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ABSTRACT: Construction of hybrid atomic orbitals is proposed as the
approximate common eigenstates of finite first moment matrices. Their
hybridization and orientation can be a priori tuned as per their anticipated
neighborhood. Their Wannier function counterparts constructed from the
Kohn−Sham (KS) single particle states constitute an orthonormal
multiorbital tight binding (TB) basis resembling hybrid atomic orbitals
locked to their immediate atomic neighborhood, while spanning the
subspace of KS states. The proposed basis thus renders predominantly
single TB parameters from first principles for each nearest neighbor bond
involving no more than two orbitals irrespective of their orientation and
also facilitates an easy route for the transfer of such TB parameters across
isostructural systems exclusively through mapping of neighborhoods and projection of orbital charge centers. With hybridized 2s, 2p
and 3s, 3p valence electrons, the spatial extent of the self-energy correction (SEC) to TB parameters in the proposed basis is found
to be localized mostly within the third nearest neighborhood, thus allowing effective transfer of self-energy-corrected TB parameters
from smaller reference systems to much larger target systems, with nominal additional computational cost beyond that required for
explicit computation of SEC in the reference systems. The proposed approach promises inexpensive estimation of the quasi-particle
structures of large covalent systems with workable accuracy.

1. INTRODUCTION

Setting a minimal tight binding (TB) basis for a given systems
of atoms calls for the appropriate orientation of orbitals at each
atomic site in accordance with their immediate atomic
neighborhood so that the nearest neighbor interactions can
be represented by the least number of orbitals. In this
direction, hybrid atomic orbitals have been used by quantum
chemists since their introduction1,2 almost a century ago.
Rational approaches for their construction3−7 over the past
several decades have been primarily focused on partitioning
systems into substructures which are spanned by groups of
hybrid orbitals, leading to unambiguous partitioning of
electrons into bonding orbitals and lone pairs, and further
into atomic orbitals. For such partitioning, notionally similar
several approaches4,6,8−11 have been proposed grossly based on
the maximum overlap condition which in effect leads to
localization of orbitals within the chosen subspace of molecular
orbitals. In these approaches, either the overlap matrix4,6 or the
first-order density matrices,10,12 both of which are calculated
typically on the basis of either Slater type orbitals (STOs)13 or
Gaussian type orbitals (GTOs),14,15 are generally transformed
into block diagonal forms, each spanned by orbitals centered
on nearest neighbor atoms. The resultant hybrid orbitals
involving atomic orbitals centered on more than one atom7,16

render unambiguous bonding orbitals and bond orders, while
the ones like natural hybrid orbitals (NHOs),12 the effective

atomic orbital (EAO),11 oriented quasi-atomic orbitals,17 or
the ones constructed using the maximal orbital analysis18

approach, attempt to describe the state of the orbitals of the
atoms as they participate in bonds. Hybrid orbitals in the line
of NHOs have been popularly constructed ab initio at the HF
level.19,20

A more explicit approach21,22 has been to construct
generalized hybrid orbitals (GHOs) as combinations of
STOs with common Slater exponents and fixed positions of
nodes along bonds to assign their orientation. It is expedient to
clarify that in this paper we refer to bonds simply as the linear
connectivity between atoms which are primarily nearest
neighbors if not mentioned specifically. Many of these efforts
were undertaken in aid to molecular mechanics calculation23,24

where the description of interactions between substructures
eases with the use of orbitals which are directed along bonds.
Effective analytical models for such interactions have also been
developed25 recently for inexpensive deductive computation of
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properties of bulk as well as clusters of spx hybridized covalent
systems. Notably, unlike GHOs, NHOs or EAOs by
construction may not be oriented exactly along the bonds. In
general for all such hybrid orbitals, their directed nature,
maximal localization, and orthonormality are not guaranteed
simultaneously by construction. In a part of this work we
explore the simultaneity of these conditions in construction of
hybrid atomic orbitals from first principles proposed in this
work.
Instead of overlap or density matrices, in this work we take

recourse to first moment matrices (FMM) due to their direct
correspondence to localization. FMMs are known not to
commute among each other in more than one dimension if
projected on to a finite subspace of orthonormal states. We
propose construction of hybrid atomic orbitals (HAOs) as
approximate eigenstates of the FMMs within a finite subspace
of Kohn−Sham (KS) states of isolated atoms. Orientation and
hybridization of the proposed orbitals can be a priori
naturalized as per their anticipated neighborhood. This
substantially eases the effort of orienting them appropriately
while transferring them from isolated atoms to real systems,
which eventually eases the interpretation of elements of the
Hamiltonian. An orthonormal set of localized Wannier orbitals
resembling HAOs is further constructed on the basis of KS
single particle states of the given system. These Wannier
orbitals, which we refer to in this paper as hybrid atomic
Wannier orbitals (HAWOs), constitute a multiorbital tight
binding (TB) basis locked to their immediate atomic
neighborhood by construction and render hopping parameters
involving effectively only two orbitals per bond. HAWOs thus
offer easy transfer of the corresponding TB parameters to other
isostructural systems exclusively through mapping of neighbor-
hoods and projection of charge centers learned from HAOs.
Effective transfer of TB parameters is demonstrated in
nanoribbons of graphene and hexagonal boron nitride, C60,
and nanodiamonds and their silicon based counterparts. In
particular, we show in the HAWO basis that it is possible to
effectively transfer the self-energy (SE) correction (SEC) of
single particle levels from smaller reference systems to much
larger isostructural systems through TB parameters with
minimal additional computational expense through the
proposed mapping of multiorbital TB parameters beyond the
nearest neighborhood.

