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We present exact diagonalization calculations for the spin-1/2 nearest-neighbor antiferromagnet on the
pyrochlore lattice. We study a section of the lattice in the [111] direction and analyze the Hamiltonian of the
breathing pyrochlore system with two coupling constants J1 and J2 for tetrahedra of different orientations and
investigate the evolution of the system from the limit of disconnected tetrahedra (J2 = 0) to a correlated state at
J1 = J2. We evaluate the low-energy spectrum, two and four spin correlations, and spin chirality correlations for
a system size of up to 36 sites. The model shows a fast decay of spin correlations and we confirm the presence
of several singlet excitations below the lowest magnetic excitation. We find chirality correlations near J1 = J2 to
be small at the length scales available at this system size. Evaluation of dimer-dimer correlations and analysis of
the nature of the entanglement of the tetrahedral unit shows that the triplet sector of the tetrahedron contributes
significantly to the ground-state entanglement at J1 = J2.
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I. INTRODUCTION

The pyrochlore lattice is one of the earliest lattices to be
investigated in the study of geometrically frustrated magnetic
systems. Shortly after foundational work on the triangular
lattice [1], the pyrochlore antiferromagnet was among the first
three-dimensional models for which it was established that
the nearest-neighbor exchange does not result in magnetic
ordering and that the ground state has a finite entropy [2]—
properties which are now routinely used to characterize the
extent of frustration in a magnetic system. The interest in the
physics of this lattice has continued unabated over several
decades. Apart from intrinsic theoretical interest this is also
because of the existence of real materials with this crystal
structure. Examples are the spinels AB2O4 and the A2B2O7

oxides [3] where the magnetic ions reside on the pyrochlore
lattice. Interestingly, among the Hamiltonians that have been
used to model various classes of materials with this general
structure, the simple spin-1/2 nearest-neighbor Heisenberg
antiferromagnet has received relatively less attention in the
past. The last few years has seen a renewed interest in this
system, which in part is thanks to the discovery of new
materials, which can be modeled as spin-1/2 Heisenberg
antiferromagnets [4–6].

Many techniques have been used to study this model and like
several other magnetic systems with geometric frustration or
competing interactions there is no clear consensus on the nature
of the low-temperature phase. The ground-state prediction for
the Hamiltonian varies with the technique used to study the
problem. The ground-state manifold of a single tetrahedron
of four spins, the basic unit of the lattice, consists of two
degenerate singlet states. Approaches that restrict the Hilbert
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space of tetrahedra to the subspace of these singlets and derive
effective theories for the Hamiltonian usually result in a dimer
singlet phase. This phase with broken translational symmetry
has long-range order in the dimer-dimer correlations [7–12].
A power series expansion of the density matrix of the problem
in powers of the intertetrahedra coupling results in a spin
liquid [13] with a very short correlation length for two spin
correlations. The studies based on the analysis of Sp(N ) models
support a (spontaneously) broken inversion symmetry [14]
or the presence of several different saddle points at large
N [15] but remain noncommittal about the SU(2) limit of
those Hamiltonians. Fermionic mean-field theory followed by
a variational Monte Carlo analysis of a mean-field state lends
support to a chiral spin liquid [16,17] with long-range order in
the scalar chirality operator Si · (Sj × Sk), where (i,j,k) are on
a tetrahedron. Finally, a finite temperature analysis using dia-
grammatic Monte Carlo method predicts spin ice correlations
even in the Heisenberg limit [18], albeit at finite temperatures.

The focus of this paper is the analysis of the spin-1/2
nearest-neighbor antiferromagnet on the pyrochlore lattice
using exact diagonalisation (ED). The principal and obvious
limitation of ED studies is that we usually cannot do mean-
ingful finite size scaling for many systems of current interest,
especially if they are in two or three dimensions and the ground
state is (magnetically) disordered but correlated. However, the
technique does offer the advantage that for the system sizes that
can be handled using this technique it provides essentially exact
information about the lattices studied. We present here the
results of such an ED study for the nearest-neighbor spin-1/2
antiferromagnetic pyrochlore lattice for a system size of up
to 36 sites. We focus on a section of the lattice in the [111]
direction and evaluate energies, and two, four, and six point
correlators. In Sec. II, we introduce the Hamiltonian being
studied and details of the finite size section being investigated.
In Sec. III, we discuss the nature of the spectrum in the vicinity
of the ground state. In Sec. IV, we present all the evaluated

