
Schrödinger’s equation

Postulates of quantum mechanics

de Broglie postulated that entities like electron are particles in the classical sense
in that they carry energy and momentum in localized form; and at the same time they
are wave-like, i.e. not completely point object, in that they undergo interference. de
Broglie’s wave-particle duality leads to associating electron and likes with the wave
function ψ(x, t) such that |ψ(x, t)|2 gives the probability of finding them at (x, t). A
minimum uncertainty wave packet is an example of wave function asssociated with a
particle localized over the region x ± ∆x and having momenta spread over k ± ∆k.
This wave function describes particle having a constant momentum range k±∆k i.e.
free particle – particle in absence of any force or potential. But if the particle is acted
on by a force, its momentum is going to change and, therefore, free particle wave
function is going to change too. The wave function of a particle ψ(x, t) subjected to
some force, specified by potential V (x, t), is obtained by solving Schrödinger equation,

i~
∂ψ(x, t)

∂t
= − ~2

2m

∂2ψ(x, t)

∂x2
+ V (x, t)ψ(x, t). (1)

Above is the 1-dimensional Schrödinger equation (for 3-dimension replace ∂2/∂x2 by
∇2 and x by ~x). The Schrödinger equation (1) is a postulate of quantum mechanics.
We can arrive at Schrödinger equation from a few reasonable assumptions,

1. the quantum mechanical wave equation must be consistent with de Broglie
hypothesis p = ~k and E = ~ω,

2. that wave equation should obey the energy relation E = p2/2m+ V (i.e. total
energy = kinetic + potential energy),

3. and it must be linear in ψ(x, t) so as to ensure linear superposition, implying if
ψ1 and ψ2 are solutions of Schrödinger equation then aψ1 +bψ2 is also a solution
for arbitrary a and b.

Consider plane wave description of a particle,

ψ(x, t) = Aei(kx−ωt) in 3− dimension → ψ(r, t) = Aei(k·r−ωt)

which according to de Broglie hypothesis,

ψ(r, t) = Aei(p·r−Et)/~ = Aei(pxx+pyy+pzz−Et)/~.

It is immediately obvious that ψ(r, t) is eigen-function of the operators i~ ∂/∂t,
−i~ ∂/∂rj and −i~ ∂/∂pj with eigen-value E, pj and rj respectively,

i~
∂ψ

∂t
= E ψ

−i~ ∂ψ
∂x

= pxψ etc. → p = −i~∇

−i~ ∂ψ

∂px

= xψ etc. → r = −i~∇p
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At this point we postulate association between the dynamical quantities and the
differential operators (in coordinate space)

r ↔ r̂, p ↔ −i~∇ ≡ p̂ and E ↔ i~
∂

∂t
≡ Ê (2)

which essentially amounts to postulating Schrödinger equation. Using this operator
association in the energy relation, we obtain the operator equation,

− ~2

2m
∇2 + V̂ (r̂, t) = i~

∂

∂t
(3)

LHS of the above equation (3) is also known as Hamiltonian operator,

Ĥ ≡ − ~2

2m
∇2 + V̂ (r̂, t) (4)

since for a closed system, Hamiltonian H represents the energy of the system which is
the sum of kinetic and potential energy H(q, p) = p2/2m+ V (q). If the Hamiltonian
operator is made to act on particle wave function, we get Schrödinger equation, i.e.
Hamiltonian generates time evolution of wave function,

Ĥψ = i~
∂ψ

∂t
⇒ − ~2

2m
∇2ψ + V̂ ψ = i~

∂ψ

∂t
. (5)

To get to know about the behavior of quantum particle in force field or potential,
we have to solve the Schrödinger equation (5) for specific potentials and for the
most part of this course we will confine ourselves to somewhat simplified setting (but
of great interest nontheless) – solving 1-dimensional Schrödinger equation (1) for
potentials not depending explicitly on time V (x, t) → V (x). In that case Schrödinger
equation can be solved by separation of variables, where we seek solution of the form

ψ(x, t) = ψ(x)ϕ(t) (6)

and then the partial differential equation (1) involving x and t reduces to two ordinary
differential equations,

Eϕ(t) = i~
dϕ(t)

dt
(7)

Eψ(x) = − ~2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) ⇒ Ĥψ(x) = E ψ(x). (8)

The E is the separation constant, which can be shown to be exactly equal to total
energy of the particle. The equation (8) is called 1-dimensional time-independent
Schrödinger equation. The solution of equation (7) is easy ϕ(t) = exp(−iEt/~) and
the solution of Schrödinger equation (1) is

ψ(x, t) = ψ(x) e−iEt/~. (9)

To know the full solution ψ(x, t) we need to solve the time-independent Schrödinger
equation (8) for specific potentials. Three important consequences of solutions ob-
tained by separation of variables (6) are,
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1. The solutions ψ(x, t) = ψ(x) exp(−iEt/~) are stationary states implying prob-
ability density |ψ(x, t)|2 and every expectation value are constant in time.

2. The states are of definite total energy.

〈H〉 =

∫
ψ?Ĥψ dx = E

∫
|ψ|2dx = E

〈H2〉 =

∫
ψ?Ĥ2ψ dx = E2

∫
|ψ|2dx = E2

⇒ σ2
H = 〈H2〉 − 〈H〉2 = 0

3. The general solution is a linear combination of separable solutions (each of which
are stationary states),

ψ(x, t) =
∞∑

n=1

cnψn(x, t) =
∞∑

n=1

cnψn(x) e−iEnt/~

Before embarking upon solving Schrödinger equation for varieties of potentials, we will
explore a little more about the consequences of the postulates of quantum mechanics.
Summarizing, the postulates of quantum mechanics thus are:

1. The wave function ψ(x, t) describes motion of a particle in x and t in presence
of potential, consistent with de Broglie’s wave particle duality and uncertainty
principle.

2. Each dynamical variables are associated with operators.

3. ψ(x, t) are continuous, well-behaved, single-valued and square-integrable.

4. If a measurement is made at a certain time t to locate a particle, whose wave
function is ψ(x, t), then the probability P (x, t) dx that the particle will be found
in the interval x and x+ dx is,

P (x, t) dx = ψ?(x, t)ψ(x, t) dx = |ψ(x, t)|2 dx ⇒
∫ ∞
−∞

P (x, t) dx = 1.

5. The observables, i.e. those quantities that can be measured in experiments, are
the expected average results of a system of statistical measurements

〈α̂〉 =

∫
ψ? α̂ ψ dx∫
ψ? ψ dx

.

6. Schrödinger equation is a linear, partial differential equation and if ψ1 and ψ2 are
solutions of Schrödinger equation then a1ψ1+a2ψ2 is also a solution for arbitrary
a1 and a2. A possible physical state of a system is a linear superposition of many
wave functions, each describing various permissible physical state of the system,

ψ =
∑

i

ai ψi.
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The probability for this superposition, if the solutions ψi are orthonormal, is:

P = |ψ|2 =

∣∣∣∣∣∑
i

aiψi

∣∣∣∣∣
2

=
∑

i

|ai|2
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