2. METHODOLOGICAL DETAILS

2.A. Construction of Hybrid Orbitals. In a given
direction, for example along x̂, the most localized orbitals
{ϕ} would diagonalize the corresponding FMM:

ϕ ϕ= ⟨ | | ⟩X xij i j (1)

This becomes clear by noting that the total spread of a finite
set of N number of orbitals along x̂ is given by

∑ ϕ ϕ ϕ ϕΩ = [⟨ | | ⟩ − |⟨ | | ⟩|| ]
=

x xx
i N

i i i i
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2 2

(2)

which can be expressed as

∑ ∑

∑ ∑

∑ ∑ ∑

Ω = −

= | |

= | | + | |

= =

∞

= ≠

∞

= ≠ = +

∞

i

k

jjjjjjj
y

{

zzzzzzz

i

k

jjjjjjj
y

{

zzzzzzz

X X X X

X

X X

x
i N j

ij ji ii ii

i N j i
ij

i N j i

N

ij
j N

ij

1, 1

1,

2

1,

2

1

2

(3)

Diagonalization of X in the N × N subspace would therefore
set the first term in eq 3 to zero, leading to minimization of the
total spread. Notably, X can be calculated directly as in eq 1
only for isolated systems well separated from their periodic
images. For a periodic system with nonzero crystal momentum,
computation of X would essentially involve evaluation of
geometric phases26 of Bloch electrons evolved across the
Brillouin zone.27,28 Nevertheless, there exists therefore a
unique set of orbitals which completely diagonalize X and
would also thereby have maximum localization along x̂. Similar
unique sets exist for the ŷ and z ̂ directions as well. However,
the matrices X, Y, and Z, when projected into a finite subspace
of orthonormal states, do not commute with each other in
general unless mandated by symmetries. This implies that a
unique set of orbitals with maximum localization simulta-
neously in all three orthogonal directions would not exist in
general. The same is true for Wannier functions (WFs) in the
case of periodic systems with nonzero wave vectors. Numeri-
cally localized Wannier functions29,30 therefore are not unique,
and the choice of gauge used for their construction depends on
the chosen criteria of localization.
We chose to look for the possibility to construct a set of

localized orbitals which will be a reasonable compromise
between the three unique sets of orbitals having maximum
localization along the three orthogonal directions. We thus
resorted to the condition of simultaneous approximate joint
diagonalization31 of the three FMMs: X, Y, and Z. To compute
such an approximate eigensubspace of the three FMMs, we
adopted an iterative scheme based on generalization of the
Jacobi method of matrix diagonalization,32 wherein off-
diagonal elements are iteratively minimized by applying
rotation of coordinates by an optimally chosen angle. The
extension of the method to more than one square matrix
irrespective of whether they are commuting or not, is based on
a proposed31 choice of angle of rotation leading to the complex
rotation matrix U which has been proven31 to minimize the
composite objective function (off) defined as

+ +† † †UXU UYU UZUoff( ) off( ) off( ) (4)

where off(A) = ∑1≤i≠j≥N |Aij|
2 for an N × N matrix A. N is the

number of orthonormal states used to compute X, Y, and Z. U
is a product of all the N(N − 1)/2 complex plane rotations,
one each for each pair of (ij) for i ≠ j. For a given (ij) the plane
rotation R(i,j) is an N × N identity matrix except for

= ̅
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where c, s ∈ C and |c|2 + |s|2 = 1.
It has been shown31 that the objective function defined in eq

4 is minimized if U is a product of R(i,j) matrices as shown in
eq 5 whose elements are given as
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where

= + +r x y z2 2 2

and [x,y,z]† is the eigenvector corresponding to the highest
eigenvalue of a 3 × 3 matrix:
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with

= [ − + − ]h A i j a a a a i a a( , , ) , , ( )ii jj ij ji ji ij (7)

Notably, given the form of R(i,j), for a rotated matrix A′ =
R(i,j) AR†(i,j) corresponding to plane rotation for the (ij)th
pair of elements of A, it is easily seen that akk′ = akk for k ≠ i and
k ≠ j, leading to the invariance:

′ + | ′| + | ′ | = + | | + | |A a a A a aoff( ) off( )ii jj ii jj
2 2 2 2

owing to preservation of the norm in the similarity trans-
formation. Therefore, minimizing off(A′) would naturally
imply maximizing |aii′|2 + |ajj′|2, which further implies max-
imizing |aii′ − ajj′|2 since

| ′| + | ′ | = | ′ + ′ | + | ′ − ′ |a a a a a a2( )ii jj ii jj ii jj
2 2 2 2

and

′ + ′ = +a a a aii jj ii jj

owing to invariance of the trace under the similarity
transformation. Therefore, in our case the minimization of
the objective function (eq 4) implies maximizing the
separation between the charge centers of the ith and the jth
orbitals, which is thus similar to the principle of the Foster and
Boys33 scheme of orbital localization. This becomes clear by
rewriting the total spread (eq 3) for the N orbital {ϕi, i = 1,N}
as
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where Ak=1,2,3 = X, Y, Z. Equation 8 clearly suggests that
minimization of the objective function in eq 4 minimizes the
first term in eq 8, leading to minimization of the total spread.
Equation 8 also suggests that the total spread will reduce with
increasing number of states (N) on the basis of which the first
moment matrices are constructed.
We test the proposed approach first with FMMs computed

on the basis of GTOs constructed for Ti with parameters from
ref 34. In Figure 1 we plot the charge centers (⟨ϕ|r|⃗ϕ⟩) of the
approximate eigenstates of the first moment matrices.
Evidently, the charge centers constitute coordination

polyhedra around isolated atoms which are consistent in
shape with those tabulated in Figures 6−8 in ref 35. This
agreement confirms the identity of the resultant orbitals as the
hybrid orbitals and numerically establishes the connection
between maximal localization and hybridization. Such a
connection between sp3 hybridization and minimization of

the total quadratic spread of s and the three p orbitals has been
analytically proven.36 In this work, however, we do not use
GTOs further and rather resort to KS states of isolated atoms.
For example, for atoms of the p block, such as boron, carbon,
nitrogen, and silicon dealt with in this work, if the first moment
matrices are constructed on the basis of three (four) KS states
with the lowest energies, namely, the one s-like nondegenerate
having the lowest energy and two (three) of the three p-like
degenerate states above the s-like state, the approximate
eigensubspace would render three (four) 2sp2 (2sp3)
hybridized orbitals. Notably, for isolated systems such as
molecules, clusters, and nanostructures, the approximate
common eigenspectrum of the FMMs computed within the
manifold of occupied KS states results in partitioning37−39 of
the ground state charge density into bonding and localized
orbitals.