2469-9950/2018/97(14)/144407(9) 144407-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.144407&domain=pdf&date_stamp=2018-04-12
https://doi.org/10.1103/PhysRevB.97.144407


V. RAVI CHANDRA AND JYOTISMAN SAHOO PHYSICAL REVIEW B 97, 144407 (2018)

FIG. 1. The pyrochlore lattice. The figure on the right is a 2D projection with the [111] axis out of the page. The black and magenta dots
are the two kagome layers and the yellow, green, and the cyan dots are the top, middle, and bottom triangular lattice layers, respectively. The
numbers in the figure on the right is the site indexing used throughout the paper. The blue lines are the J1 bonds and the red lines are the J2

bonds. The top layer site labels are also presented in the 3D figure to establish the orientation.

correlations and the analysis of the ground state based on these
correlations.

II. LATTICE AND THE HAMILTONIAN

The pyrochlore lattice is a lattice of corner sharing tetrahe-
dra, which can be seen as a face centered cubic lattice with a
four-site basis (see Fig. 1). Using the conventional FCC prim-
itive lattice vectors a1 = ( 1

2 , 1
2 ,0), a2 = (0, 1

2 , 1
2 ), and a3 =

( 1
2 ,0, 1

2 ), the four sublattices are (0,0,0), a1
2 , a2

2 , a3
2 . Each site is

connected to six nearest neighbors and is part of two tetrahedra
of different orientation as can be seen in Fig. 1.

The model Hamiltonian being studied in this paper is

H = J1

∑

〈ij〉,A
Si · Sj + J2

∑

〈ij〉,B
Si · Sj , (1)

where Si are spin-1/2 operators at the sites of the pyrochlore
lattice. Ji are nearest-neighbor antiferromagnetic coupling
constants for the tetrahedra of two different orientations (J1

for blue and J2 for red tetrahedra in Fig. 1). The parameter in
the problem is J2 (J1 is set to 1 and so is h̄). This Hamiltonian
is called the breathing pyrochlore Hamiltonian [4].

We study a finite part of the lattice shown in Fig. 1(a) using
exact diagonalization. Figure 1(b) shows a 2D projection of
the system studied with site labels. The data for two system
sizes of 28 and 36 sites have been analyzed in detail in this
paper. The lattice of 28 sites is obtained by omitting sites in the
bottom and top triangular layers. Periodic boundary conditions
are imposed in the kagome and triangular lattice planes. The
site indexing used to label the different sites shown in Fig. 1(b)
will be used in the rest of the paper.

We employ the conservation of the S total
z = ∑

i Siz and the
spin inversion symmetry in the S total

z = 0 sector to reduce
the size of the Hilbert space. Using these two symmetries, the
Hilbert space dimension of the 36-site system is 4 537 567 650.
The Lanczos algorithm [19] is used throughout for compu-
tations of the ground state and low-lying excitations. J2 is
varied from 0.0 to 2 and is the parameter in the problem and
corresponds to the x axis (which starts at J2 = 0.05) in all
plots unless mentioned otherwise. We note that the J2 > 1
region is of course physically the same as a section of the
J2 < 1 region since for finite-size systems considered here it
simply corresponds to exchanging the roles of the two kinds of
tetrahedra. Nevertheless, we present data for the whole range
mentioned as an additional explicit consistency check. There
are several J2 values for which using the above mentioned two
symmetries still result in doubly degenerate lowest eigenvalues
in the symmetry sector containing the ground state. This
degeneracy stems from the symmetry of the Hamiltonian under
certain permutations of site indices, which are elements of
the automorphism group for this graph. We choose one such
permutation to extract orthogonal states with distinct symmetry
labels for J2 values where degeneracy of the ground state is
present. The used permutation of site labels for the results
presented in this paper is detailed in Appendix, and in the rest of
the text is denoted byP . The same symbol is used to denote the
operator for that permutation of site indices or the eigenvalues
of that operator where necessary. We have verified that the
computed energy eigenvalue and the energy expectation value
that can be derived using the computed correlations match to
at least 10−6. All explicitly stated numbers have been quoted
with 6 significant digits, though several numbers are much
more accurate.
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FIG. 2. The ground-state energy per site and the nature of the low-energy spectrum as a function of J2. The left figure is for the 28-site
cluster and the right figure for the 36-site cluster. The inset labeled A shows the spin gap (the energy difference between the lowest magnetic
excitation and the singlet ground state) and the inset labeled B shows the presence of singlet excitations below the spin gap (blue markers) near
J2 = 1. Energy eigenvalues plotted are for the Hamiltonian in Eq. (1) with J1 and h̄ set to 1. See Sec. III for details.

