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TL; DR

What’s this talk about?

-

Explainability an increasingly core requirement of
deployed AI/ML systems;

How do the two sit together?

o

Actionable and useful explanations are causal ones.

~
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Our Group’s Research

Thesis:
Towards learning robust reliable systems in evolving
environments

Deep Learning,

Machine Learning,
Computer Vision
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Our Group’s Research

Explainable and Robust Learning Learning in Data/Label-Deficient Environments
Saliency Maps (Grad-CAM++) and Attributions, * Continual Learning, CVPR 2022, WACV 2022, NeurIPS 2020,
AISTATS 2022, |EEE TBIOM 2021, WACV 2018 TPAMI 2021
Causality in NNs, ICML 2022, AAAI 2022, WACV 2022, ICML * Open-world Learning, cvPR 2021
2013, CVPRW 2021 .. * Few-shot/Zero-shot Learning, WACV 2021, WACV 2020,
Antehoc Interpretability, cvPR 2022 CVPR 2019
Attributional and Adversarial Robustness, Neur|PS * Deep Generative Models, wAcv 2022, CVPR 2018, ICCV
2021, ECCV 2020, AAAI 2021 2017

Deep Learning,

Machine Learning,
Computer Vision

On the Layerwise Hessian of Deep Neural Network Models, AAAI 2021; Submodular Batch Selection for Training Deep
Neural Networks, IJCAI 2019; On Noise and Optimality in Neural Networks, ICML 2018 Workshops
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Explainability in Al: An Increasing Need

Algorithmic Accountability Act 2019: Requires
* X % companies to provide an assessment of risks posed by an
oo * General automated decision system to privacy or security and the risks
b a Data that contribute to inaccurate, unfair, biased, or discriminatory
* decisions impacting consumers

* Protection

* Regulation
* 4 KX

Right to Explanation:
https://en.wikipedia.org/wiki/Right_to_explanation

European Union’s General Data
Protection Regulation (GDPR)

“ a business using personal data for o RéS”NSlBLE Al
automated processing must be able to explain how . .'; #A|FORALL 5
the system makes decisions. See Article 15(1)(h) 7 NS © - 0

and Recital 71 of GDPR.”’




Explainable ML: What is being done!?

7Saliency Map
Strategy
. Dependency Feature Surrogate Summarization O o oo S Ouied ioyaea Gk “':‘ o
ples BoAep Gradc Grators Smosirad
Plot Importance Model Artificial o e - o
] Intelligence
Z S A A H & A s
4l < - 2 * o

|
| 2

Plan Refinement

Planning

Diagnosis

Abduction Uncertainty Map

Conflicts B2)x @ 19x
Resolution 7 <
|
Machine Learning based Source:
S https://xaitutorial2
v 02 |.github.io
0.82 c Sl o /b e
Shapely = :
S S J} | [ A - /\
MaRIRS Narrative-based s "\ /\/\ \\,, B h ®
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Functional:

The Elephant in the Room

What is it really?

g

decisions?
Business Owner
1‘ a _ Is this the best model
. that can be built?
Data Scientists ’

IT & Operations

&‘d) 5

How do | monitor and

debug this model?

Internal Audit, Regulators

Are these Al system
decisions fair?

How do I answer this
. customer complaint?
Customer Support e




The Elephant in the

Room

What is it really?

Technical:

Post-hoc
explainable (vs)
Intrinsically
interpretable

Transparency (vs)
Reasoning

Snake?

Causal (vs)
Correlational
associations

Y R

° °
ooooo
ooooo
ooooo
-----
oooooooo
-------
---------
ooooooo

Wall?

Global (vs) Local
explanations

Model-agnostic
(vs) Model-specific
approaches

Attributions (vs)
Actionable
Explanations

Feature-level (vs) Latent
Concept-level Explanations




Viewing XAl from Different Perspectives

Our Efforts

Iy
(%)
S
<

%
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Post-hoc Explainability Intrinsic Interpretability
%3 GradCAM++: Generic * Ante-hoc explainability
method for visual explanations for CNN via concepts
models & Transferring concepts
* e in knowledge distillation tasks
Canonical saliency maps for face Explainability Sy sy
recognition/processing models in Deep i Causally disentangled
o Submodular Learning representations
ensembles of attribution methods v Dataset for causal
"""""""""""""" representation learning

= Mitigating bias
0 Causal attributions in through causal perspectives
neural networks e Causal regularizers

Complementarity of explanations and robustness

Causality in XAl
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Grad-CAM++

WACYV 2018

A pixel-level weighting strategy while
computing gradients for explanations Has been used for:

