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We study the locations of the gapless points which occur for quantum spin chains of finite length �with a
twisted boundary condition� at particular values of the nearest-neighbor dimerization, as a function of the spin
S and the number of sites. For strong dimerization and large values of S, a tunneling calculation reproduces the
same results as those obtained from more involved field theoretic methods using the nonlinear �-model
approach. A different analytical calculation of the matrix element between the two Néel states gives a set of
gapless points; for strong dimerization, these differ significantly from the tunneling values. Finally, the exact
diagonalization method for a finite number of sites yields a set of gapless points which are in good agreement
with the Néel state calculations for all values of the dimerization, but the agreement with the tunneling values
is not very good even for large S. This raises questions about possible corrections to the tunneling results.
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I. INTRODUCTION

One-dimensional quantum spin systems have been studied
extensively for many years, particularly after Haldane pre-
dicted theoretically that Heisenberg integer spin chains
should have a gap between the ground state and the first
excited state,1 and this was then observed experimentally in a
spin-1 system.2 Haldane’s analysis used a nonlinear �-model
�NLSM� which is a field theoretic description of the long-
distance and low-energy modes of the spin system.3–7

Although the NLSM approach is supposed to be accurate
only for large values of the spin S, it is found to be qualita-
tively correct even for small values of S. For instance, if
there is a dimerization in the nearest-neighbor Heisenberg
couplings, taken to be 1 and � alternately, the NLSM pre-
dicts that there is a discrete set of values of � lying in the
range 0���1 for which the spin chain is gapless; these
correspond to quantum phase transitions. Further, the number
of gapless points is predicted to be the number of integers
�S+1/2; in particular, the undimerized chain �with �=1� is
a gapless point if S is a half-odd-integer. Numerical analysis
shows this to be true for values of S up to 2;8–13 however, the
numerically obtained values of � at the gapless points do not
agree well with the NLSM values. It therefore appears that
there must be corrections to the NLSM analysis for small
values of S.

The NLSM approach that has been used so far to find the
gapless points is based on certain properties of a field theory
in two dimensions �one space and one time�; the gapless
points occur when the coefficient of a topological term is
given by � modulo 2� �as will be discussed in Sec. II�.
Although there are arguments justifying this criterion,14 there
does not seem to be a simple physical picture behind it. One
of the aims of our paper will be to provide a picture based on
tunneling between two classical ground states.

Numerically, there are different ways of finding the gap-
less points for a dimerized spin chain. One of the most ac-
curate ways is based on exact diagonalization studies of a
finite spin chain with a twisted boundary condition, to be
specified more precisely in Sec. II.12,15 In the presence of the
twist, it is found that the gap between the ground state and
first excited state vanishes at a value of � which is a function
of the number of sites 2N �we use this notation since the

number of sites will always be taken to be even�. We will be
mainly interested in finite system sizes in our work; however,
it is known from conformal field theory12,15–18 that the loca-
tions of gapless points for the infinite system can be found
very accurately by finding the locations of those points for
finite systems, and then extrapolating to N→�.

In this paper, we will use three different approaches to
study finite systems with a twisted boundary condition, in
order to find the gapless points as a function of S and N. The
first two approaches will be analytical; they will be based on
the idea that in the presence of a twist, the system has two
classical ground states, called Néel states, which are degen-
erate. The degeneracy may be broken in quantum mechanics
by tunneling. However, if the tunneling amplitude is zero, we
get a gapless point in the sense that the lowest two states
have the same energy. The third approach will be numerical
and will be based on exact diagonalization of finite systems
using various symmetries.

In Sec. II, we will first define the dimerized quantum spin
chain and review how it can be described using a NLSM
field theory. We will then describe the twisted boundary con-
dition for a finite system. In Sec. III, we will describe our
first analytical approach. This is based on a tunneling calcu-
lation for a chain with a finite number of sites. For reasons
explained below, this method is limited to small values of �.
We will see that the expressions for the scale of the gap and
the locations of the gapless points agree with those obtained
from the NLSM field theory; this is remarkable because our
analysis will be based only on quantum mechanical tunnel-
ing in a finite system, while the field theoretic analysis is
based on a renormalization group equation and the presence
of a topological term. Our second approach, described in
Sec. IV, is based on a direct quantum mechanical calculation
of the matrix element between the two Néel states to lowest
order in the Hamiltonian; this method works for all values of
�. We will see that the locations of the gapless points ob-
tained by the two methods differ substantially for small �.
We make some speculations about how the tunneling results
may be corrected. In Sec. V, we use exact diagonalization to
find the gaps and the locations of the gapless points as func-
tions of � for different values of S and N. We find that the
numerical results for the locations of the gapless points agree
quite well with those found by the second analytical method,
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and therefore disagree with those found by the tunneling
approach. In Sec. VI, we will summarize our results.