At this point, it is pertinent to recall some elementary
properties of the basic tetrahedral unit, which play a role in
the analysis of the evaluated correlation functions. A single
tetrahedron with all equal strength antiferromagnetic bonds
has as its ground state two degenerate singlets. This follows
directly from the fact that the Hamiltonian of the tetrahedron
itself is simply equal to Htetrahedron = J

2 (
∑

i Si)
2 − 3J

2 . There
are distinct ways of thinking about this space of degenerate
ground states, which leads to consideration of different kinds
of ordered states on the full lattice. One obvious way is
to group the four spins into distinct pairs of spins (say
[12][34])). Then we can build total spin singlets by either
considering a direct product of singlets of each pair or by
constructing a spin-0 state using the triplet states of each pair.
The dimer-dimer correlation 〈(S1 · S2)(S3 · S4)〉 for the former
is 9/16 and 1/16 for the latter. However, one could equally
consider the Hamiltonian of the tetrahedron to be a sum of
Hamiltonians defined on the triangular faces of the tetrahedron:
H = 1

2

∑
� H� = 1

2

∑
ijk (Si · Sj + Sj · Sk + Sk · Si), where

the sum is over all distinct triads of spins (ijk) on the
tetrahedron. It is well known [20] that �ijk = Si · (Sj × Sk)
commutes with

∑
i Si and thence the eigenstates of Htetrahedron

can be expressed as eigenstates of �ijk belonging to a face
of a tetrahedron. Furthermore, if we focus on only the two-
dimensional ground-state singlet manifold then suitable linear
combinations, which are simultaneous eigenstates of all �ijk

can be constructed [20]. Also, (�ijk)2 = 3
32 − 1

8H�, for spin
1/2. Thus the full Hamiltonian on the lattice can be written
either as a sum of total spin operators on tetrahedra or the
sum of the squares of �ijk operators on all triangles of the
lattice. Given this structure of the ground-state manifold of
the basic tetrahedral unit and the Hamiltonian, Eq. (1) appears
to be a natural candidate (especially at J1 = J2) to explore
spontaneous dimerization [7–12] or long-range chiral order in
three dimensions [16,17]. We will analyze those possibilities
from the point of view of exact diagonalization calculations in
the following sections.

III. LOW-ENERGY SPECTRUM

We begin with a description of the low-energy spectrum
of the system for the two lattice sizes considered. Figure 2
shows the variation of the ground-state energy per spin as a
function of J2. The values of the energies for two sizes at the
point J2 = J1 = 1 are −0.482081 (28 sites) and −0.466971
(36 sites), respectively. The difference in the energy per site
values of these two lattice sizes for other J2 values is of similar
magnitude or smaller.

The insets in the figures show some details of the excitation
spectrum above the ground state. Inset A shows the variation of
the spin gap with J2. Inset B depicts the low-energy excitations
below the lowest nonsinglet state in a region close to J2 = 1.
The ground state and the lowest nonmagnetic excitation, which
is the lowest energy state in a different symmetry sector, are
fully converged, in the Lanczos sense. The singlets within that
gap are partially converged to various degrees of accuracy at
that Lanczos iteration. However, the changes of their energies
with iterations indicate that almost all of them are expected
to be in the gap region after convergence to high accuracy.
The spin gap for the 28 and 36 site systems are 0.201229 and
0.083273, respectively, for J2 = 1.

As can be seen for both the lattice sizes there are several
singlet excitations below the lowest energy magnetic state.
This is a feature that has been seen in ED studies of other
frustrated magnetic systems [21–23], most well known among
them being the kagome antiferromagnet. We would like to note
that the density of singlets below the magnetic gap depends on
the boundary conditions imposed. For example, whereas about
180 states below the lowest magnetic states are known for the
36 site system of the kagome lattice with periodic boundary
conditions [21], the number drops down to only a few for the
same system with open boundary conditions. In our system,
we have periodic boundary conditions in two directions. The
singlet gap for the 28-site system is 0.016832 whereas for the
36-site system it is 0.000143 for J2 = 1. It is not immediately

144407-3



V. RAVI CHANDRA AND JYOTISMAN SAHOO PHYSICAL REVIEW B 97, 144407 (2018)

TABLE I. Spectrum and correlations in the ground state for J2 = 1. φi−j denotes Si · Sj and �i−j−k denotes
Si · (Sj × Sk). 〈〉 denotes the expectation value in the ground state. The site indices follow the indexing shown in
Fig. 1(b). Missing numbers in the second column correspond to correlations that contain sites not present in the
28-site system.

