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We study a system consisting of a junction of N wires, where the junction is characterized by a scalar
S-matrix, and an impurity spin is coupled to the electrons near the junction. The wires are modeled as weakly
interacting Tomonaga-Luttinger liquids. We derive the renormalization group �RG� equations for the Kondo
couplings of the spin to the electrons on different wires. We analyze the RG flows and fixed points for different
values of the initial Kondo couplings and of the junction S-matrix, such as the decoupled S-matrix and the
Griffiths �connected� S-matrix. We find that the Kondo couplings flow either towards a ferromagnetic �FM�
fixed point or towards large and antiferromagnetic �AFM� values in one of two ways. For the Griffiths
S-matrix, one of the strong coupling flows is towards a FM fixed point with decoupled wires; this is seen by
a perturbative analysis. Thus if we start with a system of connected wires with an AFM coupling to the spin
impurity, the flow at large distances is towards a system of disconnected wires at the FM fixed point. For the
decoupled S-matrix, the flow is either to a FM fixed point or to one of two strong coupling fixed points in
which all the channels are strongly coupled to each other through the impurity spin. Strong interactions
between the electrons with K��N / �N+2� can stabilize a multichannel fixed point in which the coupling
between different channels goes to zero. We also study the temperature dependence of the conductance at the
decoupled and Griffiths S-matrices.
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I. INTRODUCTION

The area of molecular electronics has grown tremen-
dously in recent years as a result of the drive towards smaller
and smaller electronic devices.1 Molecular electronic circuits
typically need multiprobe junctions. The first experimental
growths of three-terminal nanotube junctions were not
well-controlled;2 more recently, new growth methods have
been developed which produce uniform Y-junctions.3–5

Transport measurements have also been carried out for
Y-junctions,6 as well as for three-terminal junctions obtained
by merging together single-walled nanotubes by molecular
linkers.7

On the theoretical side, there have been several studies of
junctions of quantum wires. There have been detailed studies
of carbon nanotubes with different proposed structures for
the junction.8,9 Several groups have analyzed the geometry
and stability of the junctions.10,11 Junctions of quantum wires
have also been studied12–17 in terms of one-dimensional
wires, with the junction being modeled by a scattering matrix
S. These studies include the effects of electron-electron in-
teractions which are often cast in the language of Tomonaga-
Luttinger liquid �TLL� theory.18–20

Many earlier studies of junctions have only included “sca-
lar” scatterings at the junction, i.e., the S-matrix has been
taken to be spin-independent. The response of a junction of
quantum wires to a magnetic impurity or an impurity spin at
the junction has recently been studied both experimentally21

and theoretically.22–26 As is well-known in three dimensions,
an impurity spin can lead to the Kondo effect.27 The Kondo
effect for a “two-wire junction” in a TLL wire has been
studied by several groups.28–35 Using a renormalization
group �RG� analysis for weak potential scattering, Furusaki
and Nagaosa showed that for an impurity spin of 1 /2, there

is a stable strong coupling fixed point �FP� consisting of two
semi-infinite uncoupled TLL wires and a spin singlet.29 For
strong potential scattering, the above FP is reached when the
interactions between the electrons are weak. However, suffi-
ciently strong interactions are known to stabilize the two-
channel Kondo FP instead.30 The Kondo effect has also been
studied in crossed TLL wires36 and in multiwire systems.37,38

In this paper, we consider a junction of quantum wires
which is characterized by an S-matrix at the junction; further,
an impurity spin is coupled to the electrons at the junction.
The wires are modeled as semi-infinite TLLs. The details of
the model defined in the continuum will be described in Sec.
II. In Sec. III, we will discuss how RG equations for the
Kondo couplings and for the S-matrix at the junction can be
obtained by successively integrating out the electronic modes
far from the Fermi energy. We find that the flow of the
Kondo couplings involve the S-matrix elements, but the flow
of the S-matrix elements do not involve the Kondo couplings
up to second order in the latter. To simplify our analysis,
therefore, we concentrate on the FPs of the S-matrix RG
equations and study how the Kondo couplings evolve in Sec.
IV. For the case of N decoupled wires, we find that for a
large range of initial values of the Kondo couplings, the sys-
tem flows to a multichannel ferromagnetic �FM� FP lying at
zero coupling. This FP is associated with spin-flip scatterings
of the electrons from the impurity spin whose temperature
dependence will be discussed. Outside this range, the flow is
towards a strong antiferromagnetic �AFM� coupling. On the
other hand, at the Griffiths S-matrix �defined below�, there is
no stable FP for finite values of the Kondo couplings, and the
system flows towards strong AFM coupling in two possible
ways. We also consider the case when the scattering matrix
has a chiral form. In this case, we find that the Kondo cou-
pling matrix for the three wire case has three independent
degrees of freedom and a single FP at strong coupling.
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The strong coupling flows will be further discussed in
Sec. V where we will consider some lattice models at the
microscopic length scale. As in the three-dimensional Kondo
problem, we find that there are various possibilities depend-
ing on the number of wires N and the spin S of the impurity,
such as the underscreened, overscreened, and exactly
screened cases.39 We will generally see that a Kondo cou-
pling which is small at high temperatures �small length
scales� can become large at low temperatures �large length
scales�. In Sec. VI, we will show that the vicinity of one of
the strong coupling FPs can be studied through an expansion
in the inverse of the coupling; we will then find that the large
coupling can be reinterpreted as a small coupling in a differ-
ent model.

In Sec. VII, we will study the case of decoupled wires
with strong interactions using the technique of bosonization.
Analogous to the results of Ref. 30, we find that the multi-
channel �N�2� AFM Kondo FP is stabilized for K�

�N / �N+2�. We will discuss the temperature dependence of
the conductance in Sec. VIII at both high and low tempera-
ture; we will compare the behaviors of Fermi liquids and
TLLs. Section IX will contain some concluding remarks. A
condensed version of some parts of this paper has appeared
elsewhere.26

We have not used bosonization in this paper �except in
Sec. VII�, although this is a powerful and commonly used
method for studying TLLs.18–20 In the presence of a junction
with a general scattering matrix, it is not known whether the
idea of bosonization can be implemented. It is therefore nec-
essary to work directly in the fermionic language.14,40 We
start with noninteracting electrons for which the scattering
matrix approach and the Landauer formalism for studying
electronic transport41,42 are justified. We then assume that the
interactions between the electrons are weak, and treat the
interactions to first order in perturbation theory to derive the
RG equations. Only in Sec. VII do we use bosonization to
discuss the effect of strong interactions for the case of de-
coupled wires, since that is one of the cases where bosoniza-
tion can be used.

II. MODEL FOR SEVERAL WIRES COUPLED TO AN
IMPURITY SPIN

We begin with N semi-infinite quantum wires which meet
at one site which is the junction; on each wire, the spatial
coordinate x will be taken to increase from zero at the junc-
tion to � as we move far away from the junction.

The incoming and outgoing fields are related by an
S-matrix at the junction, which is an N�N unitary matrix
whose explicit values depend on the details of the junction.
Hence the wave function corresponding to an electron with
spin � ��= ↑ , ↓ � and wave number k which is incoming in
wire i �i=1,2 , . . . ,N� is given by

�i�k�x� = e−i�k+kF�x + Siie
i�k+kF�x on wire i

= Sjie
i�k+kF�x on wire j � i . �1�

Here k is the wave number defined with respect to the Fermi
wave number kF, i.e., k=0 implies that the energy of the

electron is equal to the Fermi energy EF. We will take k to go
from −	 to 	, where 	 is a cutoff of the order of kF; we will
eventually only be interested in the long wavelength modes
with �k � 
	. We will use a linearized approximation for the
dispersion relation so that the energy of an electron with
wave number k is given by vFk with respect to the Fermi
energy; here vF is the Fermi velocity, and we are setting �
=1. In Eq. �1�, we will refer to the waves going as e−ikx as the
incoming part �Ii�k, and the waves going as eikx as the out-
going part �Oi�k or �Oj�k.