II. DIMERIZED QUANTUM SPIN CHAIN

A. Field theoretic description

In this section, we will briefly review the NLSM field
theory for a dimerized spin chain with an infinite number of
sites. The Hamiltonian is given by

H = �
i

�S�2i−1 · S�2i + �S�2i · S�2i+1� , �1�

where we have spin S at every site, and ��0. This describes
a Heisenberg antiferromagnetic spin chain since all the cou-

plings are positive. We will set �=1, so that S� i
2=S�S+1�. We

will specify the appropriate boundary conditions when we
discuss finite systems below. In many papers, the nearest-
neighbor couplings are taken to be 1+� and 1−�, instead of
1 and �. After a rescaling of the Hamiltonian, we see that the
two parameters are related as

� =
1 − �

1 + �
. �2�

In the classical limit S→�, the ground state of Eq. �1� is
given by a configuration in which all the spins at odd sites
point in the same direction while all the spins at even sites
point in the opposite direction. This motivates us to define a
variable

	� �x� =
S�2n−1 − S�2n

2S
, �3�

where x=2na denotes the spatial coordinate and a is the
lattice spacing; x becomes a continuous variable in the limit
a→0. In the classical limit, 	� becomes a unit vector in three
dimensions; the model is called the NLSM because of this
nonlinear constraint. One can then derive an action in terms
of the field 	� �x , t�; this takes the form1,3

S =� dtdx� 1

2cg
� �	�

�t
	2

−
c

2g
� �	�

�x
	2


+



4�
� dtdx	� ·

�	�

�t
�

�	�

�x
, �4�

where

c = 2aS�� ,

g =
1

S

1 + �

��
,


 = 4�S
�

1 + �
. �5�

The parameters c, g, and 
 denote the spin wave velocity, the
strength of the interactions between the spin waves, and the

coefficient of a topological term, respectively. One can show
that the term multiplying 
 in Eq. �4� is topological in the
sense that its value is always an integer. Even though the first
two terms in Eq. �4� are quadratic, it describes an interacting
theory because of the nonlinear constraint on 	� .

It is known that the system governed by Eq. �4� is gapless
if 
=� modulo 2� and g is less than a critical value.1,3,14

This implies that the theory is gapless if 4S� / �1+��
=1,3 , . . . and g is small enough. In particular, this means that
in the range 0���1, there are a discrete set of values of �
for which the system is gapless; the number of such values is
given by the number of integers �S+1/2. For all values of

�� modulo 2�, the system is gapped. For 
=0 modulo
2�, the gap is given by exp�−2� /g�. This follows from the
fact that the interaction g effectively becomes a function of
the length scale L and satisfies a renormalization group equa-
tion of the form dgef f /d ln L=gef f

2 / �2��. This implies that
gef f�L� becomes very large at a length scale given by
L0�a exp�2� /g�, where g=gef f�a� is given in Eq. �5�.
This is the correlation length of the system; the energy
gap is related to the inverse of this length, namely,
�E�c exp�−2� /g�.

B. Twisted boundary condition

In this section, we will study the same model as in Eq. �1�
but with a finite number of sites going from 1 to 2N. Al-
though a periodic boundary condition would appear to be the
simplest, it turns out that a more useful boundary condition is
one with a twist.12,15,19 We define the Hamiltonian to be

H = �
n=1

N

�S2n−1
x S2n

x + S2n−1
y S2n

y + S2n−1
z S2n

z � + ��
n=1

N−1

�S2n
x S2n+1

x

+ S2n
y S2n+1

y + S2n
z S2n+1

z � + ��− S2N
x S1

x − S2N
y S1

y + S2N
z S1

z� .

�6�

Note that the bond going from site 2N to site 1, to be called
the bond �2N ,1� for short, has a minus sign for the xx and yy
couplings. We will call this a twisted boundary condition; it

is equivalent to rotating the x and y components of S�1 by �
about the z axis just for that bond.

An advantage of the twisted boundary condition is that
classically, the Hamiltonian in Eq. �6� has exactly two

ground states, namely, �i� S�2n−1= �0,0 ,S� and S�2n= �0,0 ,−S�
for all n, and �ii� S�2n−1= �0,0 ,−S� and S�2n= �0,0 ,S� for all n.
We will call these two Néel states N1 and N2, respectively.
�This is in contrast to the case of periodic boundary condi-
tions where there is an infinite family of classical ground

states because S�2n−1=−S�2n can point in any direction.� If the
classical degeneracy is broken quantum mechanically in any
way, there will be a gap between the lowest two states of the
system, while if the degeneracy remains unbroken, the sys-
tem will be gapless. In Secs. III and IV, we will describe two
ways of analytically studying whether the degeneracy is
broken.