Property 28 sites 36 sites

Ground-state energy per spin − 0.482081 − 0.466971
Spin gap 0.201229 0.083273

(〈So · Si〉)1-bond − 0.192600 − 0.168562
(〈So · Si〉)2-bond 0.035057 0.028212
(〈So · Si〉)3-bond − 0.014860 − 0.008655

〈φ0−12φ1−4〉,〈φ0−1φ4−12〉,〈φ0−4φ1−12〉 0.152902 0.093991
〈φ0−12φ6−14〉 0.074815 0.046312
〈φ0−12φ2−13〉 0.016658 0.016217
〈φ0−12φ23−31〉 0.040566
〈φ12−26φ22−23〉,〈φ12−23φ22−26〉,〈φ12−22φ23−26〉 0.152902 0.093991
〈φ12−26φ13−27〉 0.074815 0.046312
〈φ12−26φ14−20〉 0.016657 0.016217
〈φ12−26φ10−34〉 0.038405

〈�1−4−12�1−4−12〉 0.159053 0.151897
〈�12−23−26�12−23−26〉 0.159053 0.151897
〈�4−8−32�4−8−32〉 0.171852
〈�21−24−31�21−24−31〉 0.171852
〈�1−4−12�7−10−14〉 0.020505 0.030824
〈�1−4−12�3−5−13〉 0.016554 0.006981
〈�1−4−12�21−24−31〉 − 0.000230
〈�1−4−12�18−27−29〉 0.000141

clear if the rather small size of the singlet gap for the 36-site
system is an artefact of our specific finite size geometry. We
have, however, explicitly verified that it is indeed a genuine
excitation with the computed energy and not an artefact of
the loss of orthogonality affecting the Lanczos vectors [19].
We cannot predict the fate of this small gap at larger length
scales. We now present various spin correlations in the system
to obtain a more detailed characterization of the ground state.

IV. GROUND-STATE CORRELATIONS

We evaluated the spin-spin (〈Si · Sj 〉), dimer-dimer (〈φij ·
φkl〉, φij ≡ Si · Sj ), and scalar spin chirality correlations
(〈�ijk · �lmn〉, �ijk ≡ Si · (Sj × Sk)) for the ground state of
the Hamiltonian as a function of J2. We discuss below in turn
these three correlations to analyse the zero-temperature phase
of the system. Table I shows detailed information about the
spectrum and spin correlations for J2 = 1 and we will refer
to it frequently in the following. As described in Introduction,
this is the point in the phase diagram which has received most
attention and has been conjectured to harbor several different
kinds of ground states. The ground state for this point is a
nondegenerate singlet, which belongs to the eigenvalue −1
for the site permutation operator P . We note that the 28-site
system has several incomplete tetrahedra whereas all sites of
the 36-site system are part of (at least one) tetrahedron which
has all six bonds. To that extent, the correlations of latter system
are expected to have properties more aligned with the full
lattice. For this reason, unless mentioned otherwise, the plots
in this section are all for the system with 36 sites.

A. Two spin correlations

We begin with a brief description the behavior of the two
spin correlations 〈So · Si〉. We evaluate these correlations using
the site with index 0 as the reference site [see Fig. 1(b)].
For J2 = 1 in Table I, (〈So · Si〉)1−bond means the average of
correlations with all sites which can be reached from site 0 by
crossing one bond. Analogous meanings follow for the other
two correlations. As can be seen very clearly, the correlations
decay rapidly with distance. This rapid decay is consistent with
an expectation of a magnetically disordered ground state in
this highly frustrated system and has been reported in earlier
analyses [13]. Choosing another site as a reference site might
result for this finite size system in (quantitatively) different
behavior since translational invariance is absent in the third
direction. However, we have verified that the general trend of
rapid decay holds and does so for all values of J2. We will
not present here further details of two-point correlations as the
general feature that correlations weaken significantly beyond
the smallest length scale is true for all J2. We present in the
following sections higher-order spin correlations.