Original Image E° Grad-CAM E° Grad-CAM++
*  Explaining COVID-19 diagnosis
in chest X-ray images

Fundamental assumption

rYuYYA g >
F e = :

o
>
_|3

Grey Whale

*  Finding defective cells in solar

Convolutional i h
arrays

layers

Kite

*  Explaining cancer prediction on
gene expression data

. I yC Final Class
0 discriminative

Salinecy Map

P a
/ Li; = Z wi-Aijj
Backprop till last convolution layer L
| |
l | S n

1 c_ ke Jre
I,_,uk = Zg% .re!u(m)

| o &
N

I A layers
Input Ill Class
‘ cl-8 / score

* Identification of pathogens in
tomograms

i

Go-Kart

*  Leaf counting, Genus
classification in plant images

Eel

Grad-CAM Available on arXiv,
Wl = % >y gﬁg code on Github ~1500 citations at this time
i j L

i rars
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https://arxiv.org/abs/1710.11063
https://github.com/adityac94/Grad_CAM_plus_plus

Ante-hoc Explainability via Concepts

CVPR 2022

Have supervision for concepts (AwA2)? Great!
No supervision for concepts (ImageNet)? No problem, we’ll handle it

Possible to do some self-supervision (ImageNet)? Great, we’ll use it

* Learn latent concept-based explanations
implicitly during training

* Append explanation generation module on any
basic network and jointly train whole module.

Backbone — « P id | . h lobal
Network cheeta rovides explanations that are global (concepts
__ that are most activated on a dataset or a class)
fraditional CN models or local (concepts that are most activated for
Baselines OURS i i I i i
atacet L o s prediction on given input image).
CIFARTO 8450 NA 91.68 NA . . . L.
TnageNet | 58.55 NA 09 [ NA * Can be easily integrated with existing
AwA?2 76.41 81.61 81.04 85.70
CUB-200 55.51 6417 63.05 65.28 backbone networks.

Accuracy (in %) using ResNet|8 architecture as concept (or base)

encoder * Works with different levels of supervision




Causal XAl: What and Why!

Alright, alright — but why causal?
What are causal explanations!?

Causality in XAl



Causation vs Correlation

Is feature correlation of input to

output a true explanation!?

T USED T THINK,
CORRELATION IHPUED
CAUSATION.

7§

THEN I TOK A

STATISTICS CLASS.

Now I DON'T,

9

SOUNDS LIKE THE
CLR'SS HELPED.

WELL, I‘IHYBE

§i

CORRELATION IS NOT CAUSATION!

I ICE CREAM SALES
B SHARK ATTACKS

JAN MAR MAY JUL SEP NOV

Both ice cream sales and shark attacks increase when the weather is hot
and sunny, but they are not caused by each other (they are caused by
good weather, with lots of people at the beach, both eating ice cream

and having a swim in the sea)

@
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Simpson’s Paradox

* Consider vaccines for COVID-19 Mild Severe Total
* TreatmentT (Vaccine): A(0)orB (1) A 15%(210/1400) 30%(30/100) 16%(240/1500)
» Condition C: Mild (0) or Severe (I) B 10%(5/50) 20%(100/500) 19%(105/550)
* OutcomeY: Alive (0) or Dead (I) E[Y|T,C =0] E[Y[T,C =1] E[Y |T]
Mortality Rate Table Now, which treatment to choose?

Depends on the causal graph!

Total

A 16%(240/1500)
B 19%(105/550)

E[Y|T]

Which treatment to choose!?

Treatment B Treatment A



Let’s see a different perspective

Core objective in supervised ML tasks Go—(y) Go—(y) &\D

— how are x (data) and y (labels)

related? x = randn() y =1 + 2*randn() z i randn() .
y=x+1+sqrt(3)randn() | | x = (y-1)/4 + sqrt(3)*randn()/2 i - ; + 1 + sqrt(3)"randn()

Same joint distribution p(x,y) can
be generated by different variable
relations! :

Credit: Gautam Gare, CMU
®
Causdlity in XAl i



Let’s see a different perspective

Why does it matter, so
Core obije o ’ S G—(y)
J long it fits the data ®-Q
— how perfectly?
_ 4 =1+ 2*rand Z = randn() X
Yot 1n9 sqri@yrandng | | %= (-1 )fc{aafns;r(t)(s)*randn()fz g 1+ sqrt(3)*randn()

Same |

be gen It only fits this data :

perfectly

Credit: Gautam Gare, CMU ®
Causdlity in XAl i



Evaluate on data from other distributions?