2.A.1. Orientation and Transfer of Orbitals. Although, as
evident above, construction of HAOs for an isolated atom as
such does not require any predefined directionality, the
orientation of the HAOs associated with an atom can be
nevertheless locked to their anticipated neighborhood by
placing the isolated atom within an external potential which
represents the generic or exact atomic neighborhood of the
given atom in the actual system in which the HAOs are to be
used. We construct such external potentials by placing weakly
confining spheres with small constant negative potentials inside
the spheres in place of exact or generic locations of
neighboring atoms as present in the actual system. For
example, to lock sp3 HAOs to a four-coordinated tetrahedral
neighborhood, a tetrahedra of confining spheres is placed
around the host C atom, leading to orientation of the sp3

orbitals maximally in the direction of the confining spheres as
seen in Figure 5a. Typically we find confining potential
amplitudes on the order of 0.01 eV and radius 0.5 Å to be
sufficient for the purpose. Such a weak confinement in the
vicinity causes a change of KS energy eigenvalues of isolated
atoms on the order of 0.001 eV and retains the shape of the
lowest KS states which are used for construction of the HAOs,
effectively unaltered. For sp3 HAOs, the tetrahedra of the
confining spheres can be an exact tetrahedron, as in the case of
bulk Si, or a strained tetrahedron, as in the case of
cyclopropane. As is evident in Figure 2a for cyclopropane

Figure 1. Plots of charge centers (shown in gray) of the hybrid
orbitals formed by the group of GTOs representing 3s, 3p, and 3d
orbitals of Ti (shown in yellow) constructed as per ref 34.
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and in Figure 2b−e for planar molecules CnHn, the projected
charge centers of the HAOs (shown in gray) symmetrically
deviate from the C−C bonds with decreasing C−C−C angle as
we go from C6H6 to C3H3. For all of these molecules the
HAOs were constructed with the weakly confining spheres
placed around the host C atom exactly as per their nearest
neighbors in the molecules, resulting in HAOs largely retaining
their pure sp3 nature but oriented symmetrically about the
directions of the confining spheres from the host atoms. The
placement of confining potential spheres thus provides a gross
directional reference for orientation of the full set of the
HAOs.
The positions of the charge centers of the HAOs are learned

in terms of the directions of the confining spheres from the
isolated host atom. Such learnings are subsequently used in
projecting centers of HAOs around the corresponding atom in
a given system, as seen for the molecules in Figure 2 and the
nanodiamonds in Figure 4. While HAOs are transferred from
their nursery of isolated host atoms to their matching host
atoms in a given system, HAOs are rotated such that their
actual charge centers align along the direction of their
projected centers from the matching host atoms.
In addition to providing reference for orientation, the

confining spheres can have an important role in deciding the
level of hybridization of the HAOs. This becomes evident by
noting that, if we use four KS states and three confining
spheres coplanar with the host atom, then instead of forming
four sp3 orbitals the HAOs separate into three 2sp2 orbitals and
one 2pz orbital, as is evident from the unhybridized shape of
the 2pz orbital in Figure 3a. Figure 3 shows the evolution of the

2pz HAO from a pure orbital perpendicular to the plane of sp2

hybridization, toward a 2sp3 hybridized orbital, with increasing
noncoplanarity of the confining spheres with the host atom.
HAOs with such intermediate hybridization (2sp2+ + 2pz

+)
have been used for C60 (Figure 8). However, stronger
confining potentials are found necessary to influence the
hybridization of KS states, typically on the order of 1 eV for C
atoms, such that the orbitals align along the confining spheres.
The confining potentials in this case therefore do lead to minor

modification of the shape of the KS states, and thereby of the
HAOs as well, although not quite obviously at the isosurfaces
plotted in Figure 3. However, the values of TB parameters
calculated on the basis of their Wannierized counterparts in
C60 suggests that the overall shape of those orbitals are largely
retained close to the sp2 orbitals. Notably, we could have used
stronger confinement to align the HAOs in C3H6, C3H3, or
C4H4 as we did for C60, but the degree of confinement would
have to be much higher than that used for C60, which would
have substantially altered the shape of the HAOs themselves,
since it is obvious that with pure s, px, py, and pz orbitals it is
impossible to form any set of hybrid orbitals in which two
orbitals can have relative orientation less than 90°.

