Quiz 2

Physics of Atoms and Molecules

1. Derive the relation between Einsteins's coefficients A_{ab} and B_{ab} for a given number density of photon $n(\omega)d\omega = C\omega^2 d\omega$, C being a constant.[4]

Hint : (Bose factor)/ $(\pi^2 c^3)$ has been set to C

2. Derive selection rule for the magnetic quantum number m for $\vec{A} = \vec{A}_0 zt$, t being time and $\vec{A}_0 \parallel \hat{x}$. Use the choice of gauge we have adopted so far in class.[4]

Hint : $\nabla \cdot \vec{A}$ is zero but $\langle \phi_a | \vec{A} \cdot \nabla | \phi_b \rangle$ will lead to $\langle \phi_a | z \hat{p}_x | \phi_b \rangle$ which you have seen in the electric quadrupole transition.

3. Consider a system with only three states available to it, as you would get if you diagonalize a 3x3 Hamiltonian describing the system. Suppose the system interacts with its environment and as a result undergoes down transition from a level 'a' at 5 eV to two levels 'b' and 'c' receptively at 3eV and 2eV with natural line widths 0.01 eV and 0.001 eV (in class we wrote it in terms of ω). (In real experiments you get absorption or emission peaks which are Lorentzian in shape with a FWHM rendering the natural line width at low temperature and starts becoming Gaussian with increasing temperature. Now you know why.)

Within the three states description of the system (which is of course approximately valid in the interacting scenario) find the ratio of tradition dipole elements $|\vec{r}_{ba}|$ and $|\vec{r}_{ca}|$. [3]

Hint : Note $W_{ab}^{sp} = (1/\tau) \propto |M_{ba}|^2 / \omega_{ba}$ and $M_{ba} \propto \omega_{ba} |\vec{r}_{ba}|$. You can find ratios of ω and τ from the given quantities

Calculate the oscillator strengths f_{ba} and f_{ca} assuming the three state description of the system to be complete. [2]

Hint: $f_{ba} \propto \omega_{ba} |\vec{r}_{ba}|^2$ and $\sum_b f_{ba} = 1$

4. If the pure thermal broadening of transition 'a' to 'b' is 0.005 eV then how much will it be for the transition from 'a' to 'c' ? [2]

Hint : FWHM $\Delta \omega_{ab} \propto \omega_{ab}$