Let us now describe the various symmetries of the Hamil-
tonian in Eq. �6�. Although the total spin is not a good
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quantum number because of the twist on one bond,
Stot

z =�n�S2n−1
z +S2n

z � is a good quantum number.
Equation �6� satisfies the duality property H���

=�H̃�1/��, where H̃ is related to H by a unitary transforma-
tion. The unitary transformation is required because the twist
only exists at the bond �2N ,1� whose strength is �. By ap-
plying a rotation S1

x →−S1
x and S1

y →−S1
y, we can move the

twist from the bond �2N ,1� to the bond �1,2�. Since a unitary
transformation does not affect the spectrum, we conclude
that if there is a gapless point at a value �, there must also be
a gapless point at 1 /�.

Next, we define the parity transformation P as reflection
of the system about the bond �2N ,1�, namely,

S� i ↔ S�2N+1−i. �7�

This is a discrete symmetry of the Hamiltonian H, and all
eigenstates of H will be eigenstates of P with eigenvalue ±1.
For any value of �, we find that the ground and first excited
states always have opposite values of the parity. We will
show below that the relative parity of the ground states in the
limits �→0 and �→� is given by �−1�2S. For integer S, this
will imply that in the range 0��, the number of cross-
ings between the ground state and the first excited state �and
hence the number of gapless points� must be even. But for
half-odd-integer S, the number of such crossings must be
odd; combined with the duality �→1/�, this implies that
there must be a crossing and therefore a gapless point at
�=1 �this is a self-dual point�.

To prove the statement about the relative parities of the
ground states at �→0 and �→� being given by �−1�2S, we
proceed as follows. We first observe that if there are only two
spins 1 and 2 governed by the untwisted Hamiltonian
hu=S1

xS2
x +S1

yS2
y +S1

zS2
z , then under the reflection 1↔2, the

ground state has the parity �−1�2S, while the first excited state
has the parity �−1�2S+1; but for the twisted Hamiltonian
ht=−S1

xS2
x −S1

yS2
y +S1

zS2
z , the ground state and first excited state

have parities equal to 1 and −1, respectively. �This can be
proved using the Perron-Frobenius theorem for a real sym-
metric matrix.� We now consider the entire system with 2N
sites. In the limit �→0, the ground state of the system is
given by a direct product of ground states over the bonds
�1, 2�, �3, 4�,…, �2N−1,2N�. Since there are N dimers, the
parity of this state is �−1�2SN, while the parity of the first
excited state is �−1�2SN+1. On the other hand, in the limit
�→�, the ground state of the system is given by a direct
product of ground states over the bonds �2, 3�, �4, 5�,…,
�2N ,1�. Under parity, the parity of this state is �−1�2SN+2S,
while the parity of the first excited state is �−1�2SN+2S+1. A
comparison between the ground states in the two limits
shows that they have a relative parity of �−1�2S.

III. TUNNELING APPROACH TO THE FINITE SPIN
CHAIN

In this section, we will study the model defined in Eq. �6�
using a tunneling approach. We are interested in the limit
S→� and �→0, such that �S is of order 1. We will compute

the action of the system and use that to compute the tunnel-
ing amplitude between the two Néel states.

In the limit �→0, the system consists of decoupled
dimers whose energy levels are easy to compute. We will
assume in this section that there are at least three dimers, i.e.,
N�3. For the dimer on the bond �2n−1,2n�, we define the
variables

	� n =
S�2n−1 − S�2n

2S
,

l�n = S�2n−1 + S�2n. �8�

These variables satisfy the relations

	� n
2 = 1 +

1

S
−

l�n
2

4S2 ,

	� n · l�n = 0,

�lm
a ,	n

b� = i�mn�
c

�abc	n
c ,

�lm
a ,ln

b� = i�mn�
c

�abcln
c ,

�	m
a ,	n

b� =
i

4S2�mn�
c

�abcln
c . �9�

Several simplifications occur in the classical limit S→�.

First, in the Néel state, l� is equal to zero while 	� is a unit
vector; the latter is clear from the first equation in Eq. �9�.
We will therefore set 	� n

2=1 exactly. Second, we will take the
commutator �	m

a ,	n
b�=0 due to the fourth equation in Eq.