2.B. Wannier Functions Based on HAOs. The next step
is to construct orthonormalized Wannier functions from the
KS states following the HAOs transferred to a given system.
The transferred HAOs constitute a nonorthogonal basis of
hybridized atomic orbitals. In the general framework of
periodic systems with nonzero wave vectors (k)⃗, we begin
with constructing a nonorthogonal set of quasi-Bloch states as

∑ψ ϕ̃ ⃗ = ⃗⃗
⃗

·⃗ ⃗
⃗r

N
r( )

1
e ( )k j

R

k R
R j,

i
,

(9)

where ϕR⃗,j(r)⃗ is the jth HAO localized in the unit cell denoted
by the lattice vector R⃗ spanning over N unit cells defining the
Born−von Karman periodicity. The projections of the
nonorthogonal quasi-Bloch states on the orthonormal Bloch
states constructed from the KS single particle states at all
allowed k ⃗ are calculated as

ψ ψ= ⟨ | ̃ ⟩⃗ ⃗ ⃗Ok m j k m k j, , ,
KS

, (10)

Elements of O thus record the representation of the HAOs
within the manifold of KS bands considered. Overlaps between
the nonorthogonal quasi-Bloch states within the manifold of
the considered KS states are therefore calculated as

∑= *⃗ ⃗ ⃗S O Ok m n
l

k l m k l n, , , , , ,
(11)

The degree of representability of HAO ϕn, within the set of
KS states considered, is guaranteed by setting a lower cutoff on
individual Sk,⃗n,n values to be typically more than 0.85. For all
the systems studied in this work, the above criterion is found to
be satisfied by the lower bound on the number KS states,
which is set by the total number of valence orbitals of all atoms
of a given system. A new set of orthonormal Bloch states from
the KS single particle states are subsequently constructed using
the Löwdin symmetric orthogonalization40 scheme as

∑ ∑ ψΨ ⃗ = ⃗⃗ ⃗
−

⃗ ⃗r S O r( ) ( )k n
m

k m n
l

k l m k l, , ,
1/2

, , ,
KS

(12)

where the sum over l spans the KS states considered and the
sum over m takes care of the orthonormalization. Sub-
sequently, a localized set of orthonormal Wannier functions are
constructed as

∑Φ ⃗ = Ψ ⃗′
⃗

− ·⃗ ′
⃗÷ ◊÷÷÷

÷ ◊÷÷÷
r

N
r( )

1
e ( )R j

k

k R
k j,

i
,

(13)

In this process the Löwdin symmetric orthogonalization
clearly provides a choice of gauge for linear combination of KS
states such that the resultant Wannier functions {Φ ⃗ }′

÷ ◊÷÷÷ r( )R j,

resemble the corresponding HAOs [{ϕR⃗,j(r)⃗}) as much

Figure 2. Projected charge centers of HAOs shown by gray spheres
depicting their orientations around their host C atom shown in
yellow.

Figure 3. (a−d) Evolution of a pure 2pz orbital (a) from sp2

hybridization background, to an sp3 hybridized orbital due to
increased deviation of the centers (cyan spheres) of the three
confining potential spheres from coplanarity with the host atom
(yellow sphere). Centers of HAOs are shown by gray spheres.
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possible within the manifold of KS states considered. Hence
we refer to these Wannier functions as the hybrid atomic
Wannier orbitals (“HAWOs”). In Figure 5 we show an HAO

before and after transfer to adamantane and the corresponding
HAWO constructed from the KS states of adamantane.
HAWOs can thus be considered as analogue of NHOs
constructed from a given set of KS states with acceptable
representability. Notably, following the same approach,
templates of bonding and lone pair orbitals made of HAOs
can be used to construct localized Wannier functions rendering
orbital resolved description of the valence band.29,30 Similarly,
templates of antibonding orbitals made of HAOs can be used
to extract a meaningful description of the unoccupied bands in
the line of the valence virtual orbitals.41

2.B.1. TB Parameters in HAWO Basis. TB parameters in the
HAWO basis are computed from energetics of KS single
particle states as

∑ ∑

= ⟨Φ | |Φ ⟩

= *

′ ⃗ ′ ⃗

⃗

·⃗ ′− ⃗ − −
⃗

÷ ◊÷÷÷ ÷ ◊÷÷÷

÷ ◊÷÷÷
t H

OS OS Ee ( ) ( )

R R i j R i R j

k

k R R

l
li lj k l

, , , ,
KS

,

i ( ) 1/2 1/2
,

KS

(14)

Notably, similar TB parameters have been derived in the
past two decades from first principles based on either the
maximally localized Wannier function42−47 or atomic orbi-
tals48,49 constructed from KS states. Much effort has been
reported in deriving TB parameters through projection of KS
states on pseudoatomic orbitals50,51 as well. However, attempts
to calculate TB parameters in a hybrid atomic orbital basis

constructed from first principles, as proposed in this work, has
been limited so far primarily to analytical models.52,53

In Figure 6a for cyclopropane, we plot the TB parameters
calculated as per eq 14 for two HAOs participating dominantly

in a C−C bond and a C−H bond. The tsp3,sp3 value is
comparable to that in adamantane (C10H16) (Figure 12)
despite the substantial misalignment (Figure 2) of HAO and
the C−C bond in cyclopropane, while there is perfect
alignment of the two in C10H16. The hopping parameters are
obtained with 18 KS states, which is same as the total number
of valence orbitals of all the atoms, resulting thereby in density
of states in exact agreement with that obtained from DFT
(Figure 6c) as discussed in the next paragraph. In Figure 6b we
plot hopping parameters for π and σ bonds as a function of C−
C bond lengths available in planar C3H3 to C6H6 molecules. As
is evident in Figure 2, the best alignment of the HAOs along
the C−C bond is possible for C6H6 and the worst is obviously
for the shorter bond of C3H3 and similarly for C3H6. Yet the
highest in-plane hopping parameter in terms of magnitude is
found for the shorter bond of C3H3, which is about 20% more
than that of the C−C in-plane bond of benzene, whereas the
C−C bond length in benzene is only about 2.2% more than the
shorter bond of C3H3. Similarly, the C−C nearest neighbor
hoping parameter and the bond length in C3H8 are both within
1% of those of C3H6, whereas in C3H8 the HAOs are almost
perfectly aligned along the C−C bond (Figure 4) while in
C3H6 they are misaligned by more than 20°. These results can
possibly be explained by the inherent bent nature of the
bonds54 in C3H6 and C3H3, reflected by the symmetric
misalignment of the HAOs along the two C−C bonds while
perfect alignment is maintained along the C−H bonds. We
plan to examine this aspect for bent bonds in detail in the
future.
As is evident in Figure 7a for C10H16, the edge of the valence

band is already well described if we consider only the nearest
neighbor hopping in the HAWO basis. However, as shown in

Figure 4. CnHm systems with projected charge centers of HAOs
shown as gray spheres, used in this work as example of sp3 hybridized
covalent systems.