B. Dimer-dimer correlations

We now study the dimer-dimer correlations in the ground
state. They are denoted in the paper by 〈φi−jφk−l〉 where
φi−j ≡ Si · Sj .

In the Table I we show some relevant dimer-dimer
correlations for J2 = 1. The table shows two different
kinds of dimer-dimer correlations. The first are (〈φ0−12φ1−4〉,
〈φ0−1φ4−12〉,〈φ0−4φ1−12〉) and (〈φ12−26φ22−23〉,〈φ12−23φ22−26〉,
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FIG. 3. The variation with J2 of dimer-dimer correlations within a single tetrahedron for the 36 site cluster. Left figure and middle figures
are for eigenvalue +1 and −1, respectively, of the site permutation operator P detailed in Appendix. The markers indicate the following
correlations in the ground state (φij ≡ Si · Sj ): blue stars → 〈φ0−1φ4−12〉, blue circles → 〈φ0−4φ1−12〉, blue squares → 〈φ1−4φ0−12〉, red stars
→ 〈φ12−26φ22−23〉, red circles → 〈φ12−23φ22−26〉, and red squares → 〈φ12−22φ23−26〉. The figure on the right shows the average of all the three
correlations within a tetrahedron. The blue markers are for the J1 tetrahedron red for the J2 tetrahedron as in the other two figures. The open
circles are for eigenvalue +1 and the stars are for eigenvalue −1 of P .

〈φ12−22φ23−26〉), which are the three possible dimer-dimer
correlations within a tetrahedron, the former being a J1

tetrahedron and the latter a J2 tetrahedron. At J2 = 1, all
the three different dimer-dimer correlations have the same
value.

Figure 3 shows the same dimer-dimer correlations as a
function of J2. The three pairs of nearest-neighbor correlations
in a tetrahedron have been shown explicitly. It is clear from this
figure that the system passes through several regions where
the ground state is doubly degenerate, as mentioned earlier.
These distinct regions in the plot are tabulated in Table II
and the degeneracy is indicated using the eigenvalue of the
site permutation operator P . It can be seen that whenever
the ground state is nondegenerate the three different dimer-
dimer spin correlations within a tetrahedron are all equal.
In case of degeneracy, the symmetry between the dimers
is broken and results in the different values for particular
dimer-dimer correlations in the two eigenstates. We note that
how exactly the broken symmetry manifests itself depends
on the chosen permutation of site indices. For our chosen
permutation, 〈φ0−1φ4−12〉 and 〈φ1−4φ0−12〉 have the same value
in case of degeneracy and 〈φ0−4φ1−12〉 has a different value.
This might change if we had chosen another permutation from

TABLE II. The different regions of J2 and eigenvalue of the
symmetry operatorP for the ground state of the 36-site cluster. Entries
with only one eigenvalue forP correspond to a nondegenerate ground
state. (Note: we vary J2 in increments of 0.05.)

J2 range Eigenvalue of P

(0,0.6) (+1, − 1)
(0.65,0.75) (−1)
(0.8,0.9) (+1, − 1)
(0.95,1.05) (−1)
(1.1,1.3) (+1, − 1)
(1.35,1.65) (−1)
(>1.65) (+1, − 1)

the automorphism group to extract distinct symmetry labels
for the eigenstates.

The figure on the right in Fig. 3 shows the average of the
three dimer correlations at any J2. The effect of the degeneracy
is not visible in this plot and we get a single crossing at J2 = 1.
The general trend of the plots is similar for the 28-site system,
though there the regions where the eigenvalue is degenerate
are different. Thus the details of the existence and locations
of the several crossings might be dependent on the nature of
the finite size system and the boundary conditions. However, if
we consider the full tetrahedron (by considering an average as
above) then at least from the point of view of dimer-dimer
correlations within a single tetrahedron there is a smooth
evolution from the state of disconnected tetrahedra at J2 = 0
to the state in the vicinity of J2 = 1.

