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ABSTRACT: Construction of hybrid atomic orbitals is proposed as the Nurseryof Orthogonal directed
. . . . . hybrid atomic orbital basis from KS sates
approximate common eigenstates of finite first moment matrices. Their  (HAO) with I Transfer of
P PR . f P . P numerically adjustable TB parameters
hybridization and orientation can be a priori tuned as per their anticipated {8 F T /:\ through mapping o
neighbourhoods

neighborhood. Their Wannier function counterparts constructed from the directedness Non-orlpogonal
basis of HAOs

Kohn—Sham (KS) single particle states constitute an orthonormal —) }é’
multiorbital tight binding (TB) basis resembling hybrid atomic orbitals < /:\ » 3;.‘ g4 jﬁ»
locked to their immediate atomic neighborhood, while spanning the ¢ ® W /g:m
subspace of KS states. The proposed basis thus renders predominantly - gi&%
single TB parameters from first principles for each nearest neighbor bond = 3838
involving no more than two orbitals irrespective of their orientation and X

also facilitates an easy route for the transfer of such TB parameters across

isostructural systems exclusively through mapping of neighborhoods and projection of orbital charge centers. With hybridized 2s, 2p
and 3s, 3p valence electrons, the spatial extent of the self-energy correction (SEC) to TB parameters in the proposed basis is found
to be localized mostly within the third nearest neighborhood, thus allowing effective transfer of self-energy-corrected TB parameters
from smaller reference systems to much larger target systems, with nominal additional computational cost beyond that required for
explicit computation of SEC in the reference systems. The proposed approach promises inexpensive estimation of the quasi-particle
structures of large covalent systems with workable accuracy.

1. INTRODUCTION atomic orbital (EAO),"" oriented quasi-atomic orbitals,"” or
the ones constructed using the maximal orbital analysis'®
approach, attempt to describe the state of the orbitals of the
atoms as they participate in bonds. Hybrid orbitals in the line

Setting a minimal tight binding (TB) basis for a given systems
of atoms calls for the appropriate orientation of orbitals at each
atomic site in accordance with their immediate atomic

neighborhood so that the nearest neighbor interactions can of NI;{SOS have been popularly constructed ab initio at the HF
be represented by the least number of orbitals. In this level. ™

direction, hybrid atomic orbitals have been used by quantum A more explicit approach””” has been to construct
chemists since their introduction"” almost a century ago. generalized hybrid orbitals (GHOs) as combinations of
Rational approaches for their construction’™’ over the past STOs with common Slater exponents and fixed positions of
several decades have been primarily focused on partitioning nodes along bonds to assign their orientation. It is expedient to
systems into substructures which are spanned by groups of clarify that in this paper we refer to bonds simply as the linear
hybrid orbitals, leading to unambiguous partitioning of connectivity between atoms which are primarily nearest
electrons into bonding orbitals and lone pairs, and further neighbors if not mentioned specifically. Many of these efforts
into atomic orbitals. For such partitioning, notionally similar were undertaken in aid to molecular mechanics calculation”>>*
several approaches””*~"" have been proposed grossly based on where the description of interactions between substructures
the maximum overlap condition which in effect leads to eases with the use of orbitals which are directed along bonds.

localization of orbitals within the chosen subspace of molecular
orbitals. In these approaches, either the overlap matrix™® or the
first-order density matrices,'”'> both of which are calculated
typically on the basis of either Slater type orbitals (STOs)"> or
Gaussian type orbitals (GTOs),"*'* are generally transformed
into block diagonal forms, each spanned by orbitals centered
on nearest neighbor atoms. The resultant hybrid orbitals
involving atomic orbitals centered on more than one atom”'°
render unambiguous bonding orbitals and bond orders, while
the ones like natural hybrid orbitals (NHOs),'” the effective

Effective analytical models for such interactions have also been
developed™ recently for inexpensive deductive computation of
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properties of bulk as well as clusters of sp* hybridized covalent
systems. Notably, unlike GHOs, NHOs or EAOs by
construction may not be oriented exactly along the bonds. In
general for all such hybrid orbitals, their directed nature,
maximal localization, and orthonormality are not guaranteed
simultaneously by construction. In a part of this work we
explore the simultaneity of these conditions in construction of
hybrid atomic orbitals from first principles proposed in this
work.