�9�. Finally, given the second and third equations in Eq. �9�,
we can obtain the momentum which is canonically conjugate

to 	n, namely, l�n=	� n��� n, which satisfies the commutation
relation

�	m
a ,�n

b� = i�mn�ab. �10�

Using Eq. �8�, we can write the Hamiltonian in Eq. �6� in

terms of 	� and �� , and then obtain the Lagrangian as

L = �
n=1

N
d	� n

dt
· �� n − H . �11�

We eventually find that

L = �
n=1

N
1

2
�d	� n

dt
	2

+ �S2�
n=1

N−1

	� n · 	� n+1

+ �S2�− 	N
x 	1

x − 	N
y 	1

y + 	N
z 	1

z�

+
�S

2 �
n=1

N−1 �d	� n

dt
+

d	� n+1

dt
	 · 	� n � 	� n+1

+
�S

2
��d	N

x

dt
−

d	1
x

dt
	�	N

y 	1
z + 	N

z 	1
y�
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+ �d	N
y

dt
−

d	1
y

dt
	�− 	N

z 	1
x − 	N

x 	1
z�

+ �d	N
z

dt
+

d	1
z

dt
	�− 	N

x 	1
y + 	N

y 	1
x�


+ �2S2�terms of fourth order in 	� n� . �12�

The terms in the third line of this Lagrangian are what give
rise to the topological term in Eq. �4� in the continuum limit.
In the last line of Eq. �12�, the terms of fourth order in 	� n are
chosen in such a way that when we compute the Hamiltonian
from it, it agrees with Eq. �6�. We will now see why these
fourth order terms are not important.

In the limit �→0, S→�, and �S of order 1, we can scale
the time t by a factor of �S to show that only the first two
lines of Eq. �12� contribute to the Euler-Lagrange equations
of motion �EOM�; this is a major simplification. To compute
the tunneling amplitude between the two Néel states, we will
find the solutions of the EOM in imaginary time. We then
find that the tunneling amplitude comes with a phase which
arises from the third through sixth lines of Eq. �12�; thus
these terms are important even though they do not directly
contribute to the EOM. The fourth order terms in the last line
of Eq. �12� do not contribute to either the EOM or the phase,
and we will therefore ignore them henceforth.

In imaginary time �denoted by the symbol ��, the action
takes the form

SI =� d���
n=1

N
1

2
�d	� n

d�
	2

+ �S2�N − �
n=1

N−1

	� n · 	� n+1	
+ �S2�	N

x 	1
x + 	N

y 	1
y − 	N

z 	1
z�

− i
�S

2 �
n=1

N−1 �d	� n

d�
+

d	� n+1

d�
	 · 	� n � 	� n+1

− i
�S

2
��d	N

x

d�
−

d	1
x

d�
	�	N

y 	1
z + 	N

z 	1
y�

+ �d	N
y

d�
−

d	1
y

d�
	�− 	N

z 	1
x − 	N

x 	1
z�

+ �d	N
z

d�
+

d	1
z

d�
	�− 	N

x 	1
y + 	N

y 	1
x�

 . �13�

We have introduced a constant �S2N in Eq. �13� so that the
action vanishes for each of the two Néel states. The tunnel-
ing amplitude will be given by the sum of exp�−SI� along all
the paths of extremal action which join the Néel states. We
will now determine these extremal paths.

Let us use polar angles to write the variables
	� n= �sin �n cos �n , sin �n sin �n , cos �n�. The Néel states 1
and 2 are given by �n=0 for all n and �n=� for all n,
respectively. We now solve the EOM following from the first
two lines of Eq. �13� in order to obtain the paths going from
state 1 to state 2. We will not write the EOM explicitly here,
but directly present the solutions. We find that the two paths
which have the least action are given by

�a� �n���=���� and �n=�0+ �n� /N� for all n, and
�b� �n���=���� and �n=�0− �n� /N� for all n,

where �0 is an arbitrary angle. In both cases, the function
���� satisfies the EOM

d2�

dt2 = �S2 sin�2���1 − cos
�

N
	 , �14�

with the boundary conditions ��−��=0, ����=�, and
d��±�� /dt=0. This implies that

d�

dt
= 2S�� sin � sin

�

2N
. �15�

Using this we can evaluate the contribution of the first two
lines of Eq. �13� along either one of the paths joining the
Néel states. We find that the real part of the action is given
by

Re SI = N�
−�

�

d��1

2
�d�

d�
	2

+ �S2 sin2 ��1 − cos
�

N
	


= 4��SN sin
�

2N
. �16�

We can now evaluate the contribution of the imaginary
terms in Eq. �13� to the action. We find that for path �a�, they
contribute −i2�SN sin�� /N�, while for path �b�, they con-
tribute i2�SN sin�� /N�. Hence the total contribution of the
two paths to exp�−SI� is given by

� � cos�2�SN sin
�

N
	exp�− 4��SN sin

�

2N
	 , �17�

up to some prefactors which are determined by fluctuations
about the classical paths. Since � is the matrix element be-
tween two classically degenerate states, the energy gap be-
tween the two states is given by 2�. We thus see that the
gap vanishes if 2�SN sin�� /N� is an odd multiple of � /2,
i.e., if

4�SN sin
�

N
= � modulo 2� . �18�

This is the same condition as the one satisfied by the param-
eter 
 in Sec. II A in the limits S ,N→� and �→0. Further,
if 4�SN sin�� /N�=0 modulo 2�, the gap is given by
exp�−Re SI� which agrees with the expression exp�−2� /g�
given in Sec. II A for S ,N→� and �→0. Thus a simple
quantum mechanical tunneling calculation seems to repro-
duce the same conditions as those obtained earlier by more
complex field theoretic calculations involving topological
terms and a renormalization group analysis.