Figure 5. (a) HAO representing an sp3 orbital of an isolated C atom
(yellow sphere) used in this work. Charge center of the orbital is
shown in gray. Centers of the confining spheres used to determine
gross orientation are shown in cyan. (b) HAO shown in (a)
transferred to a C atom an adamantane (C10H16) molecule; (c) the
corresponding HAWO.

Figure 6. (a) TB parameter calculated for cyclopropane. (b) Nearest
neighbor TB parameters between in-plane and out-of-plane orbitals in
C3H3, C4H4, C5H5, and C6H6 molecules (shown in Figure 2) arranged
as a function of C−C bond lengths available in the molecules. (c)
DOS calculated from 50 lowest KS eigenvalues, compared with DOS
from eigenvalues of TB Hamiltonian constructed from 18 lowest KS
states, 18 being the total number of valence orbitals of cyclopropane.
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Figure 7b onward, the match of DOS from TB and DFT
improves drastically with increasing extent of hopping
considered up to the second nearest neigbour. This is
immediately understood by noting the non-nominal positive
value of the second nearest hopping element plotted in Figure
Figure 7e, arising due to the proximity of lobes of different
signs of the two HAOs. In Figure 7e−g, we demonstrate the
evolution of the TB parameters, HAWOs, and DOS from TB,
as a function of the number of KS states considered for the
construction of HAWOs. The rationale for this analysis is the
possibility that the antibonding subspace may not be
adequately represented by the unoccupied KS states if we
restrict the total number of KS states to be the same as the
total number of HAOs associated with all the atoms, which is
same as the total number of valence orbitals of all the atoms.
Indeed we see clear convergence of the shape of the HAWO
(Figure 7f) as well as the corresponding TB parameters
(Figure 7e) if we consider KS states in excess of the total
number of HAOs. Figure 7h,i suggests that the convergence
can be much quicker for unhybridized orbitals such as 2pz
compared to hybridized orbitals such as sp2 and sp3, since the
unhybridized orbitals primarily constitute the edges of the
valence and conduction bands. However, the TB DOS
expectedly starts deviating from the DFT DOS more in the
conduction band (Figure 7g) if we include more KS states
beyond the total number of HAOs, owing to the semiunitary
nature of the net transformation matrix (OS1/2) implied in eq
12 which will be rectangular in such scenarios. It is thus
important to decide on the number of KS states to be
considered depending on the purpose. If the aim is to
represent only the valence bands through well-localized
HAWOs, then it may be prudent to look for convergence of
HAWOs in terms of KS states. However, if the band gap needs
to be represented accurately by the TB parameters, then the
number of KS states should be kept the same as the total
number of valence orbitals.
2.C. Bottom-Up Mapping of TB Parameters. The

HAWO basis derived from the KS states offers a multiorbital
TB basis which is by construction locked to the local
coordination as per the atomic neighborhood of each atom.
The TB parameters derived in such a basis should therefore be

transferable from one system to another with a matching
atomic environment. A key aim of this work is to demonstrate
such a transferability for effective transfer of multiorbital TB
parameters in the HAWO basis from smaller reference systems
to larger target systems. The mapping of TB parameters is
done in two steps.
1. Pairs of atoms of the target system, not limited to nearest

neighbors, are mapped onto pairs of atoms in the reference
system based on a collection of criteria.
2. Among the mapped pairs of atoms, pairs of system orbitals

are mapped to pairs of reference orbitals through mapping of
their respective projected charge centers. In step 1 the criteria
to map pairs of atoms include matching structural parameters
such as their spatial separation and their individual nearest
neighborhoods characterized in terms of the type of
neighboring atoms and angles made by nearest neighbors on
the atoms. In particular, we use a parameter calculated as

∑ζ = Z w r( )i
j

N

j i j,

i

(15)

where Ni is the number of neighbors of the ith atom within a
suitably chosen cutoff radius, w is a weight factor which is a
function of the distance ri,j of the jth neighbor of the ith atom,
and Zi is a characteristic number to be associated with each
type of atom. Zi can be chosen to be the atomic weight, as we
mostly used in this work, or a similar number which can
facilitate identification of a type of neighborhood or a region of
the system through values of ζ. In this work we chose the
weight factor w to be 1.0 within half of the cutoff radius,
beyond which the factor is smoothly reduced to zero using a
cosine function. The choice of cutoff radius depends on the
size of the reference system. It should not be too large for
variations to average out, nor should it be too small to become
insensitive to morphological variations in the reference system
itself. ζ allows us to map atom pairs effectively through a
prudent choice of values of {Zi} since it would allow
assessment of the proximity of atoms to edges, interfaces, or
any kind of structural inhomogeneity without any exhaustive
structural relaxation.
In step 1, the minimum of the deviation

Figure 7. For C10H16, (a−d) evolution of density of states (DOS) with increase in range of hopping starting from (a) the nearest neighbor (nn) to
(d) all available hopping graduating through hopping between second (2n) and third (3n) nearest neighbors and beyond. Convergence of (e) TB
parameters and (f) spatial localization of 2sp3 orbitals and (g) TB DOS, in terms of the number of KS states used in construction of HAWOs as
mentioned in the legend of (f). KS DOS is shown below (g). Similar convergence of TB parameters for (h) 2pz and (i) 2sp2 orbitals in AGNR (3p
+ 1, p = 2).
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ζ ζ ζ ζ| − | + | − |1
target