The second quantized annihilation operator corresponding
to the wave function in Eq. �1� is given by �i�k�x�
=ci�k�i�k�x�, where the wire index i runs from 1 to N, and
the total annihilation operator is given by

���x� = �
i
�

−	

	 dk

2

ci�k�i�k�x� . �2�

Note that it is not possible to quantize the system in terms of
N independent fields on each of the wires because an elec-
tron that is incoming on one wire has outgoing components
on all the other wires as well. The noninteracting part of the
Hamiltonian is then given by

H0 = vF�
i

�
�
�

−	

	 dk

2

kci�k

† ci�k. �3�

If the impurity spin is coupled to the electrons at the junc-
tion, that part of the Hamiltonian is given by

Hspin = �
�,�

JS� · ��
†�x = 0�

�� ��

2
���x = 0� , �4�

where �� denotes the Pauli matrices. For simplicity, we as-
sume an isotropic spin coupling Jx=Jy =Jz. Equation �4� can
be written in terms of second quantized operators as

Hspin = �
i,j

�
�,�
�

−	

	 �
−	

	 dk1

2


dk2

2

JijS� · ci�k1

† �� ��

2
cj�k2

, �5�

where Jij =J�1+�lSli
*��1+�mSmj� is a Hermitian matrix. In

general, however, the impurity spin may also be coupled to
electrons at sites which are slightly away from the junction;
for instance, this may be true if the model is defined on a
lattice at the microscopic scale as we will see in Sec. V. It is
therefore convenient to take Jij to be an arbitrary Hermitian
matrix which is not necessarily related to the S-matrix in any
simple way.

Next, let us consider density-density interactions between
the electrons in each wire of the form �we will drop the wire
index i for the moment�

Hint =
1

2
� � dxdy��x�U�x − y���y� , �6�

where the density � is related to the second quantized elec-
tron field ���x� as �=�↑

†�↑+�↓
†�↓. As mentioned earlier

for the wave functions, these fields can also be written in
terms of outgoing and incoming fields as
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���x� = �O��x�eikFx + �I��x�e−ikFx. �7�

If the range of the interaction U�x� is short �of the order of
the Fermi wavelength 2
 /kF�, such as that of a screened
Coulomb repulsion, Eq. �6� can be written as

Hint =� dx�
�,�

�g1�O�
† �I�

† �O��I� + g2�O�
† �I�

† �I��O�

+
1

2
g4��O�

† �O�
† �O��O� + �I�

† �I�
† �I��I��� , �8�

where g1= Ũ�2kF�, and g2=g4= Ũ�0�. For repulsive and at-
tractive interactions, g2�0 and �0, respectively. We have
ignored umklapp scattering terms here; they only arise if the
model is defined on a lattice and we are at half-filling.

III. THE RENORMALIZATION GROUP EQUATIONS

It is known that the interaction parameters g1, g2, and g4
satisfy some RG equations;43 the solutions of the lowest or-
der RG equations are given by40

g1�L� =
Ũ�2kF�

1 +
Ũ�2kF�


vF
ln L

,

g2�L� = Ũ�0� −
1

2
Ũ�2kF� +

1

2

Ũ�2kF�

1 +
Ũ�2kF�


vF
ln L

,

g4�L� = Ũ�0� , �9�

where L denotes the length scale.
In general, the couplings g1, g2, and g4 can have different

values on different wires; hence we have to add a subscript i
to them. For weak interactions, i.e., when g1i, g2i, and g4i are
all much less than 2
vF, we can derive the RG equations for
the S-matrix at the junction.14,40 Let us define a parameter
�i��g2i−2g1i� /2
vF, which is a function of length scale
due to Eqs. �9�, and a diagonal matrix M whose entries are
given by Mii=�irii /2. Then the RG equations can be written
in the matrix form

dS

d ln L
= M − SM†S . �10�

The FPs of this equation are given by the condition M
=SM†S.

We use the technique of “poor man’s RG”39,44 to derive
the renormalization of the S-matrix and the Kondo couplings
Jij. Briefly, this involves using the second order perturbation
expression for the low energy effective Hamiltonian,

Heff = �
h

�l2	
l2�Hpert�h	
h�Hpert�l1	
l1�
El − Eh

, �11�

where the perturbation Hpert is given by the sum of Hspin and
Hint in Eqs. �5� and �8�, l1 and l2 denote two energy states,

and h denotes high energy states. We now restrict the sum
over h in Eq. �11� to run over states for which the energy
difference Eh−El lies within an energy shell E and E+dE;
we have assumed that the difference between different low
energy states is much smaller than E, so that we can simply
write El1

=El in the denominator of the above equation. We
then see that the change in the effective Hamiltonian dHeff is
proportional to dE /E which is equal to −d ln L, where the
length scale L is inversely related to the energy scale E. We
thus get an RG equation for the derivatives with respect to
ln L of various parameters appearing in the low energy
Hamiltonian.

Using this method, we find that the Kondo couplings Jij
do not contribute to the renormalization of the S-matrix in
Eq. �10� up to second order in Jij. �This is not true beyond
second order; however, we will only work to second order
here assuming that the Jij are small�. On the other hand, the
S-matrix does contribute to the renormalization of the Jij
through the interaction Hamiltonian in Eq. �8�; this is be-
cause the relation between �Oi� and the operators cj� in-
volves the S-matrix. For instance, the terms involving g2i in
Eq. �8� take the form

�
i,j,l

�
�,�
�

−	

	 �
−	

	 �
−	

	 �
−	

	 dk1

2


dk2

2


dk3

2


dk4

2


�
��k1 − k2 + k3 − k4�g2i

�Sij
* cj�k1

† ci�k2

† ci�k3
Silcl�k4

, �12�

where we have used the identity

�
0

�

dxe�−ik1+ik2−ik3+ik4−��x = −
i

k1 − k2 + k3 − k4 − i�

= − iP� 1

k1 − k2 + k3 − k4
�

+ 
��k1 − k2 + k3 − k4� , �13�

with � being an infinitesimal positive number. In Eq. �12�, we
have kept only the �-function term and have dropped the
principal part term since the latter can be either positive or
negative, and its contribution vanishes when one integrates
over the variables ki. Note that the terms involving g2 in Eq.
�12� as well as those involving g1 and g4 in Eq. �8� conserve
momentum while the Kondo coupling terms in Eq. �5� do
not.