Before ending this section, we should note that there are
other pairs of paths with extremal action, which have the
form

�a� �n���=���� and �n=�0+ �pn� /N� for all n, and
�b� �n���=���� and �n=�0− �pn� /N� for all n,

where p=3,5 , . . . �going up to the largest odd integer
�N−1� labels the different pairs of paths. However, the real
part of the action of these paths is given by
4��SN sin�p� /2N�, which, for large S, is much larger than
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the expression given in Eq. �16�; their contributions to the
tunneling amplitude are therefore much smaller.

Finally, we would like to note that it is important that the
twist in the boundary condition should be by �, and not by
any other angle. Even though any nonzero twist would lead
to two Néel ground states classically, the pairs of tunneling
paths between those two ground states would not have the
same real part of the action if the twist angle was different
from �. The pairs of paths would therefore not cancel each
other no matter what the imaginary parts of their actions are.
This is because two complex numbers cannot add up to zero,
no matter what their phases are, if their magnitudes are not
equal.

IV. A SECOND APPROACH TO THE MATRIX ELEMENT
BETWEEN NÉEL STATES

In the previous section we argued that the gapless points
of the Hamiltonian in Eq. �6� can be identified with the val-
ues of � for which the tunneling amplitude between the two
classical ground states vanish. In this section we will calcu-
late this amplitude using an alternate method.

The twist on the edge bond �2N ,1� breaks the global
SU�2� symmetry and thus lifts the continuous degeneracy of
the classical ground states. With the twist, the two degenerate
ground states of the Hamiltonian are the Néel states which
are connected to each other by rotation by � about the y axis,

N1� = S,− S,S, . . . ,− S,S,− S� ,

and

N2� = − S,S,− S, . . . ,S,− S,S� , �19�

where �mi�� denotes the state with Si
z eigenvalue mi.

We are interested in the zeroes of the quantity

T = �N2e−�HN1� , �20�

as a function of �, and �=1/kBT can be thought of as either
the inverse temperature or imaginary time. Though the cal-
culation of the above matrix element is an interacting many-
body problem, we can obtain its zeroes “exactly” in the ther-
modynamic limit.

First we note that, in the expansion of the exponential,

e−�H = �
n=0

�
�− �H�n

n!
, �21�

the first term which makes a nonzero contribution to T has
n=2SN. This is because to take N1� to N2�, spins belonging
to the A-sublattice have to be flipped from S� to −S�, and
this requires the action of �S−�2S for each spin. Similarly, the
action of �S+�2S will take spins in the B-sublattice from
−S� to S�.

Next, we will calculate the values of � for which

�N2H2SNN1� = 0. �22�

Then we will show that as N→�, Eq. �22� implies that

�N2H2SN+kN1� = 0 �23�

for any finite k. This in turn will imply that T is zero.

The only term in H2SN which makes a nonzero contribu-
tion to the left-hand side of Eq. �22� is

�
i=1

N

�S2i
− �2S�S2i+1

+ �2S.

We need to count the number of ways in which such a term
can arise. The contribution comes from terms of the follow-
ing type:

�
i=1

N

�S2i
− S2i+1

+ �m�S2i−1
+ S2i

− �2S−m, �24�

where 0�m�2S. The above term can be obtained in

�2SN�!
�m!�N��2S − m�!�N

ways and comes with a weight �−1�m�mN. Here we have
neglected an overall m-independent factor due to the
Clebsch-Gordon coefficients arising from the repeated appli-
cation of S+ and S− operators. The condition in Eq. �22� then
becomes

�
m=0

2S

�− 1�m�am����N = 0, �25�

where

am��� =
�m

m!�2S − m�!
.

Before proceeding further, we note that the above condition
preserves the duality symmetry under �→1/�. This is be-
cause Eq. �25� can be written as

�2SN�− 1�2S�
m

�− 1�m�am�1/���N = 0. �26�

Hence if �* is a solution, so is 1 /�*. Thus we can restrict
ourselves to the range 0���1.