Setxto 3
Let’s change a variable Co— G (Q%D
z = randn()
X = randn() y =1+ 2*randn() x=3
X=3 x=3 X=z
y =x+ 1+ sqgrt(3)*randn() x = (y-1)/4 + sqgrt(3)*randn()/2 x=3
x=3 x=3 y =z + 1+ sqgrt(3)*randn()
x=3
Knowing the true
causal relationships : : : :
makes a difference! B B | B I
: ( !

Credit: Gautam Gare, CMU
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Does this matter in XAl?

* Training a NN model to predict risk of heart

disease L 4
 Post-hoc explanations focus on data correlations . s of Meart
Isease

NN has learned to provide input-output
attributions

BMI
* ...but what if the causal graph had a “confounder’?

Would the explanation address the problem? .
Risk of Heart
Disease

He et al, Causal effects of cardiovascular risk factors on onset of major age-related diseases: A time-to-event Mendelian
randomization study, Exp Gerontol. 2018



More
generally..

The Three Layer Causal Hierarchy

What if I had acted
differently?

Level Typical Typical Questions Examples
(Symbol) Activity
1. Association Seeing What is? What does a symptom tell me
P(y|z) How would seeing X about a disease?
change my belief inY'? What does a survey tell us

about the election results?
2. Intervention Doing What if? What if I take aspirin, will my
P(y|do(z), 2) Intervening What if I do X7 headache be cured?

What if we ban cigarettes?
3. Counterfactuals Imagining, Why? Was it the aspirin that
P(y.|z',y") Retrospection Was it X that caused Y'? stopped my headache?

Would Kennedy be alive had
Oswald not shot him?

What if I had not been smok-
ing the past 2 years?

Figure 1: The Causal Hierarchy. Questions at level 7 can only be answered if information from level i or

higher is available.

Judea Pearl, The Seven Tools of Causal Inference with Reflections on Machine Learning, 2018
Judea Pearl, The Book of Why:The New Science of Cause and Effect, 2018

Causality in XAl
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Causal XAl: How?

-

-

How can we get causal explanations!?
How can we integrate causal perspectives
into model explanations!?

~

/

Causality in XAl



(a) (b)
10%?

*% .
Causal
To the best of our
Attributions knowledge, first
_ causal effort for
in Neural . attribution in
£ v neural networks
Networks
- ooe | e—
tsime-lag 1(oin SECD:dS) . 0.00 ’ tiiﬂe—lag (llnn seconlrjs) “ IMB
Joint work with:
ICML 2019 f ’

s ®
Aditya Piyushi Anirban | [
Chattopadhyay Manupriya Sarkar o :



Learn Causal Relationships!?

W
w

Wil

wh

ver
V¥

Consider a trained NN model.
Did it learn causal relationships
between input and output!?



SCMs and Causal Effect

Preliminaries

Structural Causal Model

(XU f P)
g

z = randn()
y =z + 1+ sqrt(3)*randn()
X=z

IS

~

N o

variables

Causdlity in XAl (1]

a1 g
W Hyderabod



Neural Network as an SCM

Feedforward neural network

M ([l e ), U, [f1s f2u ool Po) M'([l1,1,),U, f, Py)

* |, —neurons in layer |

* f.— corresponding causal functions



Defining Causal Effect

How to compute —

causal effectfora —

For binary variables: Ely|do(z = 1)] — E|y|do(x = 0)] trained NN?

. . . ACEY
For continuous variables: ACE;, . _

) Ely|do(x; = «)] — baseline,,

* Connection to Attribution: Effect of an input feature on prediction function’s
output

* Existing attribution/explanation methods
— Gradient-based

*  “How much would perturbing a particular input affect the output?”’ Not a causal analysis

— Using surrogate models (or interpretable regressors)

e Correlation-based again



Computing Average Causal Effect in NN

General case (continuous variables):

= Ely|do(x; = a)] — baseline,,

do(r;=ax

‘ ACEY

Interventional expectation:

H ) How to define and compute?
ow to compute?

* Can come from domain knowledge

Ely|ldo(x; = « :/ p(y|do(x; = «))d
yldof ) yy (widof ey * Else,we useE,. [E,[y|do(z; = a)]]

the average ACE across all x;



Computing ACE

Ely|do(a; = a)] = f yp(yldo(a: = a))dy

Yy
Let: vy = [,(x1,22,...,7p) 1y = Elxjldo(z; = o)Va,; € [
1= [ulau%"'ﬂuk}T

Consider the Taylor-series  fi(l1) = fy(1) + V' fy (1) (1 = p)+
expansion: %(51 — ) VA ()l — )