We will omit the details of the RG calculations here apart
from making a few comments below. We find that

dJij

d ln L
=

1

2
vF
��

k

JikJkj +
1

2
g2iSij�

k

JikSik
* +

1

2
g2jSji

* �
k

JkjSjk

−
1

2�
k

�g2k − 2g1k��JikSkk
* Skj + Ski

* SkkJkj�� , �14�

where Sij is the S-matrix at the length scale L. Equation �14�
is the key result of this paper. Note that it maintains the
Hermiticity of the matrix Jij. Equation �14� always has a
trivial FP at Jij =0.
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Let us briefly comment on the origin of the various terms
on the right-hand side of Eq. �14�. The first and second lines
arise from Figs. 1�a� and 1�b�, respectively. �The terms of
order J2 in the first line have been derived in Ref. 22�. The
parameters g1i and g4i do not appear in the second line of Eq.
�14� since the terms which are proportional to these param-
eters either do not appear in the numerator of Eq. �11� be-
cause they are not allowed by momentum conservation, or
they appear in Eq. �11� but their contribution vanishes be-
cause the Pauli matrices are traceless. Finally, the third line
of Eq. �14� arises as follows. In Ref. 14, the RG equation for
the S-matrix was derived. This was based on the idea that
due to reflections at the junction, there are Friedel oscilla-
tions in the density of the electrons; the amplitudes of these
oscillations are proportional to Skk and Skk

* in wire k. We now
treat the interactions in the Hartree-Fock approximation;14

this results in reflections from the Friedel oscillations with a
strength proportional to g2k−2g1k in wire k. Now, an electron
going from wire j to i can either �i� first go from wire j to
wire k with an amplitude Skj, scatter from the Friedel oscil-
lations in wire k with amplitude �g2k−2g1k�Skk

* , and finally
scatter off the impurity spin from wire k to wire i with am-
plitude Jik, or �ii� first scatter off the impurity spin from wire
j to wire k with amplitude Jkj, scatter from the Friedel oscil-
lations in wire k with amplitude �g2k−2g1k�Skk, and finally
scatter from wire k to wire i with amplitude Ski

* . These two
processes give rise to the third line of Eq. �14�.

It is interesting to observe that Eq. �14� remains invariant
if we transform Sij→ei�iSij, where the �i can be arbitrary
real numbers. According to Eq. �1�, this corresponds to the
freedom of redefining the phases of the outgoing waves by
different amounts on different wires.

IV. ANALYSIS OF THE RENORMALIZATION GROUP
EQUATIONS

To simplify our analysis, we will assume that

�i� g1i�g1 and g2i�g2, and
�ii� the S-matrix is at a FP of Eq. �10�.

We will now consider three possibilities for the S-matrix
and will study the RG flows and FPs of the Kondo couplings
in each case. The different possibilities can be realized in
terms of quantum wires and a quantum dot containing the
impurity spin as shown in Fig. 2.

A. N disconnected wires

The S-matrix for N��2� disconnected wires is given by
the N�N identity matrix �up to phases�. A picture of the
system is indicated in Fig. 2�a�; the wires are disconnected
from each other, and the end of each wire is coupled to the
impurity spin. A more microscopic description of the system
will be discussed in Sec. V.

Let us consider a highly symmetric form of the Kondo
coupling matrix in which all the diagonal entries are equal to
J1 and all the off-diagonal entries are equal to J2, with both
J1 and J2 being real. �In the language of the three-
dimensional N-channel Kondo problem, J2 denotes the cou-
pling between different channels.� Since the S-matrix is also
symmetric under the exchange of any two of the N indices,
such a symmetric form of the Kondo matrix will remain
intact during the course of the RG flow. In other words, it is
natural for us to choose the J matrix to have the same sym-
metry as the S-matrix, since that symmetry is preserved un-
der the RG flow. Equation �14� gives the two-parameter RG
equations

dJ1

d ln L
=

1

2
vF

J1

2 + �N − 1�J2
2 + 2g1J1� ,

dJ2

d ln L
=

1

2
vF

2J1J2 + �N − 2�J2

2 − �g2 − 2g1�J2� . �15�

For N=2 and g1=0, Eq. �15� agrees with the results in Ref.
30.

Since g1�L=��=0, Eq. �15� has only one FP at finite val-
ues of �J1 ,J2�, namely, the trivial FP at �0,0�. We then carry
out a linear stability analysis around this FP. If ��g2�L
=�� / �2
vF��0 �i.e., repulsive interactions�, the stability
analysis shows that the trivial FP is stable to small perturba-
tions in J2. For small perturbations in J1, this FP is marginal;
a second order analysis shows that it is stable if J1�0 and
unstable if J1�0, i.e., it is the usual ferromagnetic FP which
is found for Fermi liquid leads. However, the approach to the
FP is quite different when the leads are TLLs. At large length
scales, the FP is approached as J1�−1/ ln L and J2�1/L�.
From this, we can deduce the behavior at very low tempera-
tures, namely,

FIG. 1. Pictures of the terms which contribute to the renormal-
ization of the Kondo coupling matrix J to order J2 and g2J, respec-
tively; g2 denotes the coefficient of the electron-electron interaction.
Thin lines and thick lines denote low energy and high energy elec-
trons, respectively.

FIG. 2. Schematic pictures of the system of wires �shown by
solid lines�, an impurity spin �shown inside a circle�, and the cou-
pling between the spin and the wires �dotted lines�. Figures �a� and
�b� show the cases of disconnected and Griffiths S-matrices,
respectively.
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J1 � − 1/ln�TK/T� and J2 � �T/TK��, �16�

where we have introduced the Kondo temperature TK. This is
given as usual by TK�	e−2
vF/J�d�, where 	 is an energy
cutoff of the order of the Fermi energy EF, J�d� is the value
of a typical Kondo coupling at a microscopic length scale d
as explained after Eq. �18�, and 1/ �2
vF� is the density of
states at EF. The form in Eq. �16� is in contrast to the behav-
ior of J2 for Fermi liquid leads, i.e., for g1=g2=0. In that
case, Eq. �15� can be solved exactly in terms of the linear
combinations J1−J2 and J1+ �N−1�J2; we again find a FP at
�J1 ,J2�= �0,0�, with

J1 � − 1/ln�TK/T� and J2 � 1/ln �TK/T�2. �17�

Note that J2 approaches zero faster than J1 for both Fermi
liquid leads and TLL leads; but for the latter case, it goes to
zero much faster, i.e., as a power of T.

Equation �17� is valid provided that neither J1−J2 nor
J1+ �N−1�J2 is exactly equal to zero; if one of them is ex-
actly zero and the other is not, then both J1 and J2 go as
1/ ln�TK /T�. However, having one of the two combinations
exactly equal to zero requires a special tuning in a micro-
scopic model, as we will see in Sec. V. In general, therefore,
the powers of 1 / ln�TK /T� in J1 and J2 are different; this does
not seem to have been noted in the earlier literature.

Figure 3 shows a picture of the RG flows for three wires

for Ũ�0�= Ũ�2kF�=0.2�2
vF�. �This gives a value of � which
is comparable to what is found in several experimental sys-
tems; see Ref. 45 and references therein.� In all the pictures
of RG flows, the values of Jij are shown in units of 2
vF. We
see that the RG flows take a large range of initial conditions
to the FP at �0,0�. For all other initial conditions, we see that
there are two directions along which the Kondo couplings
flow to large values; these are given by J2 /J1=1 and J2 /J1
=−1/ �N−1�, with N=3. However, remember that the RG
equations studied here are only valid at the lowest order in Jij
and g2.

The fact that the Kondo couplings flow to large values
along two particular directions can be understood as follows.
For J1, J2�g1, g2, one can ignore the terms of order g1, g2 in
Eq. �15� and obtain the equations

d
J1 − J2�
d ln L

�
1

2
vF
�J1 − J2�2,

d
J1 + �N − 1�J2�
d ln L

�
1

2
vF

J1 + �N − 1�J2�2. �18�

From these equations one can deduce that the couplings can
flow to large values in one of two ways, depending on the
initial conditions. Either J1+ �N−1�J2 goes to � much faster
than J1−J2 as in the first quadrant of Figs. 3 and 4, or J1
−J2 goes to � much faster than J1+ �N−1�J2 as in the fourth
quadrant of Figs. 3 and 4. A third possibility is that J2 re-
mains exactly equal to zero while J1→�; however, this can
only happen if one begins with J2 exactly equal to zero. �This
also seems to happen if the interactions are strong enough as
we will discuss in Sec. VII.� We will provide a physical
interpretation of the first two possibilities in Sec. V.