Equation �25� determines the roots of a polynomial of
order 2SN, which, in general, cannot be solved analytically.
But it turns out that we can obtain the roots in the limit
N→�. In this limit, depending on the value of �, one par-
ticular term in the sum is predominant, and the rest of the
terms can be neglected compared to this. The dominant term
is determined by

max
m

am � am*. �27�

As � varies from 0 to 1, m* successively takes values
m*=0 ,1 , . . . ,S for integer S and m*=0 ,1 , . . . ,S+1/2 for
half-odd-integer S. Noting that neighboring terms in the sum
have opposite signs, Eq. �25� can be satisfied only when

am = am+1. �28�

Thus the gapless points are given by
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�m
* =

m + 1

2S − m
, �29�

where m=0,1 , . . . ,S−1 for integer S and m=0,1 , . . . ,S
−1/2 for half-odd-integer S.

To complete our argument that Eq. �29� gives the gapless
points, we need to show that Eq. �22� implies Eq. �23�. To
this end, we first note that the nonzero contributions to the
matrix element from H2SN+k can be obtained from the con-
tributing terms in H2SN, given in Eq. �24�, by adding terms of
the form Si

zSi+1
z , Si

+Si+1
− , or Si

−Si+1
+ . Now the weight coming

from the Clebsch-Gordon coefficients depend on the order in
which the terms appear. But formally one can write that Eq.
�23� implies

�
m

�− 1�mbm,k�am����N = 0, �30�

where bm,k are finite undetermined constants independent of
N. As before, in the large-N limit, the left-hand side of Eq.
�30� can be zero only through the mutual cancellation of a
pair of neighboring terms, i.e., when

am

am+1
= �bm+1

bm
	1/N

. �31�

As N→�, this reduces to the condition in Eq. �28�. In other
words, the vanishing of �N2 H2SN N1� is a sufficient condi-
tion for the vanishing of �N2 H2SN+k N1� for any finite k as
N→�.

For half-odd-integer spins, �*=1 is a solution of Eq. �29�
for m=S−1/2, but it is not a solution for integer spins. This
is consistent with Haldane’s conjecture1 that the uniform
chain is gapless for half-odd-integer spins and gapped for
integer spins.

Since the identification of gapless points with the zeroes
of the transition amplitudes between the two Néel states is
essentially a semiclassical approximation, we expect the for-
mula given by Eq. �29� to get better for larger values of S.

As with the tunneling calculation in Sec III, here also one
can see that it is crucial to have a twist by � and not any
other angle. Let us suppose that the twist angle is �. Then the
Hamiltonian for the bond between the spins at sites 2N and 1
will be

��S2N
z S1

z + ei�S2N
+ S1

− + e−i�S2N
− S1

+� .

Then the equivalent of the condition in Eq. �28� will read

am = − ei�am+1. �32�

Since am’s are all real and positive, such a condition can be
satisfied only when �=�, in which case Eq. �32� becomes
Eq. �28�.

Finally, let us compare the gapless values of � given in
Eq. �29� with those given in Eq. �18� in the limit N→�,
namely,

�m
* =

m + 1/2

2S
, �33�

where m=0,1 , . . .. Since Eq. �18� was derived under the as-
sumption that S→� and �S is of order 1, we must restrict m

to be much less than S in Eq. �33�. We see that for large
values of S and m�S, the values of �m

* in Eqs. �29� and �33�
are related by a shift of 1 / �4S�. It would be useful to under-
stand more deeply why this is so. Heuristically, this discrep-
ancy can be explained by postulating that the phase differ-
ence between the actions for the two paths discussed in Sec.
III has an additional factor of � for some reason. Equation
�18� would then change to 4��S=0 modulo 2� for N→�;
this condition would be equivalent to Eq. �29� for m�S. In a
different problem �tunneling of a charged particle in two di-
mensions in the presence of a large magnetic field�, it was
empirically found that an additional factor of � appears due
to fluctuations about the tunneling paths.20 It may be worth
studying if something similar happens in our problem.

V. NUMERICAL RESULTS FOR FINITE SYSTEMS

In this section, we numerically determine the values of �
for which the Hamiltonian becomes gapless using exact di-
agonalization of finite systems with 2N sites. These results,
being a direct calculation of the gapless points, will give us
information about the physical regimes in which the analyti-
cal methods outlined in Secs. III and IV are valid.

We begin with a brief outline of the method used to find
the gapless points. As we vary � in Eq. �1�, it is known that
the gapless points separate various phases whose ground
states are represented approximately by different valence
bond states �see Refs. 12 and 21 and references therein�.
Specifically, for a given spin S, there are 2S+1 different
phases separated by the 2S gapless points for � between 0
and �. The lowest two eigenstates of an untwisted Hamil-
tonian never cross each other in energy, even at the transition
from one phase to the other; also, the ground state always
has the same eigenvalue �−1�2SN for the parity P. It is here
that we make use of the twisted boundary condition in Eq.
�6�. It has been shown12 that the lowest two eigenstates of
this Hamiltonian �both of which lie in the Stot

z =0 sector� have
different parity eigenvalues, and they cross at certain points
which, in the limit N→�, become the gapless points of the
Hamiltonian in Eq. �1�. This means that one can locate the
gapless points of the Hamiltonian in Eq. �1� by studying the
crossing of the two lowest eigenvalues of the Hamiltonian in
Eq. �6� in different parity sectors. This enables us to find the
gapless points without having to consider two very closely
spaced eigenvalues lying within a single symmetry sector.