Marginalizing over all other Elf,(l1)|do(z: = a)] = f,(1)+
iNpUt Neurons:  ~Tr(V2/,(u) El(l — 1) (11 — )" |do(a: — )

el



Computing ACE

Ely|do(z; = a)] = ]yp(ydo(:ci = a))dy —> Iﬁi[f;(hﬂdﬂ(ﬂh =a)] ~ f,(u)+
J §T'T(V2f;(ﬁ)E[Ul — ) (11 — p)" |do(z; = a)])

* Given an intervention on a particular

Proposition 2. Given an [-layer feedforward neural net- variable, the probability distribution of all

work N(i1,l2,..l,) with I; denoting the set of neu- other input neurons doesn’t change, i.e.
rons in layer ¢ and its corresponding reduced SCM —>  for Zj 7& Z;
M'([ly,1,],U, f', Prr), the intervened input neuron is d- P(zj|do(z; = a)) = P(z;)

separated from all other input neurons. . .
* Interventional means and covariances of

non-intervened neurons same as
observational means and covariances; can
be pre-computed!

o 1 e
W Hyderabod



Only for feedforward NNs!?

Recurrent neural network

@.
®-
@

Reduction

O—®

Depends on a particular RNN architecture.
Where output does not feed into input, same idea can be used



Results

Iris Dataset

a . Iris—setosg ) b Iris-versicolor
— Sepal Le_ngth 4 Sepal Length
o3 Sepal Width 3 i Sepal Width
Q Petal Length : Petal Length
TU:; 2 Petal Width | 2! : Petal Width ACE values match
2.1 1
g, | - a decision tree
<, a
- learned
7 -2 2
3 o
5 B / independently
oo 07 0.4 o 0.8 To 00 02z 04 06 08 1.0
ntevention value a Intevention value o
c Iris-virginica
4 [[— Sepal Length
3 Sepal Width
Petal Length .
5 | Petal Width | Iris Setosa Pw(ﬂ ﬁg
1
0 e — — — —
-1
-2
3 Iris Versicolor Iris Virginica

-4
LAy AR Inte\?éﬁt\on \Paﬁle a 0B L0

Causality in XAl




Results

Aircraft Data (NASA Dashlink Dataset)

(a) (b)

FDR report:“....due to slippery runway,
the pilot could not apply “‘

timely brakes, resulting in a steep g
acceleration in the airplane 2 o
post-touchdown...” — ppee—

(c) I°‘2’ .

arXiv: !
https://arxiv.org/abs/1902.02302
Code:
https://github.com/Piyushi-0/ACE | I

Flight Parameters

Flight Parameters

0 5 10 15 20
0.00 time-lag (in seconds) 0.00

time-lag (in seconds)

Causality in XAl


https://arxiv.org/abs/1902.02302
https://github.com/Piyushi-0/ACE

COMPAS(Recidivism=1) MEPS(Utilization=0)
--- Race: GT

0.15{ —— Feature's GT
A~ African American: ERM 0.02 —AR- Race: ERM
$ 010{ —5 Asian: ERM A —R- Race: CREDO
E ~N- Native American: ERM 0.01
E 0.05{ —A— African American: CREDO m
@ ~5- Asian: CREDO A8 0.00] - e—enre e
= 0.00{ —-N- Native American: CREDO 5
2 A— - —H
3 RN 5 —0.014
3 P ~ 2
& -0.05 2 .
N o To the best of
% -010{N \ 0.02 (@) t e eSt OoT our
\
™ -0.03{

Regularization . . . . : 7. . . . 1  knowledgefirs

B e effort to integrate

° ° on sangiovese dataset for class 1

with Domain 3°[h, causal knowledge
Priors

ot o
Potass:CREDO for attribution in
Polyph:GT

T o neural networks
Acid:GT

Acid:ERM

Acid:CREDO

Pop &
7 S

A,

A

-1.0 -0.5 0.0 0.5 1.0
Interventional value

Joint work with:
Gowtham Reddy A Sai Srinivas K Amit Sharma

ACE of Potass, Polyph, Acid
o
(o]
(o]
B
Vi
»
22200079 0DD

ICML 2022
B Microsoft
B Research
I.l
g =f & avEE
T Hyderabad




Do NNs Learn Causal Relationships?

ICML 2019 and ICML 2022

If we had access to prior causal
relationships, can we integrate
them while training NN
models?