Equation �18� has the form dJ /d ln L=J2 / �2
vF�. If J�d�
denotes the value of J at a microscopic length d, and J�d�

2
vF, then it becomes of order 1 at a temperature of the
order of TK.

Finally, note that the special case with J2=0 and g1=g2
=0 is equivalent to the Kondo problem in three dimensions
with N channels and no coupling between channels.27 In the
three-dimensional case, the RG equation has been derived to
fifth order in the Kondo coupling.46 This reveals a stable FP
at a finite value of the coupling J1=4
vF /N. Thus the cou-
plings Jij need not really flow to infinity as Fig. 3 would
suggest; one may find strong coupling FPs lying at values of
order 2
vF if one takes into account terms of higher order in
the RG equations. In Sec. VII, we do find a strong coupling
FP for sufficiently strong interactions.

FIG. 3. RG flows of the Kondo couplings for three disconnected

wires, with Ũ�0�= Ũ�2kF�=0.2�2
vF�.
FIG. 4. RG flows of the Kondo couplings for the Griffiths

S-matrix for three wires, with Ũ�0�= Ũ�2kF�=0.2�2
vF�.
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Although we have discussed the case of completely dis-
connected wires here, the results do not change significantly
if we allow a small spin-independent tunneling amplitude of
the form

Htun = ��
i�j

�
�

�i,�
† �xi = 0�� j,��xj = 0� . �19�

This is equivalent to changing the S-matrix slightly away
from the identity matrix. Using the RG equation in Eq. �10�,
we find that the parameter � satisfies the RG equation

d�

d ln L
= −

1

2
vF
�g2 − 2g1�� . �20�

This has the same form as the interaction dependent terms in
the RG equation for J2 in Eq. �15�. Hence � also scales at low
temperatures as T� just like J2 in Eq. �16�. Thus the contri-
butions of both � and J2 to the conductance go as �T /TK�2�.

B. Griffiths S-matrix for N wires

This is the case in which all the N wires are connected to
each other and there is maximal transmission, subject to the
constraint that there is complete symmetry between the N
wires. We will again assume that N�2. As shown in Fig.
2�b�, the wires are connected to each other at a junction, and
the junction is also coupled to the impurity spin. A more
microscopic description of the junction will be given in Sec.
V.

The maximally transmitting completely symmetric
S-matrix is also called the Griffiths S-matrix; it has all the
diagonal entries equal to −1+2/N and all the off-diagonal
entries equal to 2/N. Since this S-matrix is also fully sym-
metric in the N wires, we again consider the highly symmet-
ric form of the matrix Jij as in the previous section, with real
parameters J1 and J2 as the diagonal and off-diagonal entries,
respectively. Equation �14� then gives

dJ1

d ln L
=

1

2
vF
�J1

2 + �N − 1�J2
2 + 2g1�1 −

2

N
�2

J1

− 4g1�1 −
2

N
��1 −

1

N
�J2� ,

dJ2

d ln L
=

1

2
vF
�2J1J2 + �N − 2�J2

2 −
4g1

N
�1 −

2

N
�J1

+ �g2 − 2g1�1 −
2

N
�2�J2� . �21�

For N=2, i.e., a full line with an impurity spin coupled to
one point on the line, Eq. �21� agrees with the equations
derived in Ref. 29. The only FP of Eq. �21� is again the
trivial FP at the origin. A linear stability analysis shows that
this FP is unstable in one direction �J2� and marginal in the
other �J1� for g2�L=���0.

Figure 4 depicts the RG flows for three wires for Ũ�0�
= Ũ�2kF�=0.2�2
vF�. We see that there is no stable FP at
finite values of the couplings. The couplings flow to large
values along one of the two directions J2 /J1=1 and J2 /J1

=−1/ �N−1�. The reason for this is the same as that explained
around Eq. �18� since the RG equations in Eqs. �15� and �21�
have the same form for large values of J1 and J2.

C. Chiral S-matrix for three wires

Another fixed point of Eq. �10� is given by a chiral
S-matrix of the form

S = �0 0 �

� 0 0

0 � 0
� , �22�

or its transpose, where � is a complex number satisfying
���=1. This could be a model for a system of N wires con-
nected to a ring through which magnetic flux is passed, giv-
ing a handedness to the system. It is also motivated by the
edge states of a quantum Hall system which behave as chiral
wires. We will see a physical realization of this form of S in
Sec. V.

Let us consider a Kondo coupling matrix of the form

J = �J1 J2 J2
*

J2
* J1 J2

J2 J2
* J1

� , �23�

where J1 is real but J2 can be complex. Equation �14� gives

dJ1

d ln L
=

1

2
vF

J1

2 + 2�J2�2� ,

dJ2

d ln L
=

1

2
vF
�2J1J2 + �J2

*�2 +
1

2
g2J2� . �24�

Note that the above equations remain invariant under the
transformation J2→J2ei2
/3 or J2e−i2
/3. We will see in Sec.
V C that a lattice realization of the chiral S-matrix has the
same symmetry.

One can again show that the only FP of Eq. �24� is the
trivial FP at the origin. A linear stability analysis shows that
the trivial FP is unstable in one direction �J2� and marginal in
the other �J1� for g2�L=���0. Figure 5 shows a picture of

the RG flows for three wires for Ũ�0�= Ũ�2kF�=0.2�2
vF�.
The upper and lower figures show the way in which the
magnitude and phase of J2 evolve. We see that there is no
stable FP at finite values of the couplings. The phase of J2
flows towards one of the three values, 0 or ±2
 /3; this is
consistent with the symmetry of J2 pointed out after Eq. �24�.
Further, J1 and the magnitude of J2 flow in such a way that
J1+2�J2� grows much faster than J1− �J2�. We can understand
these observations as follows.

For J1 ,J2�g2, one can ignore the term of order g2 in Eq.
�24�. If we write J2= �J2�ei�, we find that

d�

d ln L
� −

1

2
vF
�J2�sin�3�� ,
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d�J2�
d ln L

�
1

2
vF

2J1�J2� + �J2�2 cos�3��� . �25�

The first equation in Eq. �25� shows that �=0, ±
 /3,
±2
 /3, and 
 are fixed points; however, since �J2� flows to �
under RG, only the values �=0 and ±2
 /3 are stable. Sub-
stituting this fact that cos�3��→1 in the second equation in
Eq. �25�, and combining it with the first equation in Eq. �24�,
we obtain the decoupled equations

d
J1 − �J2��
d ln L

�
1

2
vF
�J1 − �J2��2,

d
J1 + 2�J2��
d ln L

�
1

2
vF
�J1 + 2�J2��2. �26�

From this we deduce that J1+2�J2� must flow to � much
faster than J1− �J2� since J1+2�J2��J1− �J2� to begin with.
Note that unlike the disconnected and Griffiths cases, where

J1 and J2 flow to large values in two possible ways, i.e., with
�J2� /J1→1 and 1/ �N−1� respectively, in the chiral case, J1

and J2 flow to large values in only one way, along the direc-
tion �J2� /J1=1.

V. INTERPRETATION IN TERMS OF LATTICE MODELS

We will now see how the different S-matrices and RG
flows discussed in Sec. IV can be interpreted in terms of
lattice models.29 This will provide us with physical interpre-
tations of the various kinds of RG flows and FPs. We will
concentrate on what the lattice models imply about the struc-
ture of the region near the junction, rather than the form of
the interactions between the electrons in the bulk of the wires
which has already been discussed in Sec. II. The interactions
can be introduced in the lattice model by, for instance, writ-
ing a Hubbard term at each site. We will again discuss three
different cases. The models shown in Fig. 6 and discussed
below in detail can be thought of as providing a microscopic
picture of the systems shown in Fig. 2.