We study the Hamiltonian in Eq. �6� numerically. Because
of the duality between � and 1/� we restrict our studies to
0���1. We use the Lanczos algorithm to diagonalize finite
systems from N=3 to 5. Spins from S=2 to 3 are studied for
N=3 to 5, but for S=3.5 to 7 we restrict ourselves to N=3
and 4 due to computational limitations.

In Fig. 1, we present two representative data plots, for
N=3. The upper plot is for S=3.5 and the lower one is for
S=4. Plotted on the y axis in both figures is E�P=−1�
−E�P= +1�, the energy difference between the two lowest
energy eigenstates in the two parity sectors. Wherever the
plot crosses the x axis we have a gapless point of the Hamil-
tonian in Eq. �1�. The values of the crossing points are indi-
cated in the plots. From the discussion in Sec. II, we know
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that the ground state for N=3, S=3.5 should have a parity
−1, and for N=3, S=4 should have a parity +1. This is in-
deed borne out by the plots in the figure. Moreover, the gap-
less point at �=1 is also present for S=3.5 as expected. The
nature of these plots for other spins and different lattice sizes
is similar. Since our emphasis in this work is on the locations
of the gapless points, we now turn to analyzing those points
more closely. �Incidentally, we observe in Fig. 1 that the
envelope of the magnitude of the gap is rapidly decreasing
with increasing �; this is in accordance with the exponential
factor for the tunneling amplitude in Eq. �17�.�

Figure 2 shows a comparison of the different methods
used to calculate the gapless points. Plotted on the y axis is
�1, the gapless point closest to the origin for various values
of the spin, for N=3. The topmost plot �marked by dots� is
for values obtained from the numerical calculations, called
�num

1 . The next plot �crosses� is for values obtained from the
Néel state calculation in Eq. �25�, �Neel

1 . The plot at the bot-
tom �squares� is for values obtained from the tunneling ex-
pression in Eq. �18�, �tun

1 . Clearly, the values of �1 obtained

using the Néel state calculation are in closer agreement with
the numerical values than the tunneling values. The tunnel-
ing values do not converge with increasing S, even though
one is looking at data for spin values as large as S=7. On the
other hand, the plot of values using the Néel state calcula-
tions converges much faster. This is made clearer in the plot
by the inset where on the y axis we have plotted the percent-
age deviation, ���num

1 −�Neel
1 � /�num

1 ��100, of the values of
�Neel

1 from the numerically obtained values.
Figure 3 shows a comparison between the numerical re-

sults �dots� and those obtained from the Néel state calcula-
tion �crosses� for �*, the gapless point closest to �=1. �Un-
like in Fig. 2, we have not shown the tunneling results based
on Eq. �18� because that formula for the gapless points is not
valid when � is close to 1.� The data sets for integer and
half-odd-integer spins have been plotted separately. The plot
and the inset at the top are for integer spins, and the ones at
the bottom are for half-odd-integer spins. As before, we see
that the agreement with the numerical results improves as we
go to larger spins. We also see from the insets that for a given
spin, the agreement is much better near �=1 than it was near
�=0. This suggests that the Néel state calculation gets better
as we increase � from 0 to 1. This is something which is seen
very clearly in Table I. �For the cases S=1 and 1.5, there is
only one gapless point for �1. Hence the same values of �
appear in Figs. 2 and 3 for those two cases.�

Table I shows how the numerical results, the Néel state
calculations �Eq. �25��, and the tunneling results �Eq. �18��
compare for the gapless points. The table shows the values of
� at which the Hamiltonian in Eq. �6� is gapless for S=6.5
�top half� and S=7 �bottom half�, for N=3. The percentage
deviations as defined earlier are also shown for the Néel state
and tunneling calculations. As conjectured after looking at
Fig. 3, we see that the Néel state calculation gives succes-
sively better approximations to the actual gapless points as

FIG. 1. Energy difference between the two lowest energies in
the P=−1 and P= +1 sectors as a function of �, for N=3. The
upper figure is for S=3.5, and the lower figure is for S=4. The
locations of the gapless points are shown.

