions under some divergence function
Dy (Ppxy |l PM(XI)) is bounded



A high-level picture of PAC Privacy:
Instance-based privacy

A bridge between semantic privacy interpretation and

mathematical quantification




A high-level picture of PAC Privacy:
Instance-based privacy

A bridge between semantic privacy interpretation and

mathematical quantification

1. Determine adversary’s prior knowledge on X
* The adversary knows all public parameter setups
* The adversary knows your secret images are about pets or portraits

2. Set an adversarial inference task of interest and a lower bound of failure rate
* Adversary cannot guess one bit of X correctly with probability more than %

* Adversary cannot recover any single sample of X with error in [, norm
smaller than 1 with probability more than %

3. Provide a privacy-preserving scheme on the objective processing function V/



Workflow to quantify inference hardness
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Mathematical preparation to quantify inference

harc

NESS

» Adversary’s guessing X on sensitive data X
* A success criterion p: p()?, X) = 1 iff the adversary produces satisfied
inference

e Optimal prior success rate: 1 — 55 or minimal prior failure rate 55,
determined by p and prior knowledge

* Posterior success rate 1 — §: the adversary can return satisfied X,
such that p(X, X) = 1, after observing the release M (X) with
probability 1 — 6

* Posterior advantage is 67 — §



PAC Privacy:

Instance-based privacy

We borrow the idea of PAC learning and describe the attack as a
learning problem.

Definition 1 [(6, p, D) PAC Privacy]. For a data processing mechanism
M, given some data distribution D, and a measurement/criterion p(:, -),
we say M satisfies (6, p, D)-PAC Privacy if the following experiment is
impossible:

A user generates data X from distribution D and sends M (X) to an
adversary. The adversary who knows D and M is asked to return an
estimation X on X such that with probability at least (1-8), p(X, X) =



Mutual Information and Entropy

* Mutual information is extensively studied in information theory

" For two random variables x and w in some joint distribution, the
mutual information MI(x; w) is defined as
MI(x; w) = Dk (Pew I Px &® By)
i.e., the KL-divergence between the joint distribution of (x, w) and the
product of the marginal distributions of x and w, respectively

e Equivalently, mutual information can also be expressed by entropy:
MI(x;w) = H(x) — H(x|w) = H(w) — H(W|x)



Bounding Posterior
Advantage



The Bridge: Posterior advantage can be captured by f-

divergence

Theorem: For any processing function M : X — VY, and any f-
divergence,

Af5 = Df (15 " 155) — lnpr Df(P(X,M(X)) " PX ® PW);

for any random variable w € Y \
R. H. S.

When we select D¢ to be KL-divergence and F,, = Py (x), then

A6 < MI(X; M(X))+ does not

have p




Noise is not necessary for PAC Privacy

When data is of sufficient entropy and the processing

has a closed form




Noise is not necessary for PAC Privacy

When data is of sufficient entropy and the processing

has a closed form

Example 1 [Mean estimation of Gaussian data]: Suppose a sensitive
data x~N(0,1) and other (n — 1) i.i.d. samples x;, x5, ..., X,,_4
~N(0,1) are used to produce a mean estimation

M@ =~ (T % + %)
Then,
MI(x; M(x)) = H(M(x)) — HM(x)|x) = 0.5 log (1 + —)

Can use this bound to show privacy



Differentially-Private (Input-Independent) Mean
Estimation

M(X) = Mean(X), where each of n records is a scalar in [0, 1]
Global Sensitivity of M =1/n
Laplace Mechanism:

Output M(X)+ 27, where Z ~ 1/(ne) Lap(O, 1)

No noise =2 no privacy, € = ©
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Automatic Privacy
Analysis



Automatic Privacy Analysis

* We have reduced the privacy proof to control MI(X; M (X))

* Noise B, especially continuous noise, can help us derive tractable upper
bound of MI(X; M(X) + B) in the general case

* What we want:

* The processing mechanism M can be a black-box: no algorithmic
analysis is needed

* Automatic privatization protocol: when MI(X; M (X)) is not
sufficiently small, we can automatically generate a scheme to perturb
M (X) until it produces satisfied security parameters

* In particular, if we only focus on the posterior advantage, the data
distribution/generation can also be black-box



Theorem: Automatic Analysis

dxd Covariance

Theorem: For an arbitrary deterministic mechanism M and Matrices

a Gaussian noise B ~ N (0, Xz) /
MI(X;M(X) +B) < llog det(ld + ZM(X)Zgl)

Let the elgenvalues of 2y (x) be (44, ..., 44), then there exists some 2 such
that E[||B||] < (Z 1\/_)Zand MI(X;M(X) + B) < -

* The noise B fits the geometry of the distribution of M (X)

* The magnitude of noise B is not explicitly dependent on the dimension:
when Y¢_; /2= O(1), we only need to add constant noise



Main Algorithm (1): Learning from your data and
the processing
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Main Algorithm (I1): Confident Release
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/[ Sample X from D }\
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Generate an Anisotropic
Gaussian Noise B:

The variance of B along v; is

proportional to e;
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Examples



Supervised Learning Toy Example

End-to-end privacy analysis:

Black-box deep learning algorithm

* Train a three-layer fully-connected neural network on the MNIST
dataset, which contains 70, 000 28x28 handwritten-digit images

e Data generation X by randomly sampling 35, 000 samples out of the
entire data set

* Strong interpretation: even if the adversary knows the universe, he
cannot identify/recover your sensitive data used for a trained model



Supervised Learning Toy Example - 2

* Small noise but strong privacy for the entire set
* An independent Gaussian noise E|||B||] = 3.7 is sufficient to
ensure MI(X; M(X) + B) < 1

* Non-privately, the trained-out neural network achieves
94.8% classification accuracy

* Under the perturbation to ensure PAC privacy, we achieve an
accuracy of 93.5%



K Means
Clustering
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K Means Clustering

Given a set of observations S = {x, ..., x,,}, we aim to partition S into
K subsets, 54,955, ..., Sk, whose means are uy, ..., U such that

args min 31—y Xy e s llx — will* (*)

e Output of K centroids;

* Given a selection of (u4, ..., 4 ), to minimize (*), each x; should be
assigned to the closest clustering.



Algorithm Specifics

* Run black-box K-means algorithm on a n-subsampled subset of the entire
MNIST dataset
* Use resultant K centroids to determine clustering for all data points
* Random initialization in non-convex optimization leads to local minima

e Different random initializations result in large output variation even for the same
input data

e To improve robustness, standard strategy is to average the results over many
random trials, so results don’t strongly depend on random initialization

* Averaging also reduces variance of results for different subsamplings
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How do Parameters Influence Stability?

K Means on MINIST
For a fixed M1 (X; M(X))=1:

# Selected Samples n K=10
\# K clusterings

n=1,000 0.034 0.117 0.562
n = 5,000 0.013 0.047 0.313
n = 10,000 0.012 0.042 0.250

L2 norm of noise divided by L2 norm of K centroids



Final Observations

* Need to assume private data is from some distribution

* Conservative strategy: Assume data is public, and subsample to
produce private data with entropy

e Distribution can be arbitrarily complex — just need to sample from it
* Benefits: O(1) noise, automatic privacy analysis

* PAC Privacy can be used to define notions of algorithm stability,
and small mutual information implies low generalization error

 Stable, private, generalizable machine learning models?

30