Consider a trained NN model.
Did it learn causal relationships
between input and output!

elelelele

Causal Attributions in Neural Networks Causal Regularization with Domain Priors

ICML 2019 ICML 2022
o



Key Idea

Match causal effects learned by a neural network to effects we want it to learn

Causal Domain Prior

8(T)

ACEONY

g(T) = I(T)

Relationship Between Features

O @ W
&

Neural Network Graph G

Causality in XAl

CREDO: Causal
REgularization with
DOmain Priors



Causal Graph and Effects

Direct Effect

Co

Indirect Effect

Let Yi—q := Y|do(x = @)
Definition

(Controlled Direct Effect in NN). Controlled Direct Effect (NN — CDE)
measures the causal effect of treatment T at an intervention t (i.e.,
do(T = t)) on Y when all parents of Y except T (PAY) are intervened

We handle three kinds of causal effect 1, pre-defined control values o. Average Controlled Direct Effect

NN models in this work:

e Controlled direct effect
e Natural direct effect

* Total causal effect

(NN — ACDE) is defined as: NN — ACDEfP e

A

IEU[S\/t,PAV:a] - ]EU[Y/*,PAV:Q] = Vt,PAV:a — Y PAY=a

NN — ACDEY := E o[, pav] — Epps[Yye pav]

Pearl, Causality: Models, Reasoning and Inference, 2003




|dentifiability in Causality

Proposition

(ACDE Identifiability in Neural Networks) For a neural network with
output Y, the ACDE of a feature T at t on Y is identifiable and given

Identifiability: by ACDEY =E,,; [Y|t, PAY] — E,; [V|t*, PAY].
the condition that permit to
measure causal quantit 5 N R
d Y ACDEY =B wulYizw]l —Bzwul¥r.zwll
from observed data

=EzwlYzwl —Ezwl(¥r zw]
= EZ,W[?lts Zs W] - EZ,W[}I}lt*s Zs W]

@
Causality in XAl “



Regularizing for Causal Effect

Proposition

(ACDE Regularization in Neural Networks) The n" partial derivative of
ACDE of T at t on Y is equal to the expected value of nth partial
derivative of Y w.r.t. T at t, that is: % =Ep,¢ [%tmy)]]

d"ACDE!  8"[Ezw(Y|t, Z,W] - Bz w[¥|r*, Z, W]]

om orn
_ 0" [BzwlYI, Z,W]]
ot

MY (t,Z,W)]

orm ]

(. t* is a constant)

=EZW[

@
Causality in XAl Il



Our Regularizer

N
~ ) 1 .
H:argmglnERM—l—)\N E max{0, [|V;,f © M — §G’||; — ¢}

Jj=1

where V; f is the C X d Jacobian of f w.rt. x/; Mis a
C X d binary matrix that acts as an indicator of features
for which prior knowledge is available; © represents the
element-wise (Hadamard) product; N is the size of training
data; and € is a hyperparameter to allow a margin of error.

Causality in XAl

Algorithm 1 CREDO Regularizer
Result: Regulariz,er_s fo_r ACDE, ANDE, ATCE in f. . )
Input: D = {(x-’,yf)}j.\';l, ¥ e {0,1,..., c}, x/ ~ xi;
Q = (il gf for some c}; G = {g{lgf is prior for it" fea-
ture w.rt. classch; F = {fl ..... fK} is the set of structural
equations of the underlying causal model s.t f* describes Z; e is
a hyperparameter
Initialize: j = 1,6G7 = 0pxaV¥j=1,....,N, M = 0pxq
while j < N do
foreach i € Q do
foreach g € G do
6GI [c,i] = Vgf| is Mle,i] =1
case I regularizing ACDE do

v, flesi] = 85
case 2: regularizing ANDE do
/+ causal graph is known */
t=x )

s Y

Vst = g o
case 3: regularizing ATCE do
‘ /% causal graph is known w/

) q_[da¥ vk oy df'],
Vifledl = | qg +Ziz1 570 dxy |1

end

end
j=j+1

end
return #Ei\il max{D,llefOM—ﬁGJHl - €}




Sample Results

'},‘ COMPAS COMPAS COMPAS
E pS
A -d-- GT
= 0.1 . o)
bs - ~¥— ERM
g 0.0 { F b GREDO
5 ~0.11 S e
& , > —oale _——
L&!‘ Intervention on Asian Intervention Native American
MEHRA Dataset
1.01 o
-—a-- GT
J w
0.5 1 21 —— ERM ;

—&— CREDO_CDE /_4

0.0

A VT

v ERM
—4— CREDO_CDE

-0.51

ACDEonTP=1

-1.0 1

CREDO shows promising performance in matching causal domain priors with no
significant impact on model accuracy/training time

Causality in XAl




Sample Results

Causal graph

k 'F COMPAS COMPAS COMPAS
unknown :

g ] 01{ w SOl

= 005 U —¥— ERM
Feature RMSE Frechet Score Corr. Coeff. ! 0.001 3
ERM CREDO ERM CREDO ERM CREDO i —0.051 =
- N I v | ~