We would like to understand in a bit more detail how the
tetrahedral unit evolves within the system from J2 = 0 to J2 =
1. To that end, we analyze quantitatively how the tetrahedron
is entangled with the rest of the lattice. In order to do that, we
make use of the property of Schmidt decomposition of a pure
state. We know that a pure state of any quantum system (say
|ψ〉) partitioned into two parts (say A and B) can be written as

|ψ〉 =
∑

λ

√
λ|λ〉A ⊗ |λ〉B. (2)

Here, λ are real and positive and the number of the terms in the
sum is at most the smaller of the Hilbert space dimensions of A

and B. |λ〉A/B are Schmidt vectors for the partition for a given
λ and A〈λ|λ′〉A = B〈λ|λ′〉B = δλ,λ′ . The Schmidt vectors can
also be shown to be the eigenvectors of the reduced density
matrix of the partition with the eigenvalue λ.

Usual studies of entanglement content of lattice models [24]
involve partitioning the system of interest into two blocks to
study the scaling of entanglement entropy as the size of one of
the partitions is increased. However, Schmidt decomposition
can also be used to directly probe the part of the Hilbert space
of a partition responsible for entangling it with the whole
system. Here we choose the basic tetrahedral unit as one of our
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FIG. 4. The weights of the different total spin sectors of the tetrahedron in the Schmidt decomposed ground state [see Eq. 2 and the following
discussion] with a tetrahedron as one of the partitions. We have shown data for the 36-site system and the P = −1 symmetry sector. The blue,
red, and black markers denote the weights of the singlet, triplet, and quintet sectors of the tetrahedron. The figure on the left is for a J1 tetrahedron
[sites (0,1,4,12)] and the one on the right is for a J2 tetrahedron [sites (12,22,23,26)]. Weights add to 1 as is to be expected for reduced density
matrix eigenvalues.

partitions. Our objective is to check quantitatively which states
of the tetrahedral Hilbert space are principally responsible for
its entanglement with the rest of the lattice and with what
weight. Since the ground state is a singlet and the system
is bipartitioned, the Schmidt vectors can be labeled using a
total spin label for the tetrahedron and the sum of λ values
corresponding to a particular total spin directly gives the weight
of that total spin sector in the Schmidt decomposition.

Figure 4 shows the spin weights corresponding to the three
total spin sectors Stotal = 0,1,2 in the tetrahedron in the
Schmidt decomposition. We have only shown results for the
ground state in the P = −1 sector, the sector P = 1 is similar
except for missing data points in regions where the ground
state is nondegenerate with P = −1 (see Table II). We see that
as the system evolves from J2 = 0 where the tetrahedra are
disconnected from each other, the weight of the triplet sector of
the tetrahedral Hilbert space grows progressively at the expense
of the singlet sector which is the only relevant sector at J2 = 0.
Notably, the weight contributed by the triplet sector of the
tetrahedron near J2 = 1 is not a subdominant fraction of the
total weight but is almost equal to the weight contributed by the
singlet sector. Hence effective theory formulations which rely
on discarding the nonsinglet states of a tetrahedron in effect
discard a part of the Hilbert space, which is as important as the
singlet sector from the point of view of entanglement of the
tetrahedron with the rest of the lattice.

In addition to the weights of the total spin sectors, which
depend on λ, one can also study the structure of individual
Schmidt vectors to gain detailed information about the way
different possible states in a sector contribute to the total weight
of that sector. For instance, one can explicitly evaluate the
weights contributed by the two possible total spin singlets on
the tetrahedron to the overall weight contributed by the singlet
sector shown in Fig. 4. Such a computation shows that the two
degenerate eigenvectors (when present) differ by the weights
contributed by the two singlets simply being exchanged with

each other. In case of nondegenerate ground states, the two
kinds of singlets contribute equal weight. This essentially is
the microscopic reason for the structure of the dimer-dimer
correlations plots shown in Fig. 3.

The analysis of the ground state just presented, involving
Schmidt decomposition with a basic unit of the lattice as
a partition, is of course general and it can be used to gain
information about the ground state structure of other spin
Hamiltonians. As the size of the cluster of interest increases,
this approach enables us to extract information that may not
be easily accessible using correlation functions.