FIG. 2. The location �1 of the gapless point closest to zero, as a
function of the spin, for N=3. The results from numerical calcula-
tions �dots�, Néel state calculations �crosses�, and tunneling calcu-
lations �squares� are shown. The joining lines are guides for the eye.
The inset shows the percentage variation of the Néel state calcula-
tions when compared with the numerical results.
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we go further from the origin �=0. We have shown the tun-
neling values for all the gapless points only for completion;
the formula given by Eq. �18� is valid only for �S of order 1.
We again see that these values have much larger percentage
deviations from the values obtained from the other two meth-
ods, even though the values of the spins considered are quite
large.

We now look at how the values of � at the gapless points
change with N and see how the N→� values compare with

those given by Eq. �29�. We take �1 as an example. Figure 4
shows the behavior for S going from 1 to 4. The crosses
indicate values of �1 obtained numerically for various values
of S and N; N goes from 2 to 6 for S=1 and 1.5, from 2 to 5
for S=2 to 3, and from 2 to 4 for S=3.5 and 4. We find the
N→� values by extrapolating the best fits obtained by fitting
the data to even polynomials in 1/ �2N�2 following Ref. 13.

The extrapolated values of �1 in the N→� limit and the
corresponding values obtained from Eq. �29� �in parentheses�
for S=1, 1.5, 2, 2.5, 3.0, 3.5, and 4.0 are given by 0.587
�0.500�, 0.396 �0.333�, 0.289 �0.250�, 0.223 �0.200�, 0.179
�0.167�, 0.146 �0.143�, and 0.124 �0.125� respectively.
Clearly, the agreement between the two sets of values gets
better for larger values of the spin. The extrapolated values
of �1 for S=1, 1.5, and 2 agree well with the values of 0.588,
0.397, and 0.290 obtained previously by the quantum Monte
Carlo method.13

VI. CONCLUSIONS

We have used three different techniques to find the gap-
less points of a dimerized spin-S chain with a finite number
of sites and with a twisted boundary condition. The first tech-
nique uses a tunneling approach which is expected to be
valid in the limit S→�, �→0, and �S of order 1. Remark-
ably, we find that a quantum mechanical tunneling calcula-
tion reproduces the same expressions for the locations of the
gapless points and the gap as those obtained by more in-
volved field theoretic techniques.

However, a direct numerical study of the gapless points
shows a systematic deviation from the tunneling results in
the limit discussed above. It would be useful to know why
the tunneling results differ systematically from the numerical
results in this limit. One possible idea is to examine if an
additional factor of � appears in the fluctuation prefactor of
the tunneling amplitude as mentioned at the end of Sec. IV.

TABLE I. Comparison of the values of all the gapless points
obtained using the three methods of calculating them ��num from
numerical results, �Neel from Eq. �25�, and �tun from Eq. �18��, for
S=6.5 �top half� and 7 �bottom half�. The data presented is for N
=3.

�num �Neel % deviation �tun % deviation

0.083 0.080 3.6 0.047 45.4

0.190 0.180 5.2 0.140 26.3

0.306 0.293 4.2 0.232 24.2

0.438 0.424 3.2 0.326 25.6

0.773 0.765 1.0 0.512 33.8

1 1 0

0.077 0.074 3.9 0.043 44.2

0.174 0.166 4.0 0.130 25.3

0.281 0.269 5.0 0.252 23.1

0.400 0.387 3.3 0.302 24.5

0.536 0.525 2.1 0.389 27.4

0.695 0.685 1.3 0.475 31.7

0.887 0.884 0.3 0.561 36.8

FIG. 3. The location �* of the gapless point closest to �but less
than� 1, as a function of the spin, for N=3. The results from nu-
merical calculations �dots� and Néel state calculations �crosses� are
shown. The top and bottom parts of the figure are for integer and
half-odd-integer values of the spin, respectively. The joining lines
are guides for the eye. The insets show the percentage variation of
the Néel state calculations when compared with the numerical
results.

FIG. 4. Variation of �1 with N for values of S from 1 to 4. The
numbers at the left of each graph are the N→� extrapolated values.
The crosses indicate values of �1 obtained numerically.
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In view of the discrepancy between the tunneling and nu-
merical results, we have presented a second analytical deri-
vation of the gapless points which is based on a calculation
of the matrix element between the two Néel states to lowest
order in powers of the Hamiltonian; this derivation is ex-
pected to become more accurate as the number of sites be-
comes large. We find that the results obtained by this ap-
proach agree much better with the numerical results than the
tunneling results, even in the limit �→0. It may be instruc-
tive to understand in more detail why there is such a good
agreement between this relatively simple analytical calcula-
tion and the numerical results.

One of the features of the numerical results shown above
is that the Néel state calculation always underestimates the

values of � which correspond to gapless points, while all the
time getting closer to the actual values with increasing S
�given N� or increasing N �given S�. This may indicate posi-
tive corrections of order 1 /N and 1/S to the formula ob-
tained from the Néel state calculation.
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