COMPAS (4, = 5) (ERM test accuracy is 67.90%, CREDO test accuracy is 67.09%) | Intervention on African American Intervention on Asian Intervention Native American
African American 0.055  0.016 0.088  0.025 - - ~ BOSTON BOSTON BOSTON
Asian 0092 0018 0162 0021 - - w2 ] [ i [——

. . N 4
Native American  0.059 0.011 0.109 0.025 - - E ol 24 v Eerm A
AutoMPG (4, = 1.5) (ERM test accuracy is 88.6%, CREDO test accuracy is 87.34%) ‘i 0{Fr6GF—F>c—— -%-- GT ‘5{‘\1 . 0- —&— CREDO
Displacement 1144 0212 0566 1.524 0945 0.977 i T RN ;) v BN N C
Horsepower 1036 0081 6978 3908 0922 0.999 g | W CREDR | A e eEe \N| -21&

Weight 1.780 0.25 9453  5.510 0.986 0.992 < Intervention on Crime Intervention on Nitric Oxides Intervention on Num. of Rooms
AutoMPG AutoMPG AutoMPG
W G s GT e G
-t 1B N == Ny -h-- T
Xiv: g M= ¥~ ERM 18 ¥~ ERM L g ¥~ ERM
arAlv. S o =& TREDQ, = —&— CREDO 3 \
] , 01 3
. 1 w ™ ,
https://arxiv.org/abs/2111.12490 8 [—— - o]
<-4 e =
-1.0 =05 0.0 0.5 1.0 -1.0 =05 0.0 0.5 1.0 -1.0 =05 0.0 0.5 1.0
Intervention on Displacement Intervention on Horsepower Intervention on Weight

Causality in XAl




Causal
Attributions:
Going Beyond
Direct Effects

arXiv Preprint
2303.13850

W+ Uniform(0,1)

Z « 2W + N(0,0.1)

X « 2W — Z + N(0,0.1)
Y « 3X + % £ N(0,0.1)
Table 1: Synthetic Data 1

Direct Effect

Indirect Effect

Joint work with:

Gowtham Reddy A  Saketh Bachu

Feature 1G CA CREDO | Ours
[52017] [JAC2019] [SK 2022]
Synthetic Data 1
=5 W 0.8569 0.869 0.835 1.114
o Z 0.569 0.569 0.804 0.373
E X 0.000 0.000 0.229 0314
& Average 0.479 0.326 0.622 0.618
= W 1.000 1.000 1.000 1.000
; Z 1.000 1.000 1.883 0.883
'fa X 0.000 0.000 0.397 0.352
& Average 0.667 0.667 1.109 0.745
Varshaneya

Honeywell

wir§ ané < g
T Hyderabad



Going Beyond Direct Effects: Key Idea

G-

W~2) %?{@ N
O O
G N NAH

We introduce connections among input
features to capture underlying causal relationships
to learn indirect causal attributions of inputs ony



|dentifiability and Training Algorithm

Algorithm 1 Training Algorithm for Proposed N"4H

Input: Causal graph G, D = {(z%,...,2L,¢" )} lp =
Proposition 4.1: Given a neural network N° edges among {21, ..., Tn}
. _ . Output: Trained A*'#
with directed edges among input features for each epoch do
Z1,...,Tn denoting causal relationships for phase in [freeze, full] do
) ] , if phase = freeze then
among the features in the underlying causal Freeze lo, train Iy, . .., ln of N'AH using D
graph G, the AICE?. of an input feature x; 9'5} { ) 0y
.. . - =T s palri) =
on an output neuron Yy is identifiable in N. Sample X \ X" using lo, X"
Train lo, . .., I, of N4 using (X, y).
end if
end for
end for

return trained N

Causality in XAl




Results

W + Uniform(0,1)

Z + 2W + N(0,0.1)

X +2W — Z + N (0,0.1)
Y « 3X +¢* + N(0,0.1)

Table 1: Synthetic Data 1

Feature IG CA CREDO Ours
[S2017] [AC2019] [SK2022]
Synthetic Data 1

=5 W 0.869 0.869 0.835 1.114
5 Z 0.569 0.569 0.804 0.373
2 X 0.000 0.000 0.229 0.314
5 Average 0.479 0.326 0.622 0.618
=5 W 1.000 1.000 1.000 1.000
E Z 1.000 1.000 1.883 0.883
E X 0.000 0.000 0.397 0.352
£ Average 0.667 0.667 1.109 0.745

Causality in XAl

Flight anomaly datasets
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arXiv:
https://arxiv.org/abs/2303.13850




Evaluating and
Mitigating Bias in
Image Classifiers: A
Causal Perspective
Using
Counterfactuals

WACY 2022

ORIG‘INAL RECONSTRUCTED COUNTERFACTUALS
] J

" ) (b) () (d) (e) (f) (g) “

Joint work with:

Saloni Dash Amit Sharma
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I Microsoft
B! Research
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Causal Perspective to Counterfactual Generation

Existing perspectives to counterfactuals in DL very weak and scattered — not
truly causal

How to integrate a causal perspective in counterfactual generation,and what
could be its applications!?