Instead of overlap or density matrices, in this work we take
recourse to first moment matrices (FMM) due to their direct
correspondence to localization. FMMs are known not to
commute among each other in more than one dimension if
projected on to a finite subspace of orthonormal states. We
propose construction of hybrid atomic orbitals (HAOs) as
approximate eigenstates of the FMMs within a finite subspace
of Kohn—Sham (KS) states of isolated atoms. Orientation and
hybridization of the proposed orbitals can be a priori
naturalized as per their anticipated neighborhood. This
substantially eases the effort of orienting them appropriately
while transferring them from isolated atoms to real systems,
which eventually eases the interpretation of elements of the
Hamiltonian. An orthonormal set of localized Wannier orbitals
resembling HAOs is further constructed on the basis of KS
single particle states of the given system. These Wannier
orbitals, which we refer to in this paper as hybrid atomic
Wannier orbitals (HAWOs), constitute a multiorbital tight
binding (TB) basis locked to their immediate atomic
neighborhood by construction and render hopping parameters
involving effectively only two orbitals per bond. HAWOs thus
offer easy transfer of the corresponding TB parameters to other
isostructural systems exclusively through mapping of neighbor-
hoods and projection of charge centers learned from HAOs.
Effective transfer of TB parameters is demonstrated in
nanoribbons of graphene and hexagonal boron nitride, Cqy,
and nanodiamonds and their silicon based counterparts. In
particular, we show in the HAWO basis that it is possible to
effectively transfer the self-energy (SE) correction (SEC) of
single particle levels from smaller reference systems to much
larger isostructural systems through TB parameters with
minimal additional computational expense through the
proposed mapping of multiorbital TB parameters beyond the
nearest neighborhood.

2. METHODOLOGICAL DETAILS

2.A. Construction of Hybrid Orbitals. In a given
direction, for example along &, the most localized orbitals
{¢} would diagonalize the corresponding FMM:

This becomes clear by noting that the total spread of a finite
set of N number of orbitals along & is given by

Q. = ) [el’lp) — Keplalgp)II']

i=1,N

)

which can be expressed as
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Diagonalization of X in the N X N subspace would therefore
set the first term in eq 3 to zero, leading to minimization of the
total spread. Notably, X can be calculated directly as in eq 1
only for isolated systems well separated from their periodic
images. For a periodic system with nonzero crystal momentum,
computation of X would essentially involve evaluation of
geometric phases’® of Bloch electrons evolved across the
Brillouin zone.”””® Nevertheless, there exists therefore a
unique set of orbitals which completely diagonalize X and
would also thereby have maximum localization along x. Similar
unique sets exist for the j and Z directions as well. However,
the matrices X, Y, and Z, when projected into a finite subspace
of orthonormal states, do not commute with each other in
general unless mandated by symmetries. This implies that a
unique set of orbitals with maximum localization simulta-
neously in all three orthogonal directions would not exist in
general. The same is true for Wannier functions (WFs) in the
case of periodic systems with nonzero wave vectors. Numeri-
cally localized Wannier functions””*° therefore are not unique,
and the choice of gauge used for their construction depends on
the chosen criteria of localization.

We chose to look for the possibility to construct a set of
localized orbitals which will be a reasonable compromise
between the three unique sets of orbitals having maximum
localization along the three orthogonal directions. We thus
resorted to the condition of simultaneous approximate joint
diagonalization31 of the three FMMs: X, Y, and Z. To compute
such an approximate eigensubspace of the three FMMs, we
adopted an iterative scheme based on generalization of the
Jacobi method of matrix diagonalization,”” wherein off-
diagonal elements are iteratively minimized by applying
rotation of coordinates by an optimally chosen angle. The
extension of the method to more than one square matrix
irrespective of whether they are commuting or not, is based on
a proposed’" choice of angle of rotation leading to the complex
rotation matrix U which has been proven’' to minimize the
composite objective function (off) defined as

off(UXU") + off(UYU") + off(UZU") (4)

where off(A) = le#ij |A,-j|2 for an N X N matrix A. N is the
number of orthonormal states used to compute X, Y, and Z. U
is a product of all the N(N — 1)/2 complex plane rotations,
one each for each pair of (ij) for i # j. For a given (ij) the plane
rotation R(i;j) is an N X N identity matrix except for

%)

where ¢, s € C and Icl* + Isl* = 1.

It has been shown®" that the objective function defined in eq
4 is minimized if U is a product of R(ij) matrices as shown in
eq 5 whose elements are given as

©)
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and [x,y,z]" is the eigenvector corresponding to the highest
eigenvalue of a 3 X 3 matrix:

(6)

G(i, j) = Real(h'(X, i, j) h(X, i, j))
+ Real(K' (Y, i, j) h(Y, i, )
+ Real(h'(Z, i, j) h(Z, i, j))
with
h(4, i, j) = la; —

a.

ij» Aij +

a1 = ay)] (7)

Notably, given the form of R(ij), for a rotated matrix A’ =
R(i,j) AR'(ij) corresponding to plane rotation for the (ij)th
pair of elements of A, it is easily seen that ay, = ay for k # i and
k # j, leading to the invariance:

off(A") + lajl* + laj* = off(A) + la;* + la®

owing to preservation of the norm in the similarity trans-
formation. Therefore, minimizing off(A’) would naturally
imply maximizing la/l* + |aj’j|2, which further implies max-
L ’ .