1
reference

2
target

2
reference

obtained within a range of allowed deviations of structural
parameters is used as the criterion to choose matching pairs of
atoms between target and reference systems.
As in step 1, in step 2 the mapping of one or a pair of HAOs

from the reference to target systems is done on the basis of
matching structural parameters, as well as a parameter
calculated as

∑ξ ζ= w r( )i
j

N

j i j
WC

,

i

(16)

where ζj corresponds to the jth atom in the neighborhood
defined by wWC around the projected charge center of the ith
HAO. The angle made by the directions of the projected
charge centers of the HAOs from their respective host atoms is
a key matching parameter in step 2. Additionally, if the HAOs
belong to different atoms, then the dihedral angle made by the
centers of the HAOs through the axis connecting their host
atoms is also a key parameter. Thus, in step 2, the minimum of
the deviation

ξ ξ ξ ξ| − | + | − |1
target

1
reference

2
target

2
reference

within acceptable deviations of structural parameters defines
matching pairs of HAOs.
As an example, we show mapping from a small curved finite

patch (Figure 8a) to C60. Since C60 constitutes a curved surface

without any edge, mapping should be done from the innermost
neighborhood of the chunk. Since in C60 the angles made by
nearest neighbors at a given atom differ distinctly depending
on whether an angle opens inside a pentagon or a hexagon, the
matching parameters for mapping are mostly structural,
primarily the direct and dihedral angles. The reference patch
is cropped from C60 and passivated by H. We fix the tolerance
of ζ to zero, which implies that C60 is getting mapped from

only six C atoms of the patch (Figure 8a) having all C
neighbors. Given the curvature of C60, we chose to use
confining spheres to influence the hybridization of sp2 HAOs
in order to break their coplanarity and align them along nearest
neighbor C−C bonds, as shown in Figure 3c, where the
placement of confining potential spheres are as per the nearest
neighborhood in C60. The projected charge centers of HAOs
with intermediate hybridization (2sp2+ + 2pz

+) between sp2 +
pz and sp3, shown in Figure 8c, is used to map from that of the
reference shown in Figure 8b. The TB parameters t2sp2+,2sp2+ for
the shorter and longer C−C bonds are about −6.9 and −6.5
eV, whereas t2pz+,2pz+ values are about −2.36 and −2.0 eV. The
match of the DFT DOS with the DOS from TB parameters
mapped from the reference system is shown in Figure 8d,
which can be further improved beyond the valence bond by
considering HAOs for excited states, which will be taken up in
a subsequent work on optical properties.

2.D. Self-Energy Correction of TB Parameters. Self-
energy-corrected TB parameters { }

′ ⃗
÷ ◊÷÷÷t
R R i j, , ,
QP in the HAWO basis

are calculated by substituting Ek,⃗n
KS in eq 14 by quasiparticle

energies Ek,⃗n
QP obtained at the G0W0 level, which is the first-

order non-self-consistent GW approximation of MBPT.55,56

Within the GW approximation, the quasi-particle energies are
approximated as

ψ ψ= + ⟨ |Σ − | ⟩⃗ ⃗ ⃗ ⃗E E V
k n k n k n k n,
QP

,
KS

,
KS

xc
KS

,
KS

(17)

where Vxc
KS is the mean-field exchange−correlation potential

and Σ57 is the self-energy operator derived by considering the
many-electron effects as a perturbation treated within a self-
consistent framework of Dyson’s equation formulated in terms
of the one-particle dynamic nonlocal Green’s function
constructed from the KS states. Similar efforts have been
reported in recent years on incorporating the SEC in TB
parameters computed in terms of the maximally localized
Wannier functions.58−60 Incorporation of the SEC in TB
parameters has also been attempted through matching specific
bands of the QP structure.61−63

3. COMPUTATIONAL DETAILS

Electronic structures of the ground states of all the systems
considered in this work were calculated using the Quantum
Espresso (QE) code,64 which is a plane wave based
implementation of DFT. We have used norm-conserving
pseudopotentials with the Perdew−Zunger (LDA) exchange−
correlation65 functional and a plane wave cutoff of 60 Ry for
wave functions and commensurately more for charge density
and potential. Variable cell structural relaxation has been
carried out for all periodic systems. We used a 1 × 1 × 15
Monkhorst−Pack grid of k-points for AGNRs and a 1 × 1 × 29
Monkhorst−Pack grid of k-points for ZGNRs as well as for
ZBNNRs. Self-energy corrections to single particle levels have
been estimated at the non-self-consistent G0W0 level of the
GW approximation implemented in the BerkeleyGW code.66

To calculate the static dielectric matrix required for
computation of the self-energy operator, the generalized
plasmon-pole model57 is used to extend the static dielectric
matrix in the finite frequencies. For all the nanoribbons,
parameters are chosen from ref 67. In-house implementation
interfaced with the QE code is used for generation of HAOs,
HAWOs from KS states, calculation of TB parameters in the

Figure 8. (a) Structure of reference system and (b) corresponding
charge centers of HAOs with intermediate hybridization (2sp2+ +
2pz

+) between sp2 and sp3. (c) Projected charge center with similar
hybridization for C60. (d) Corresponding matches of DFT DOS with
TB DOS with parameters mapped from the reference system.
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HAWO basis, and mapping of TB parameters from reference
to target systems.
3.A. Mapping Self-Energy-Corrected TB Parameters

in HAWO Basis. 3.A.1. Nanoribbons. We have recently
reported68 estimation of the quasi-particle (QP) band gap for
graphene and hBN nanoribbons based on the self-energy
correction to TB parameters mapped from narrower ribbons
on the basis of a single 2pz electron per atom. The transfer was
made explicitly by identifying equivalent atoms based on
proximity to the ribbon edges as shown in Figures 2c−e, 3f,
and 5a in ref 68. In this section we begin by systematizing the
process of identifying the equivalent atoms through the
mapping mechanism proposed in section 2.C. The identi-
fication is primarily based on ζ values for atoms and ξ values
for HAO charge centers wherever sufficient variations of ζ and
ξ are available in the reference systems, as demonstrated in
Figures 9c,f,i and 11c,f,i for hBN and ZGNR, respectively.