Image we want to generate the counterfactual for: x € X
Corresponding attributes: a = {a;}}; € A
* E.g.Smiling, Brown hair for Celeb-A;Thickness, Intensity for MNIST

Given (x, a) goal is to generate a counterfactual image with the attributes changed

to ac



Counterfactual Generation

_________________________________________

z Z, a4 . :
ENCODER (E) (z a.) GENEEATOR
G) !
——————— JL-________________________________: .
(X, a) a.
ATTRIBUTE N
SCM
Ll
a X,
L Ye
[ X H a ] | cLassFier .
X, y
(x, a)
[l e R et |
|| ENCODER B) [ ——»| CENERATOR 4
]

Individual local SCMs
learned over
attributes

Overall model learned
similar to a GAN
(using ALI)

o 1 e
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Counterfactual Generation

ffffff ) B e * Anencoder F : (X, A) — Z infers the latent vector z
" from x and a, i.e. z = F/(x,a) where Z = z € R™.
%* T3 | | .
| * The Attribute-SCM intervenes on the desired subset of
i p—g attributes that are changed from a to a’, resulting in
e J* (L,’,l ,,,,,, ( ,,) ,,,,,, ; o Output ac.
« Abduction * Generator G : (Z, A) — X takes as input (z, a.) and
e Action generates a counterfactual x., where z € Z C R™,

* Prediction

o 1 e
WTHyderaed)



Applications!?

* Evaluating fairness of a classifier

bias = p(yr # ¥o)(P(yr = 0,9. = 1|y, # ye)

mmms) bias =p(y, =0,y.=1) —p(yr = 1,y. = 0)
_p(y’r =1,y = O‘y'r’ - yC))

* Explaining a classifier (in terms of attributes)

]EY [Yaﬁ—a’ |X') a] - EY [Yaz <—a‘X7 a]

- yaﬂ—a’ |X3 a— yai<_a|X: a

* Bias mitigation:

~

Train using  BCE(y,ue, f(Xx)) + AMSE(logits(x,.), logits(x.))

o 1 e
WTHyderaed)



Counterfactual Generation

original do (t=1) do (1=1i) do (s =5s)
1 | |

Figure 3: Morpho-MNIST Counterfactuals. Top-left cell
shows a real image sampled from the test set. Vertically,
rows correspond to interventions on the label, do(/ =1, 4, 6,
9). Moving horizontally, columns correspond to interven-
tions on thickness: do (t=1, 3, 5), intensity: do (i = 68, 120,
224), and slant: do (s =-0.7, 0, 1) respectively.

ORIGINAL RECONSTRUCTED COUNTERFACTUALS

" ) (b) (c) (d) (e) (f) (g)

Figure 5: ImageCFGen and DeepSCM Counterfactuals. (a) denotes do (black hair = 1) and (b)
denotes do (black hair = 1, pale =1). Similarly (c) denotes do (blond hair = 1); (d) denotes do (blond
hair = 1, pale = 1); (e) denotes do (brown hair = 1); (hf denotes do (brown hair = 1, pale = 1); and
(g) denotes do (bangs = 1).




Counterfactual Generation

plar # ac) | p(O—1) | bias
horizontal flip | 0.073 0.436 -0.009 T
_ brightness | 0.192 | 0498 | -0.001 Heavy Makeup
black_h 0.103 0.586 0.018 —
9_|
black_h, pale 0.180 0.937 0.158 Vearing_Hat
blond_h 0.115 0413 -0.02 G tar
blond_h, pale | 0.155 0.738 0.073 L ——
brown_h 0.099 0.704 0.041 _ . . , _
brown_h, pale | 0.186 0.942 0.164 Flgur.e .7: Explaining a C.lass_lﬁer. A.ttrlbutfa ranking of top
bangs 0.106 0.526 0.005 4 positive and top 4 negative influential attributes.
Table 3: Bias Estimation. Bias values above a threshold of Classifying a face as attractive
5% are considered significant.
Bias Mitigation. Using generated CFs reduces N e e
bias to 0.032 for black hair and pale,and 0.012 https://arxiv.org/abs/2009.08270

for brown hair and pale



On Causally
Disentangled
Representations
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Causal Disentanglement