Another set of dimer-dimer correlations shown in Table I are
correlations between dimers on different tetrahedra. Figure 5
shows these correlations as a function of J2 for the 36 site
cluster. The plot on the left is for the ground state with
eigenvalue +1 of the permutation operator P and figure on
the right are for eigenvalue −1. These correlations have been
analyzed to probe the possibility of order in dimer-dimer
correlations, which has been discussed [7–10] as one of the
possible low-temperature states at J2 = 1. As can be seen
by comparing Figs. 3 and 5 (dimer-dimer correlations within
and between tetrahedra), there is an extended region till about
J2 ∼ 0.75 where these correlations between tetrahedra remain
strong and sometimes comparable to the correlations within a
single tetrahedron, something we would expect in a state with
dimer order. Following this, we see a drop in correlations to
low values, which are smaller than the correlations within a
tetrahedron. This is also the time when the disparity between
the dimer correlations belonging to tetrahedra of different
orientation (blue and red markers in the plot) start reducing
sharply. This is something we would expect on general grounds
as the system approaches J2 = 1. In this region, while there
is a decrease of the correlation with distance as can be seen
in Table I and Fig. 5, it is clearly not as rapid as in the case
of the two-point correlator. As a result, while it is clear that
the system goes to a qualitatively different phase, the currently
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FIG. 5. Dimer-dimer correlations (〈φijφkl〉, φij ≡ Si · Sj ) in the ground state across different tetrahedra as a function of J2. (ij ) is the
(0 − 12) for blue symbols and (12 − 26) for the red symbols. (kl) are (6 − 14) (blue squares), (2 − 13) (blue stars), (23 − 31) (blue circles),
(13 − 27) (red stars), (10 − 34) (red circles), (14 − 20) (red squares). The plot on the left is for eigenstate with P = 1 and the right for P = −1.
All data shown in this plot is for the 36-site cluster.

available data are not sufficient to conclusively rule out some
remnant weak dimer order near J2 = 1.

C. Chirality correlations

In Sec. II, we noted that the low-energy degenerate ground-
state manifold of the elementary tetrahedral unit makes this
system a promising candidate for exploring long-range chiral
order. We now present the evaluation of chirality correla-
tions in this system. They are denoted by 〈�i−j−k�l−m−n〉,
where �i−j−k ≡ Si · (Sj × Sk) and as usual we evaluate the
expectation value in the ground state. The evaluated chirality
correlations are shown in Table I for J2 = 1. The same
correlations are shown as a function of J2 in Fig. 6 for 36
sites. The plots on the right are for correlations of the form
(〈�i−j−k�l−m−n〉) and the two triangles involved belong to
different tetrahedra. It is clear from these plots that these
correlations do decay very quickly as can be seen both in the
plots and for J2 = 1 in Table I. While it is not feasible at these
lattice sizes to directly compare predicted values for the chiral
order parameter [16,17], any presumed decay at this rate for a
few more lattice spacings would result in the order parameter
being very small.

Variational Monte Carlo evaluations, which predict chiral
order, usually involve imposing uniformity in the nearest-
neighbor two-spin correlations when choosing an ansatz for
the mean-field analysis. Our calculations have open boundary
conditions in the third direction and that essentially means
all two spin correlations are not equivalent. We would like to
check how severe is the effect of open boundary conditions.
The plots on the left in Fig. 6 are for correlations of the
form 〈�i−j−k�i−j−k〉 and these have been evaluated to get
an indication of the effect of open boundary conditions in the
[111] direction. The open symbols correspond to a �i−j−k with
the triangle being part of a tetrahedron which contains a site
from the triangular lattice layer at the bottom or top in Fig. 1.
The full symbols correspond to a tetrahedron in the interior in
which each site is participating in six bonds. We note that the

open symbols are consistently above the full symbols for all J2.
From the plot it is clear that the triangle on the boundary is more
likely to behave akin to an “isolated” tetrahedron. We note that
for a single tetrahedron 〈�i−j−k�i−j−k〉 has a value of 0.1875
in the ground state. This can be compared with 0.151897 for
the triad (1 − 4 − 12) and 0.171852 for the triad (4 − 8 − 32)
in our case for J2 = 1. Furthermore, we have checked that for a
32-site cluster with periodic boundary conditions the value of
this correlator is 0.158357 forJ2 = 1. These results empirically
indicate that the effect of open boundary conditions in the third
direction in our problem is probably not so severe as to render
a possible chiral ordered state undetectable. Nevertheless, a
computation using a larger lattice size can help putting this
claim on a stronger footing.

V. SUMMARY AND DISCUSSION

This study hopes to contribute to the existing understanding
of the spin-1/2 antiferromagnet on the pyrochlore lattice from
an exact diagonalization perspective. From the point of view
of the nature of the low-lying spectrum and the two spin
correlations, the system shares common features of quantum
frustrated magnetism also found in other systems. The short
length scale of spin correlations is one such feature for J2 = 1
and our study confirms that, though at this lattice size we cannot
formally extract a correlation length. We have also shown the
presence of several low-lying singlet excitations below the
magnetic gap.