Mapping of AGNR from p = 1 to p = 4, as shown in Figure
10d,g,j,m, calls for matching of structural parameters as the key
strategy for mapping, since the width of reference AGNR with
p = 1 of the 3p + 1 family is narrow enough and there are only
two types of C atoms per unit cell.
For hBN, an acceptable match (Figure 9g,j and h,k) between

explicitly computed band structures, and the same computed
from TB parameters with only 2pz orbitals mapped from a
narrower ribbon (Figure 9a), is achieved simultaneously at the
DFT and DFT+G0W0 levels, with hopping considered within
the range of no less than 5 Å. A higher spatial range of mapping
of self-energy-corrected TB parameters is required for
matching of band structures at the DFT+G0W0 level for

AGNR (Figure 10l), and more so for ZGNRs (Figure 11k)
with smaller band gaps. Notably, for AGNR, the match of self-
energy-corrected band edges for p = 4 naturally improves with
mapping from p = 2 (Figure 10o). These trends simply relate

Figure 9. (a, b) Hexagonal zigzag boron nitride nanoribbons
(hZBNNR, hBN) hBN12 and hBN24, respectively. (c, f, i) Plots of
ζ and ξ values “ref” (reference hBN12) and “sys” (target hBN24) for
different spatial ranges of neighborhood considered for mapping. (d,
g, j) Matching of DFT band structure and mapped TB band structure
for increasing rmap. (e, h, k) Matching of DFT+G0W0 band structure
and mapped self-energy-corrected TB band structure for increasing
rmap.

Figure 10. (a−c) Armchair graphene nanoribbons (AGNR) of family
n = 3p + 1 with (a) p = 1, (b) p = 2, and (c) p = 4, respectively. (d, g,
j, m) Plots of ζ and ξ values “ref” (reference p = 1 (d, g, j) and p = 2
(m)) and “sys” (target p = 4) for different spatial ranges (rmap) of
neighborhood considered for mapping. (e, h, k, n) Matching of DFT
band structure and mapped TB band structure for increasing rmap. (f, i,
l, o) Matching of DFT+G0W0 band structure and mapped self-energy-
corrected TB band structure for increasing rmap.

Figure 11. (a, b) Zigzag graphene nanoribbons (ZGNR, Z), Z12 and
Z24, respectively. (c, f, i) Plot of ζ and ξ values “ref” (reference Z12)
and “sys” (target Z24) for different spatial ranges of neighborhood
considered for mapping. (d, g, j) Matching of DFT band structure and
mapped TB band structure for increasing rmap. (e, h, k) Matching of
DFT+G0W0 band structure and mapped self-energy-corrected TB
band structure for increasing rmap.
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to the degree of localization of the states at the band edges: the
more they are delocalized, the larger is the spatial range within
which the self-energy correction to TB parameters is to be
considered.
3.A.2. Nanodiamonds. Figure 12 suggests that the extent of

SEC to TB parameters is spatially limited mostly within the

third nearest neighborhood, implying possible transferability of
self-energy-corrected TB parameters to large covalent systems
from smaller reference systems which are large enough to
accommodate the full spatial range of non-nominal SEC to TB
parameters. Accordingly, mapping in nanodiamonds is
demonstrated with C3H8 and C10H16 (adamantane) as

reference systems to map to nanodiamonds C26H32 (pentam-
antane) and C84H64.
We start with attempts to map C10H16, C26H32, and C84H64

targets from C3H8 reference in sp3 HAO basis. The mapping
process starts with plotting the distance of atom pairs (C−H,
C−C, H−H) for target and reference systems. As seen in
Figure 13a, there is a one-to-one correspondence of C−C
bonds between C3H8 and all targets up to approximately 2.5 Å,
which is the second nearest C−C distance. For C−H and H−
H pairs, such correspondence exists up to about 3 and 3.75 Å,
respectively. These correspondences decide the range of
hopping parameters to be mapped. Notably, C3H8 has two
varieties of C atomsone with two (two) C (H) neighbors
and the other with one (three) C (H) nearest neighbors
whereas C10H16 has C atoms with three (one) C (H)
neighbors and two (two) C (H) neighbors. Additionally,
C26H32 and C84H64 have C atoms with all C nearest neighbors
(nn). An exact match of ζ among all atoms of reference and
target systems is thus impossible in these examples. Matching ζ
and ξ will therefore be less effective in mapping from C3H8.
Also, since there is only one C atom with two (two) C (H)
neighbors in C3H8, matching ζ can be restrictive in terms of
the variety of orientations. We thus opt for matching structural
parameters within a tolerance for ζ set to the minimum
difference of ζ values between similar types of atoms in
reference and target systems to ensure maximal matching of ζ
besides finer matching of structural parameters. As is obvious, a
better choice of reference system than C3H8 with C atoms
having all varieties of neighborhoods can be easily made.
However, we deliberately chose to test mapping from C3H8,
which is the smallest possible reference system with just one C
atom with two (two) C (H) neighbors, since such C atoms
dominate the surfaces of the nanodiamonds and are thereby
expected to host the states at the edges of the valence and
conduction bands. Surprisingly, as is evident in Figure 13c,
with mapping of only the nn-hopping terms from C3H8 to
C10H16, the mapped TB DOS already matches reasonable well

Figure 12. TB parameters involving a C atom in C10H16 with three C
neighbors, computed using 56 KS states with and without SEC at the
G0W0 level, and plotted as a function of distance from the atom. TB
parameters from DFT are same as those plotted in Figure 7e.