A. N disconnected wires

This system can be realized by a lattice of the form shown
in Fig. 6�a�. N wires meet at a junction which is labeled by
the site number 0; all the other sites are labeled as n
=1,2 , . . ., with n increasing as one goes away from the junc-
tion. The lattice spacing is set to unity. We take a tight-
binding Hamiltonian with a hopping amplitude equal to real
−t on all the bonds, except for the bonds connecting the sites
n=1 on each wire to the junction site; those hopping ampli-
tudes are set to zero. This is equivalent to removing the
junction site from the system. We then obtain a system of
disconnected wires with an S-matrix which is equal to −1
times the identity matrix. To show this, we consider a wave
which is incoming on wire i with a wave number k, where
0�k�2
. The corresponding eigenstate has an energy Ek
=−2t cos k, and its wave function is

�ik�n� = e−ikn − eikn for n = 1,2, . . . on wire i

= 0 at the junction and on all wires j � i . �27�

We also introduce an on-site potential � at all sites. In the
absence of interactions, the ground state has all the states
with energies from −2t up to � filled; the Fermi wave num-

FIG. 5. RG flows for the chiral S-matrix for three wires, with

Ũ�0�= Ũ�2kF�=0.2�2
vF�. The upper and lower figures show the
magnitude and phase, respectively, of J2.

FIG. 6. Lattice models for some of the S-matrices for three
wires. �a� can be a model for the disconnected and Griffiths
S-matrices, while �b� can be a model for the chiral S-matrix.
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ber kF is given by �=−2t cos kF. We then redefine the wave
numbers k→k−kF, which then run from −	 to 	, where 	
is of order kF.

Let us now consider coupling the impurity spin to the
sites labeled as n=1 on the different wires by the following
Hamiltonian

Hspin = F1S� · �
i

�
�,�

��
†�i,1�

�� ��

2
���i,1�

+ F2S� · �
i�j

�
�,�

��
†�i,1�

�� ��

2
���j,1� , �28�

where ���i ,1� denotes the second quantized electron field at
site 1 on wire i with spin �. 
Equation �36� below will pro-
vide a justification for this Hamiltonian.� In Eq. �28�, F1 and
F2 denote amplitudes for spin-dependent scattering from the
impurity within the same wire and between two different
wires, respectively. Namely, a spin-up electron coming in
through one wire can get scattered by the impurity spin as a
spin-down electron either along the same wire �F1� or along
a different wire �F2�. We then find that the Kondo coupling
matrix Jij in Eq. �5� has all diagonal entries given by J1 and
all off-diagonal entries given by J2, where

J1 = 4F1 sin2 kF,

and

J2 = 4F2 sin2 kF �29�

for modes with k→0. This is precisely the kind of Kondo
matrix whose RG flows were studied in Sec. IV A. The flows
of the parameters J1 and J2 can be translated into flows of the
parameters F1 and F2. In particular, the approach to the FP at
�J1 ,J2�= �0,0� given by Eq. �16� at low temperatures implies
that spin-flip scattering within the same wire or between two
different wires will have quite different temperature depen-
dences.

The flows to strong coupling shown in Fig. 3 have the
following meanings. In the first quadrant of Fig. 3, J1+ �N
−1�J2 goes to � faster than �J1−J2�; Eq. �29� then implies
that F1 and F2 go to �. In the fourth quadrant of Fig. 3, J1
−J2 goes to � faster than �J1+ �N−1�J2�; hence F1 goes to �
and F2 goes to −� as −F1 / �N−1�.

These flows to strong coupling can be interpreted as fol-
lows. In the first case, F1 and F2 flow to �. Equation �28�
then implies that the impurity spin �of magnitude S� is
strongly and antiferromagnetically coupled to only one field,
namely, the “center of mass” field given by �i���i ,1� /�N,
suppressing the Pauli matrices for the moment. Hence that
field and the impurity spin will combine to form an effective
spin of S−1/2. In analogy with the three-dimensional Kondo
problem, we can say that the impurity spin is underscreened
or exactly screened if S�1/2 or S=1/2, respectively. In the
second case, F1 and F2=−F1 / �N−1� go to �. Equation �28�
now implies that the impurity spin is strongly and antiferro-
magnetically coupled to the N−1 “difference” fields, given
by the orthogonal combinations 
���1,1�−���2,1�� /�2,

���1,1�+���2,1�−2���3,1�� /�6, . . .. Hence those fields
and the impurity spin will combine to give an effective spin

of S− �N−1� /2=S+1/2−N /2. Thus the impurity spin is un-
derscreened, exactly screened, or overscreened if 2S+1 is
greater than, equal to, or less than N, respectively.

B. Griffiths S-matrix for N wires

This system can again be realized by the lattice shown in
Fig. 6�a� and a tight-binding Hamiltonian. However, we now
take the hopping amplitude to be −t on all bonds, except for
the bonds which connect the sites labeled as n=1 on each
wire to the junction site; on those bonds, we take the hopping
amplitude to be t1=−t�2/N. The on-site potential is taken to
be � at all sites, including the junction. We then find that the
S-matrix is of the Griffiths form for all values of the wave
number k. Namely, for a wave which is incoming on wire i
with a wave number k, the wave function is given by

�ik�n� = e−ikn − �1 −
2

N
�eikn on wire i,

=
2

N
eikn on all wires j � i,

=
2

N
at the junction site. �30�

We now consider coupling the impurity spin to the junc-
tion site labeled by zero, and the sites labeled as n=1 on the
different wires by the following Hamiltonian:

Hspin = F3S� · �
�,�

��
†�0�

�� ��

2
���0�

+ F4S� · �
i

�
�,�

��
†�i,1�

�� ��

2
���i,1� , �31�

where ���0� denotes the second quantized electron field at
the junction site with spin �. �Section VI will provide a
justification for this kind of a coupling.� Then the Kondo
coupling matrix Jij in Eq. �5� takes the following form: all
the diagonal entries are given by J1 and all the off-diagonal
entries are given by J2, where

J1 =
4F3

N2 + 2F4�1 − �1 −
2

N
�cos 2kF� ,

and

J2 =
4F3

N2 +
4F4

N
cos 2kF �32�

for modes with wave numbers lying close to zero. The RG
flows of this were studied in Sec. IV B.

In terms of F3 and F4, Eq. �18� takes the form

J1 − J2 = 2F4�1 − cos 2kF�

and

J1 + �N − 1�J2 =
4F3

N
+ 2F4�1 + cos 2kF� . �33�

Since 0�kF�
, 1±cos 2kF lie between 0 and 2. In the
first quadrant of Fig. 4, J1+ �N−1�J2 goes to � faster than
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�J1−J2�; Eq. �33� then implies that F3 goes to � and �F4�

F3. In the fourth quadrant of Fig. 4, J1−J2 goes to � faster
than �J1+ �N−1�J2�; this implies that F4 goes to � and F3

goes to −�.
These flows have the following interpretations. In the first

case, F3 flows to � which means that the impurity spin of
magnitude S is strongly and antiferromagnetically coupled to
an electron spin at the junction site n=0; hence those two
spins will combine to form an effective spin of S−1/2. �This
case will be discussed in detail in Sec. VI.� In the second
case, F3 goes to −� while F4 goes to �. Hence the impurity
spin is coupled strongly and ferromagnetically to an electron
spin at the site n=0, and antiferromagnetically to electron
spins at the sites labeled as n=1 on each of the N wires; see
Fig. 6�a� for the site labels. Hence the impurity spin will
combine with those N+1 spins to form an effective spin of
S+1/2−N /2. Interestingly, we see that the magnitudes of
the effective spins formed in the strong coupling limits in the
first and fourth quadrants are the same in the cases of N
disconnected wires and the Griffiths S-matrix.