We investigated the dimer-dimer and scalar chirality corre-
lations in some detail in Sec. IV. Briefly, we can say that while
not being entirely conclusive, the ED data for the system we
have studied do not strengthen the case for the existence of
these orders at J2 = 1.

In case of the dimer-dimer correlations, several of the earlier
predictions involve a starting point where the Hilbert space of
the tetrahedral unit is truncated to the two degenerate singlets.
We showed using an analysis of the Schmidt coefficients that
result from using the tetrahedron as one of the partitions that
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FIG. 6. The variation of chirality correlations (〈�i−j−k�l−m−n〉,�i−j−k ≡ Si · (Sj × Sk)) with J2 for the ground state of the 36-site cluster.
The two plots on the top are for P = 1 (blue markers) and the two plots on the bottom for P = −1 (red markers). The plots on the left are
for correlations 〈�i−j−k�i−j−k〉 [(ijk) same in both triangles]. (i − j − k) are given by (1 − 4 − 12) (filled circles), (12 − 23 − 26) (filled
squares), (4 − 8 − 32) (empty squares), and (21 − 24 − 31) (empty circles). The two figures on the right are chirality correlations for separated
triangles: 〈�1−4−12�7−10−14〉 (filled circles), 〈�1−4−12�3−5−13〉 (empty circles), 〈�1−4−12�21−24−31〉 (filled squares), and 〈�1−4−12�18−27−29〉
(empty squares). Note that the number of bonds to be crossed to go from one triangle to the other is larger for the open symbols compared to
the closed ones.

the triplet sector of the tetrahedron contributes almost an equal
weight near J2 = 1. This fact in conjunction with the obser-
vation that dimer correlations are small and decaying (albeit
slowly) leads us to suspect that dimer order even if it is present
is likely to be very weak. For the chirality correlations, we find
that the decay is more rapid than in the case of dimer-dimer
correlations and the value of correlations is quite small. We
note here, as also pointed out in the discussion regarding Fig. 3
in Sec. IV B, that the seemingly abrupt changes in correlations
in Figs. 3, 5, and 6 have their origins in the degeneracy of
the spectrum for this specific cluster. We have verified that
for a smaller cluster of 32 sites with fully periodic boundary
conditions (where the data does not have such abrupt changes),
all the statements about the lack of the studied orders still hold.

In order to make the claims of the lack of the above orders
stronger it is important to evaluate the same correlations for
a larger symmetric cluster which can give access to more
separation between the dimers and triangles involved in the
evaluated correlations. One clear way of doing this would
be to add another kagome layer of 12 sites in Fig. 1(a) and
then coupling it to the triangular lattice layer on the other side
using periodic boundary conditions. This would result in a fully
periodic cluster of 48 spins. This lattice size, though accessible

with current technology [25], is considerably more involved
and is beyond the scope of this paper. We can not also in this
work comment on dynamical correlations of this model, which
might have a bearing on the detailed description of the nature
of the possible T → 0 liquid state. These analyses will help
determine the course ahead to a more complete understanding
of the properties of this model.
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APPENDIX

As mentioned in the text, the implementation of the con-
servation of S total

z and spin inversion symmetry for exact
diagonalization is not sufficient to get a nondegenerate ground
state in each symmetry sector. In order to analyze orthogo-
nal eigenvectors with distinct symmetry labels, we use the
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following permutation of site indices, which is an element of
the automorphism group of the graph and results in a symmetry
of the Hamiltonian, for any J2:

(0,5,8,10)(1,3,9,7)(2,11,6,4)(12,13,15,14),

(16,22,24,18)(17,26,25,21)(19,20,23,27),

(28,30,31,29)(32,34,35,33).

Throughout the text, this site permutation is referred to
as P . Here, (a,b,c,d) denotes a cycle representing the site

permutation (a → b → c → d → a). The above permutation
is an element of order 4 of the automorphism group for
the graph representing the considered lattice. The evaluated
eigenvectors belong either to eigenvalues 1 or −1 as indicated
in the text. We note that this is one of several possible
elements of the symmetry group of the Hamiltonian. It would
be perfectly legitimate to choose another permutation, it would
merely result in a different linear combination of the eigenvec-
tors. Information regarding the automorphism group has been
extracted using the GAP, GRAPE, and NAUTY software packages.
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