imizing laj; — ajl® since

"2 P2\ . 2 ’ 2
2(la;l” + 1ajf*) = lag + @il + la;; — a}f
and
P4 a=a; +
G T 4y = 4 T 4,

owing to invariance of the trace under the similarity
transformation. Therefore, in our case the minimization of
the objective function (eq 4) implies maximizing the
separation between the charge centers of the ith and the jth
orbitals, which is thus similar to the principle of the Foster and
Boys™ scheme of orbital localization. This becomes clear by
rewriting the total spread (eq 3) for the N orbital {¢, i = 1N}
as

N o
Q=Y Y D+ Y lar

k=1,3 i=1,N \ j#i j=N+1

(8)

where A¥'*3 = X, Y, Z. Equation 8 clearly suggests that
minimization of the objective function in eq 4 minimizes the
first term in eq 8, leading to minimization of the total spread.
Equation 8 also suggests that the total spread will reduce with
increasing number of states (N) on the basis of which the first
moment matrices are constructed.

We test the proposed approach first with FMMs computed
on the basis of GTOs constructed for Ti with parameters from
ref 34. In Figure 1 we plot the charge centers ({(¢IFlg)) of the
approximate eigenstates of the first moment matrices.

Evidently, the charge centers constitute coordination
polyhedra around isolated atoms which are consistent in
shape with those tabulated in Figures 6—8 in ref 35. This
agreement confirms the identity of the resultant orbitals as the
hybrid orbitals and numerically establishes the connection
between maximal localization and hybridization. Such a
connection between sp® hybridization and minimization of
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Figure 1. Plots of charge centers (shown in gray) of the hybrid
orbitals formed by the group of GTOs representing 3s, 3p, and 3d
orbitals of Ti (shown in yellow) constructed as per ref 34.

the total quadratic s%)read of s and the three p orbitals has been
analytically proven.” In this work, however, we do not use
GTOs further and rather resort to KS states of isolated atoms.
For example, for atoms of the p block, such as boron, carbon,
nitrogen, and silicon dealt with in this work, if the first moment
matrices are constructed on the basis of three (four) KS states
with the lowest energies, namely, the one s-like nondegenerate
having the lowest energy and two (three) of the three p-like
degenerate states above the s-like state, the approximate
eigensubspace would render three (four) 2sp® (2sp?)
hybridized orbitals. Notably, for isolated systems such as
molecules, clusters, and nanostructures, the approximate
common eigenspectrum of the FMMs computed within the
manifold of occupied KS states results in partitioning” > of
the ground state charge density into bonding and localized
orbitals.

2.A.1. Orientation and Transfer of Orbitals. Although, as
evident above, construction of HAOs for an isolated atom as
such does not require any predefined directionality, the
orientation of the HAOs associated with an atom can be
nevertheless locked to their anticipated neighborhood by
placing the isolated atom within an external potential which
represents the generic or exact atomic neighborhood of the
given atom in the actual system in which the HAOs are to be
used. We construct such external potentials by placing weakly
confining spheres with small constant negative potentials inside
the spheres in place of exact or generic locations of
neighboring atoms as present in the actual system. For
example, to lock sp®> HAOs to a four-coordinated tetrahedral
neighborhood, a tetrahedra of confining spheres is placed
around the host C atom, leading to orientation of the sp®
orbitals maximally in the direction of the confining spheres as
seen in Figure Sa. Typically we find confining potential
amplitudes on the order of 0.01 eV and radius 0.5 A to be
sufficient for the purpose. Such a weak confinement in the
vicinity causes a change of KS energy eigenvalues of isolated
atoms on the order of 0.001 eV and retains the shape of the
lowest KS states which are used for construction of the HAOs,
effectively unaltered. For sp> HAOs, the tetrahedra of the
confining spheres can be an exact tetrahedron, as in the case of
bulk Si, or a strained tetrahedron, as in the case of
cyclopropane. As is evident in Figure 2a for cyclopropane

https://doi.org/10.1021/acs.jpca.1c00320
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Figure 2. Projected charge centers of HAOs shown by gray spheres
depicting their orientations around their host C atom shown in
yellow.

and in Figure 2b—e for planar molecules C,H,, the projected
charge centers of the HAOs (shown in gray) symmetrically
deviate from the C—C bonds with decreasing C—C—C angle as
we go from C4Hg to C;H;. For all of these molecules the
HAOs were constructed with the weakly confining spheres
placed around the host C atom exactly as per their nearest
neighbors in the molecules, resulting in HAOs largely retaining
their pure sp® nature but oriented symmetrically about the
directions of the confining spheres from the host atoms. The
placement of confining potential spheres thus provides a gross
directional reference for orientation of the full set of the
HAOs.