C. Chiral S-matrix for three wires

This system can be realized by a lattice of the form shown
in Fig. 6�b�. The three wires meet at a triangle; the sites on
each wire are labeled as n=1,2 , . . .. The hopping amplitude
is taken to be −t on all the bonds, except for the three bonds
on the triangle. On those bonds, we take the hopping ampli-
tude to be complex, and of the form −tei� in the clockwise
direction and −te−i� in the anticlockwise direction. The
physical realization of such a model can either be the junc-
tion of three edge states of a quantum Hall fluid47 interacting
with an impurity spin, or three quantum wires coupled to a
small ring at the junction which encloses a magnetic flux. In
the latter case, we can think of the total phase 3� of the
product of hopping amplitudes around the triangle as being
the Aharonov-Bohm phase arising from a magnetic flux en-
closed by the ring. Such a flux breaks time reversal symme-
try which makes the S-matrix nonsymmetric. Note that since
only the value of 3� modulo 2
 has any physical signifi-
cance, we are free to shift the value of � by ±2
 /3. This
changes the phase of the coupling J2 defined below. We then
find that the S-matrix is of the chiral form given by Eq. �22�,
provided that the wave number k satisfies

ei�3�+k� = − 1. �34�

The phase � in Eq. �22� is then given by ei��+k�. 
Unlike the
disconnected and Griffiths cases, we have not found a lattice
model which gives an S-matrix as in Eq. �22� for all values
of the wave number k.� Given a value of �, we therefore
choose a chemical potential �=−2t cos kF such that kF satis-
fies Eq. �34�. Since the properties of a fermionic system at
low temperatures are governed by the modes near kF, the
above prescription produces a system with a chiral S-matrix.

We now consider coupling the impurity spin to the three
sites of the triangle through the Hamiltonian

Hspin = F5S� · �
i

�
�,�

��
†�i,1�

�� ��

2
���i,1� . �35�

Then the Kondo coupling matrix Jij takes the form given in
Eq. �23�, where J1=2F5 and J2=F5e−i��+3kF� for modes with
wave numbers lying close to zero. This is a special case of
the Kondo matrix given in Eq. �23�. The RG flows of this
were studied in Sec. IV C.

VI. EXPANSION AROUND A STRONG COUPLING FIXED
POINT

In Sec. V, we considered several examples of S-matrices
and the RG flows of the Kondo coupling. In most cases, we
found that the Kondo couplings flow to large values. We will
now see that the vicinity of the strong coupling FPs can be
studied through an expansion in the inverse of the Kondo
coupling.39

We will consider one example of such an expansion here.
Following the discussion given after Eq. �33�, let us assume
that the RG flows for the case of the Griffiths S-matrix have
taken us to a strong coupling FP along the direction J2 /J1
=1. Hence the coupling of the impurity spin S to an electron
spin at the junction site n=0 has a large and positive �anti-
ferromagnetic� value F3, while its coupling to the sites la-
beled as n=1 on each of the wires has a finite value F4 which
is much less than F3. The ground state of the F3 term,
namely, the first term in Eq. �31�, consists of a single electron
at site n=0 which forms a total spin of S−1/2 with the
impurity spin. The energy of this spin state is −F3�S+1� /2;
this lies far below the high energy states in which there is a
single electron at site n=0 which forms a total spin of S
+1/2 with the impurity spin �these states have energy
F3S /2�, or the states in which the site n=0 is empty or
doubly occupied �these have zero energy�.

We now do a perturbative expansion in 1/F3. We take the
unperturbed Hamiltonian to be one in which the hopping
amplitudes on all the bonds are −t, except for the bonds
connecting the sites labeled as n=1 on the different wires to
the junction site; we take those hopping amplitudes to be
zero. Hence the unperturbed Hamiltonian corresponds to the
case of N disconnected wires. We also include the spin cou-
pling proportional to F3 in the unperturbed Hamiltonian. We
take the perturbation Hpert as consisting of �i� the hopping
amplitude t1 on the bonds connecting the sites labeled as n
=1 to the junction site, and �ii� the F4 term in Eq. �31�. Using
this perturbation, we can find an effective Hamiltonian.39

Once again, we use the expression in Eq. �11�, where the
high energy states are the ones listed in the previous para-
graph. We will work up to second order in t1 and F4. If S
�1/2, we find that the effective Hamiltonian has no terms of
order t1 or t1F4, and it is given by

Heff = F1,effS�eff · �
i

s�i + F2,effS�eff · �
i�j

�
�,�

��
†�i,1�

�� ��

2
���j,1�

+ C�
i�j

�S�eff · s�i��S�eff · s� j� + D�
i�j

s�i · s� j �36�

plus some constants, where
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s�i = �
�,�

��
†�i,1�

�� ��

2
���i,1� ,

F1,eff = −
8t1

2

�S + 1��2S + 1�F3
+

2�S + 1�F4

2S + 1
−

2�S + 1�F4
2

�2S + 1�3F3
,

F2,eff = −
8t1

2

�S + 1��2S + 1�F3
,

C =
2F4

2

�2S + 1�3F3
,

and

D = −
F4

2

�2S + 1�F3
. �37�

In Eq. �36�, S�eff denotes an object with spin S−1/2. We thus
find a weak interaction between the spin S−1/2 and all the
sites which are nearest neighbors of the site n=0 as shown in
Fig. 6�a�.

If the impurity is a spin-1 /2 object, i.e., S=1/2, then the
electron at the site n=0 forms a singlet with the impurity. In
that case, only the last term in Eq. �36� survives. However,
there are other terms in the effective Hamiltonian which are
of higher order in t1 /F3 than in Eq. �36�; these have been
calculated in Ref. 48 for the case S=1/2. One of these terms
describes spin-independent tunneling from one wire to an-
other, of the form �i�j����

†�i ,1����j ,1�. This is a contri-
bution to the S-matrix at the junction, and it can contribute to
the conductance from one wire to another as we will discuss
in Sec. VIII.

Returning to the case S�1/2, we note that the last two
terms in Eq. �36� are irrelevant as boundary operators if
g2�L=�� / �2
vF� is small. This is because s�i has the scaling
dimension 1+g2 / �2
vF�, as one can see from Eq. �15�, and
therefore the product s�i � s� j has the scaling dimension 2
1
+g2 / �2
vF�� which is larger than 1. The first two terms in
Eq. �36� have the same form as in Eqs. �28� and �29�, where
the effective Kondo couplings J1,eff=4F1,eff sin2 kF and J2,eff
=4F2,eff sin2 kF are equal, negative, and small. We can now
study the RG flow of this as in Sec. IV A. With these initial
conditions, Eq. �15� and Fig. 3 show that the Kondo cou-
plings flow to the FP at �J1,eff ,J2,eff�= �0,0�.

In this example, therefore, we obtain a picture of the RG
flows at both short and large length scales. We start with the
Griffiths S-matrix with certain values of the Kondo coupling
matrix, and we eventually end at the stable FP of the discon-
nected S-matrix for repulsive interactions, g2�L=���0.

We will not discuss here what happens for the other pos-
sible RG flow for the Griffiths S-matrix, in which J1 and J2
become large along the direction J2 /J1=−1/ �N−1�. As we
noted in Sec. V B, N+1 spins get coupled strongly to the
impurity spin in that case; an expansion in the inverse cou-
pling is much more involved in that case. For the same rea-

son, we will not discuss expansions in the inverse coupling
for the flows to strong coupling for the disconnected and
chiral S-matrices.