Our Work

Disentanglement has been a topic of

recent interest — however most existing Confounders
methods assume independence among
latent variables (generative factors)

. . Generative e .
We present two evaluation metrics Factors
based on the properties of causally
disentangled LVMs

We develop a new weakly supervised X<—f(G1, LGN
disentanglement algorithm

o 1 e
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Causal Disentanglement

Our Work

Disentangled Causal Process Causal model for X is disentangled
(iff)
it can be described by the SCM:

Confounders

C-eNC;je{l —

Generative e . G; + gi(PAT NG )i €{1,...,n}
Factors X+ f(Gy,..., Gy Ny)
f, g; are independent causal

X<—f(Gl, G Ny) mechanisms

Suter et al, Robustly disentangled causal mechanisms:Validating deep representations for interventional robustness, ICML 2019

o 1 e
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Evaluating Causal Disentanglement

Can Latent Variable Models (LVMs) learn to causally disentangle?

Metric 1: Unconfoundedness
. 1 < 12 NZj]
e Encoder e of a LVM M (e, g, px) should learn the mapping from G; ~ UC :=1-E,, S 242 0z

1,J ! J

to Z; without any influence from C.

Metric 2: Counterfactual Generativeness

x</ X{
e If Z is unconfounded, the counterfactual of x w.r.t. G;, xf‘r can be CG = E1[|ACEZ% _ACEZ%{ ]

generated by intervening on Z7.

e Any change in Z)\‘,, should have no influence on x" w.r.t. G;. ACE = Average Causal Effect

Allowed

G|\ /]

©+S}*®—>@/J c

ucC CcG Z] Zz 23 Z4 QAllowed
UC & CG ucC CG

N

3
\
<I1<]

o 1 e
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Weakly Supervised Disentanglement

A Method

Reconstruction vs Disentanglement!
We use bounding box supervision for better trade-off

We call our method Semi-Supervised Factor-VAE with additional
Bounding Box supervision (S5-FVAE-BB).

Augment Factor-VAE loss as:

L

Lss—rvaAE—BB = L(Factor—vaE) T A Z xi ow =X owl (4)
i=1

w; € {0,1}320%240%3 is an indicator tensor with 1s in the region of

the bounding box and 0s elsewhere.

Causality in XAl
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Results

A Method

Model IRS DCl ucC cG ucC cG

(D) p=5 p=5 p=T7 p=T7
3-VAE 0.85 0.18 0.11 0.24 0.08 0.22
B-TCVAE 0.82 0.10 0.11 0.25 0.08 0.25
DIP-VAE 0.33 0.08 0.11 0.21 0.15 0.22
Factor-VAE 0.88 0.15 0.13 0.26 0.08 0.28
SS-3-VAE 0.74 0.18 0.11 0.28 0.08 0.19

SS-B-TCVAE 0.68 0.17 0.11 0.23 0.08 0.19
SS-DIP-VAE 0.35 0.08 0.11 0.22 0.15 0.22
SS-Factor-VAE  0.61 0.16 0.24 0.28 0.14 0.22

SS-FVAE-BB 0.61 0.13 0.27 0.28 0.18 0.28

e Low UC, CG scores indicate limitations in disentanglement achieved
by SOTA models.

e SS-FVAE-BB achieves better UC, CG scores.

Causality in XAl



More information?

For more details:
https://arxiv.org/abs/2112.05746

https://github.com/causal-disentanglement/CANDLE

Causdlity in XAl L]
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https://arxiv.org/abs/2112.05746.pdf

Our Other Ongoing Efforts in XAl

Learning Causal Models on Latent Variables in Vision
Concept-based Explanations in Vision

Counterfactual Generation under Confounding

Learning Disentangled Generative Processes and Mechanisms
Causal Representation Learning



Need for Datasets/Benchmarks

CANDLE:An Image
Dataset for Causal
Analysis in Disentangled
.- Representations

Best Paper Award, CVPR 2021 Workshop on
Causality in Vision

https://github.com/causal-disentanglement/CANDLE

Causdlity in XAl (1]
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Open Problems and Challenges

Is there a universal formalization for explainable ML?

How to balance accuracy/performance vs interpretability tradeoff?
Is interpretability always required?

How to evaluate explainable systems?

Who owns the explanation? Model or explanation methodology?
How can connectionist and symbolic Al work together for ‘logical’
explanations!?



Thank you!

Acknowledgements Questions!?

@ B Microsoft
Lll| ﬁ Homerwon @L> A'}l W Research vineethnb@cse.iith.ac.in
) <3 = http://www.iith.ac.in/~vineethnb

NVIDIA Google Research

Causality in XAl |.l|
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