Figure 13. Distribution of distance between pairs of atoms in (a) reference (C3H8) and (b) target (C10H16) systems. (c, d) Match between DFT
DOS and mapped TB DOS as demonstration of efficacy of mapping of TB parameters from C3H8 to C10H16 with increasing spatial range of
neighborhood considered for mapping. (e) Match between DFT+G0W0 DOS and mapped self-energy-corrected TB DOS.
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with the DFT DOS of C10H16 in terms of the band gap and the
DOS around band edges. With an increase in the range of
hopping to 2.7 Å (nn, 2n), 3 Å (nn, 2n, 3n), and 4 Å (2n, 3n,
4n)) for C−C, C−H, and H−H pairs based on the availability
of one-to-one mapping (Figure 13a,b), the match of mapped
TB DOS and DFT DOS (Figure 13d) extends deeper into the
valence band. The quality of match improves further with
additional mapping of C−H and H−H atom pairs up to 4.5 Å
(Figure 13d) without compromising on tolerance factors.
Notably, the ranges of hopping of C−H and H−H, although
more than that of C−C, are actually consistent with the range
of C−C hopping, since the farthest H atoms considered are
associated with two second nearest C atoms. The same
mapping parameters are then used to map self-energy-
corrected TB (SEC-TB) parameters of C3H8 to C10H16,

leading to a good match of not only the SEC-TB mapped band
gap and the QP band gap calculated at the G0W0 level, but also
the self-energy-corrected DOS of the valence band (Figure
13e). Next, we attempt mapping C26H32 from smaller
references, starting with mapping from C3H8 to C26H32,
which is an about 5 times increase in system size. Mapping of
only nearest neighbor C−C and C−H hopping underestimates
the band gap by about 15% (Figure 14c). Mapping all hopping
parameters up to 4.5 Å, which is the maximum range of
hopping available in the reference, drastically improves the
overall match of not only mapped TB DOS and DFT DOS
(Figure 14d) but also mapped SEC-TB DOS and DFT+G0W0

DOS (Figure 14e), as is seen in the case of mapping C10H16

from C3H8.

Figure 14. Distribution of distance between pairs of atoms in (a) reference (C3H8) and (b) target (C26H32) systems. (c, d) Match between DFT
DOS and mapped TB DOS as with an increasing spatial range of neighborhood considered for mapping. (e) Match between DFT+G0W0 DOS and
mapped self-energy-corrected TB DOS.

Figure 15. Distribution of distance between pairs of atoms in (a) reference (C10H16) and (b) target (C84H64) systems. (c, d) Match between DFT
DOS and mapped TB DOS as with an increasing spatial range of neighborhood considered for mapping. (e) Match between DFT+G0W0 DOS and
mapped self-energy-corrected TB DOS.
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Finally, we demonstrate mapping to C84H64 from C10H16,
which is an about 6 times enhancement in system size.
Mapping of only the nearest neighbor C−C and C−H bonds
results in a good match of the mapped TB band gap (Figure
15c) with the DFT band gap. With further mapping of
hopping parameters up to 2.75 Å (nn, 2n), 4 Å (nn, 2n+), and
4 Å (2n, 3n+) (Figure 15a,b) for C−C, C−H, and H−H pairs,
a satisfactory match of the entire valence band and a good
match (Figure 15d) of the band gap is achieved. Mapping of
the SEC of TB parameters from C10H16 to C84H64 results in a
QP band gap of about 7.2 eV, which is within 5% deviation
from the QP band gap implied in the literature.69−72

In Figure 16 we show similar mapping of TB parameters at
the DFT and DFT+G0W0 levels for Si based nanodiamonds. As

in the case of nanodiamonds, mapping of hopping up to
second nearest Si neighbors and H atoms associated with them
from Si3H8 renders a good match of the SEC-TB band gap
with the explicitly estimated DFT+G0W0 band gap almost up
to 6 times escalation of the system size. These results imply
consistency in transferability of self-energy-corrected TB
parameters with increasing principal quantum number of
valence orbitals.

4. CONCLUSION
In conclusion, construction of naturalized hybrid atomic
orbitals (HAOs) is proposed as the common eigenstates of
the noncommuting set of finite first moment matrices
corresponding to the orthogonal directions. Hybridization
and orientations of HAOs are numerically naturalized as per
their anticipated immediate atomic neighborhood. Choice of
gauge based on the HAOs leads to the construction of the
hybrid atomic Wannier orbitals (HAWOs) from Kohn−Sham
(KS) single particle states, rendering a multiorbital orthonor-
mal tight binding (TB) basis locked to the nearest
neighborhood. HAWO basis allows calculation of single TB
parameters per bond from first principles and facilitates their
easy transfer across isostructural systems through mapping of
immediate atomic neighborhoods and projection of charge
centers learned in the process of naturalization of the HAOs.
The mapping allows effective bottom-up transfer of self-
energy-corrected TB parameters estimated within the GW

approximation of many-body perturbation theory in the
HAWO basis, from smaller reference systems to much larger
target systems having similar covalent atomic neighborhoods,
suggesting a possible route toward computationally inex-
pensive estimation of quasi-particle structures of large covalent
systems within an acceptable range of accuracy, with extra
computational cost scaling as N2, beyond the explicit
computation of self-energy correction for smaller reference
systems which typically scale as N4. Demonstrated in
nanoribbons and nanodiamond systems, the transferability of
self-energy-corrected multiorbital TB parameters in the
HAWO basis is rooted at the spatial localization of the extent
of self-energy correction predominantly within the third
nearest neighborhood, which appears to be robust for σ
bonds but less so with π bonds and unpaired electrons.
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