VII. DECOUPLED WIRES WITH STRONG
INTERACTIONS

In this section, we will discuss what happens if there are
N decoupled wires and the interactions are strong. For the
decoupled S-matrix, one can “unfold” the electron field in
each semi-infinite wire to obtain a chiral electron field in an
infinite wire, and then bosonize that chiral field.18–20 In the
language of bosonization, the interaction parameters are
given by K� for the charge sector and K� for the spin sector.
Spin rotation invariance implies that K�=1, while K� is re-
lated to our parameters gi as follows:20

K� =�1 + g4/
vF + �g1 − 2g2�/2
vF

1 + g4/
vF − �g1 − 2g2�/2
vF
→ 1 +

g1 − 2g2

2
vF
.

�38�

In the second line of the above equation, we have taken the
limit of small gi since we have worked to lowest order in the
gi in the earlier sections. Equation �9� shows that 2g2−g1 is
invariant under the RG flow. If the interactions are repulsive,
we have 2g2−g1�0, i.e., K��1.

The case of two decoupled wires �N=2� has been studied
by Fabrizio and Gogolin in Ref. 30. They showed that if the
interactions are weak enough, the Kondo couplings J1 and J2
are both relevant; their results then agree with those dis-
cussed in Sec. IV A. But if the interactions are sufficiently
strong, i.e., K��1/2, then J2 is irrelevant and flows to zero.

We will now show that their results can be generalized to
the case of N wires; we again find that there is a value of K�

below which J2 is irrelevant. Following Ref. 30, we write the
spin-up and down Fermi fields �i,� in wire i in terms of the
charge and spin bosonic fields �i,� and �i,�. Close to the
junction denoted as xj =0, we have

�i,↑ �
�i,↑

�2
d
ei��i,�/�2K�+�i,�/�2�

and

�i,↓ �
�i,↓

�2
d
ei��i,�/�2K�−�i,�/�2�, �39�

where we have used the fact that K�=1, and we have not
explicitly written the arguments of the fields �xi=0� for con-
venience. The �i,a denote Klein factors, and d is a short
distance cutoff; these will not play any role below.

In bosonic language, the Hamiltonian H=H0+Hint in Eqs.
�3� and �8� is given by

H =
1

4

�

i
�

0

�

dxi�v�� ��i,�

�xi
�2

+ v�� ��i,�

�xi
�2� , �40�

where v� ,v� denote the charge and spin velocities, respec-
tively. These fields satisfy the commutation relations
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� ��i,a�xi�
�xi

,� j,b�xj�� = i2
�ab�ij��xi − xj� , �41�

where a ,b=� ,�.
The impurity spin part of the Hamiltonian is given by

Hspin = J1S� · �
i

�
�,�

�i,�
† �� ��

2
�i,� + J2S� · �

i�j
�
�,�

�i,�
† �� ��

2
� j,�.

�42�

The spin densities on different wires are given by

1

2

�i,↑

† �i,↑ − �i,↓
† �i,↓� =

1

2�2


��i,�

�xi
. �43�

The other terms take the form

�i,↑
† �i,↓ � e−i�2�i,�,

�i,↑
† � j,↑ � e�i/�2�
−�i,�/�K�−�i,�+�j,�/�K�+�j,��,

�i,↑
† � j,↓ � e�i/�2�
−�i,�/�K�−�i,�+�j,�/�K�−�j,��, �44�

and so on. In Eqs. �42� and �44�, we have not explicitly
written the arguments of the fields, xi=xj =0; we will con-
tinue to do this wherever convenient. The bosonic forms of
the fermion bilinears in Eqs. �43� and �44� are so different
because we are using Abelian bosonization. For the same
reason, we will find it useful to distinguish between the dif-
ferent components of J1 and J2, i.e., J1z, J1�, J2z, and J2�.
Let us define N “orthonormal” linear combinations of the
spin boson fields, namely, the “center of mass” combination

��
0 =

1
�N

�
i

�i,�, �45�

and the “difference” fields

��
n =

1
�n�n + 1�

��
m=1

n

�m,� − n�n+1,�� , �46�

where n=1,2 , . . . ,N−1. We can now write Eq. �42� in the
bosonic language. We obtain

Hspin =
J1z

2�2

Sz�

i

��i,�

�xi

+
J1�

4
d�S+ei�2/N��
0�

i

ei�nai
n��

n
+ H.c.�

−
J2z


d
Sz�

i�j

sin��
n

bij
n ��

n�sin��i,� − � j,�

�2K�
�

+
J2�

2
d�S+ei�2/N��
0�

i�j

ei�ncij
n ��

n
cos��i,� − � j,�

�2K�
�

+ H.c.� , �47�

where the sums over n in the second, third, and last lines run
over the “difference” fields ��

n . The constants ai
n, bij

n , and cij
n

in Eq. �47� satisfy the relations

�
n

�ai
n�2 = 2 −

2

N
,

�
n

�bij
n �2 = 1,

and

�
n

�cij
n �2 = 1 −

2

N
�48�

for all values of i, j.
We can remove the phase factors exp�i�2/N��

0� in Eq.
�47� by performing a unitary transformation of the total
Hamiltonian Htot given by the sum of Eqs. �40� and �42�,
namely, Htot→UHtotU

†,49 where

U = e−iSz�2/N��
0
. �49�

After this transformation, Eq. �47� takes the form

Hspin =
�

2�2

Sz�

i

��i,�

�xi
+

J1�

4
d�S+�
i

ei�nai
n��

n
+ H.c.�

−
J2z


d
Sz�

i�j

sin��
n

bij
n ��

n� � sin��i,� − � j,�

�2K�
�

+
J2�

2
d�S+�
i�j

ei�ncij
n ��

n
cos��i,� − � j,�

�2K�
� + H.c.� ,

�50�

where �=J1z−4
v� /N. We can now study the problem in
the vicinity of the point �=J1�=J2z=J2�=0. Note that this is
a strong coupling FP, since �=0 implies that J1z=4
v� /N.
Since the scaling dimension of ei��i,a is given by �2 /2, for
a=� ,�, we see from Eq. �48� that the operators multiplying
J1�, J2z, and J2� in Eq. �50� have the scaling dimensions 1
−1/N, 1 /2+1/ �2K��, and 1/2−1/N+1/ �2K��, respectively.
This implies that the J1� operator is always relevant, while
the J2z operator is irrelevant if K��1 �repulsive interac-
tions�. Most interestingly, the J2� operator is relevant or ir-
relevant depending on whether K�� or �N / �N+2�. For N
=2, this gives the critical value of K� to be 1/2,30 while for
N→�, the critical value of K� approaches 1, i.e., the limit of
weak repulsive interactions.

We saw in Sec. IV A that a flow to strong coupling is
indeed possible along the line J2=0, although that line is
unstable to small perturbations in J2. We now see that the
line is stabilized, to first order in the couplings, if the inter-
actions are sufficiently strong, i.e., if K��N / �N+2�. If J2

flows to zero and J1 flows to large values, Eq. �28� shows
that the impurity spin is coupled strongly and antiferromag-
netically to the electron fields ��i ,1� on all the N wires;
hence they will combine to form an effective spin of S
−N /2. �If S�N /2, the impurity spin is overscreened.� This
describes an N-channel AFM FP with no coupling between
channels.23,25
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VIII. CONDUCTANCE CALCULATIONS

Our calculations for the Kondo couplings can be explic-
itly applied to various geometries of quantum wires and a
quantum dot containing the impurity spin shown in Fig. 2,
such as �a� a dot coupled independently to each wire �dis-
connected S-matrix for the wires�, so that the conductance
can only occur through the dot, or �b� a side-coupled dot
�Griffiths S-matrix for the wires�, where the conductance can
occur directly between the wires. In general, of course, one
can have any S-matrix at the junction, so that the conduc-
tance can occur both through the dot and directly between
the wires.

Let us now consider the conductance near the different
FPs24,35 for the case of weak interactions. In the Griffiths
case where the conductance can occur directly between the
wires, let us assume that J1, J2 are both much smaller than
2
vF, and that g2�g1. At high temperatures, before the gi’s
have changed very much under RG, we see from Eq. �21�
that J1 remains small, while J2 grows due to the term g2J2.
Namely, J2��T /TK�−�, where �=g2 / �2
vF�. The effect of J2

is to scatter the electrons from the impurity spin, and thereby
reduce the conductance between any two wires from the
maximal value of G0= �4/N2�e2 /h. Since the scattering prob-
ability is proportional to J2

2, the conductance at high tempera-
tures �T�TK� is given by

G − G0 � − G0S�S + 1��T/TK�−2�. �51�

The factor of S�S+1� appears for the following reason. Con-
sider an electron coming in through wire i; it can have spin
up or down, and the impurity spin can have any value of Sz

from S to −S. We assign all these 2�2S+1� states the same
probability. As a result of the Kondo coupling J2, the electron
can scatter to a different wire j; as a result, its spin may or
may not flip, and the value of Sz for the impurity spin can
also change by 0 or ±1. If we calculate the probabilities of all
the different possible processes and add them, we get a factor
of S�S+1� in Eq. �51�. Using Eq. �38�, Eq. �51� takes the
form

G − G0 � − G0S�S + 1��T/TK�K�−1, �52�

where we have assumed g1 to be negligible. On the other
hand, if the leads were Fermi liquids �g1=g2=0�, J2 would
be given by Eq. �17�, and we would get

G − G0 � −
G0S�S + 1�
ln�T/TK�4 . �53�

At low temperatures, the Kondo couplings flow to large
values; as discussed at the end of Sec. VI, their behaviors are
then governed by the FP at �J1,eff ,J2,eff�= �0,0� of the discon-
nected wire case with an effective spin Seff=S−1/2. In this
case, only J2

2 contributes to the conductance between two
different wires. From Eq. �16�, we see that the conductance
is given by

G � G0Seff�Seff + 1��T/TK�2� � G0Seff�Seff + 1��T/TK�1−K�

�54�

for T
TK. For Fermi liquid leads, Eq. �17� implies that the
conductance is given by

G �
G0Seff�Seff + 1�

ln �T/TK�4 . �55�

Thus a measurement of the temperature dependence of the
conductance should be able to distinguish between the Fermi
liquid and TLL cases at both high and low temperatures. For
the case N=2, the expressions in Eqs. �52� and �54� agree
with those given in Refs. 29 and 35, but Eqs. �53� and �55�
differ from the expressions given in earlier papers �like Ref.
35� for the powers of 1 / ln�T /TK�. As we had discussed ear-
lier after Eq. �17�, we would get the same powers of
1 / ln�T /TK� as in Ref. 35 if J2 was exactly equal to J1 or
−J1 / �N−1�.

The above expressions for the conductance shows that for
both Fermi liquid leads and TLL leads �with repulsive inter-
actions�, and for both T�TK and T
TK, the conductance
increases with the temperature. It is then natural to assume
that this would be true for intermediate temperatures as well,
so that the conductance increases monotonically with tem-
perature from 0 to G0; this would be consistent with the
results in Refs. 29 and 35. It may be useful to discuss here
why there is no Kondo resonance peak in the conductance at
low temperatures in our model, in contrast to what is found
in other models �for instance Refs. 24,50,51� and observed
experimentally.52,53 In our model, once the impurity spin gets
very strongly coupled to the junction site in Fig. 6�b� �due to
the flow to large J1 and J2 in the Griffiths case�, that site
decouples from the wires; this leaves no other pathway for
the electrons to transmit from one wire to another. In contrast
to this, if the junction region was more complicated, for in-
stance, if there were additional bonds which connect differ-
ent wires without going through the impurity spin, or there
was a dot with several energy levels through which the elec-
tron can transmit, then the electron may still be able to trans-
mit even after the impurity quenches the electron on a single
site or level. Hence it may be possible for the conductance to
increase to the unitarity limit at the lowest temperatures; this
is known to occur for models with Fermi liquid leads. For
TLL leads, however, our analysis remains valid even if there
are additional bonds between the wires, because any such
direct tunneling amplitudes are irrelevant and renormalize to
zero as shown in Eq. �20�.

Finally, let us briefly consider the case of strong interac-
tions between the electrons. For K��N / �N+2�, we saw in
Sec. VII that a multichannel FP gets stabilized in the case of
N disconnected wires. To obtain the conductance at this
point, we need to study the operators perturbing this point,
similar to the analysis in Refs. 25,34,35; this has not yet been
done.

IX. CONCLUSIONS

To summarize our results, we have studied systems of
TLL wires which meet at a junction. The junction is de-
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scribed by a spin-independent S-matrix, and there is an im-
purity spin which is coupled isotropically to the electrons in
the neighborhood of the junction. The S-matrix and the
Kondo coupling matrix Jij satisfy certain RG equations. We
have studied the RG flows of the Kondo couplings for a
variety of FPs of the S-matrices. Although the Kondo cou-
plings generally grow large, one can sometimes study the
system through an expansion in the inverse of the coupling.
This leads to a new system in which the effective Kondo
couplings are weak; the RG flows of these effective cou-
plings can then be studied. We emphasize here that although
the RG equations studied here are similar to those studied in
the usual multichannel three-dimensional Kondo problem,
the interpretation of the different channels as different wires,
leads to a change in geometry, which is important for con-
ductance calculations. The possibility of electron-electron in-
teractions is also something that is studied here and leads to
different temperature dependences.

At the fully connected or Griffiths S-matrix, we find that
for a range of FM and AFM initial conditions, the Kondo
couplings flow to a strong coupling FP along the direction
J2 /J1=1, where their fate is decided by a 1/J analysis. This
analysis then shows that the couplings flow to the FM FP of
the disconnected S-matrix lying at �J1,eff ,J2,eff�= �0,0�.

For the case of disconnected wires and repulsive interac-
tions, there is a range of Kondo couplings which flow to-
wards a FM FP at �J1 ,J2�= �0,0�. This is the FM fixed point
studied in the usual three-dimensional Kondo problem, ex-
cept that now at low temperatures, we have spin-flip scatter-
ing processes with temperature dependences which are dic-

tated by both the Kondo effect as well as interactions
between electrons. This may be experimentally observable
by placing a quantum dot with a spin at a junction of several
wires with interacting electrons.

For other initial conditions for the disconnected case, the
Kondo couplings flow towards the strong coupling FPs at
J1 , �J2�→�. But there is a special line where J1→� and J2
=0; this is the multichannel AFM FP. The RG equations
show that both J1 and J2 are relevant around the weak cou-
pling FP if the interactions are weak. However, if the inter-
actions are sufficiently strong, i.e., K��N / �N+2�, we find
that J2→0, and the multichannel FP gets stabilized.

Experiments are underway to look for multichannel FPs,
and proposals have been made for minimizing the couplings
between channels using gate voltages;23 the two-channel FP
has been observed recently.54 We suggest here that enhancing
interactions between the electrons in the wires offers another
way of reducing the interchannel coupling and thereby ob-
serving the multichannel FP.

Finally, we have discussed the temperature dependence of
the conductances near the disconnected and Griffiths
S-matrices and showed that this also provides a way to dis-
tinguish between Fermi liquid leads and TLL leads.
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