The positions of the charge centers of the HAOs are learned
in terms of the directions of the confining spheres from the
isolated host atom. Such learnings are subsequently used in
projecting centers of HAOs around the corresponding atom in
a given system, as seen for the molecules in Figure 2 and the
nanodiamonds in Figure 4. While HAOs are transferred from
their nursery of isolated host atoms to their matching host
atoms in a given system, HAOs are rotated such that their
actual charge centers align along the direction of their
projected centers from the matching host atoms.

In addition to providing reference for orientation, the
confining spheres can have an important role in deciding the
level of hybridization of the HAOs. This becomes evident by
noting that, if we use four KS states and three confining
spheres coplanar with the host atom, then instead of forming
four sp® orbitals the HAOs separate into three 2sp” orbitals and
one 2p, orbital, as is evident from the unhybridized shape of
the 2p, orbital in Figure 3a. Figure 3 shows the evolution of the

(@) (b) © )

® @
Figure 3. (a—d) Evolution of a pure 2p, orbital (a) from sp?
hybridization background, to an sp® hybridized orbital due to
increased deviation of the centers (cyan spheres) of the three

confining potential spheres from coplanarity with the host atom
(yellow sphere). Centers of HAOs are shown by gray spheres.

2p, HAO from a pure orbital perpendicular to the plane of sp*
hybridization, toward a 2sp® hybridized orbital, with increasing
noncoplanarity of the confining spheres with the host atom.
HAOs with such intermediate hybridization (2sp** + 2p,")
have been used for Cg4 (Figure 8). However, stronger
confining potentials are found necessary to influence the
hybridization of KS states, typically on the order of 1 eV for C
atoms, such that the orbitals align along the confining spheres.
The confining potentials in this case therefore do lead to minor
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modification of the shape of the KS states, and thereby of the
HAO:s as well, although not quite obviously at the isosurfaces
plotted in Figure 3. However, the values of TB parameters
calculated on the basis of their Wannierized counterparts in
Cgo suggests that the overall shape of those orbitals are largely
retained close to the sp” orbitals. Notably, we could have used
stronger confinement to align the HAOs in C3;H¢, C;Hj, or
C,H, as we did for Cg,, but the degree of confinement would
have to be much higher than that used for Cg;, which would
have substantially altered the shape of the HAOs themselves,
since it is obvious that with pure s, p,, p,, and p, orbitals it is
impossible to form any set of hybrid orbitals in which two
orbitals can have relative orientation less than 90°.

2.B. Wannier Functions Based on HAOs. The next step
is to construct orthonormalized Wannier functions from the
KS states following the HAOs transferred to a given system.
The transferred HAOs constitute a nonorthogonal basis of
hybridized atomic orbitals. In the general framework of
periodic systems with nonzero wave vectors (k), we begin
with constructing a nonorthogonal set of quasi-Bloch states as

- N 1 kR N
70 = g 2 ) ©)

where ¢§,]-(7) is the jth HAO localized in the unit cell denoted
by the lattice vector R spanning over N unit cells defining the
Born—von Karman periodicity. The projections of the
nonorthogonal quasi-Bloch states on the orthonormal Bloch
states constructed from the KS single particle states at all
allowed k are calculated as

./ KS|~
Ot m; = (Wi g ;) (10)

Elements of O thus record the representation of the HAOs
within the manifold of KS bands considered. Overlaps between
the nonorthogonal quasi-Bloch states within the manifold of

the considered KS states are therefore calculated as

Sz,m,n = Z O]':!il,moz,l,n
1 (11)

The degree of representability of HAO ¢,, within the set of
KS states considered, is guaranteed by setting a lower cutoff on
individual Sz, , values to be typically more than 0.85. For all
the systems studied in this work, the above criterion is found to
be satisfied by the lower bound on the number KS states,
which is set by the total number of valence orbitals of all atoms
of a given system. A new set of orthonormal Bloch states from
the KS single particle states are subsequently constructed using
the Léwdin symmetric orthogonalization®* scheme as

= -1/ S(=
LPE,n(") = Z Sz,m,n ' 22 OE,l,mll/gl (7') (12)
m 1

where the sum over [ spans the KS states considered and the
sum over m takes care of the orthonormalization. Sub-
sequently, a localized set of orthonormal Wannier functions are
constructed as

. 1 CERa e
Dy (F) = —z e W (7)
j i

VN 4 (13)

In this process the Lowdin symmetric orthogonalization
clearly provides a choice of gauge for linear combination of KS
states such that the resultant Wannier functions {(Dp,j(7)}

resemble the corresponding HAOs [{¢g; 7)}) as much

https://doi.org/10.1021/acs.jpca.1c00320
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possible within the manifold of KS states considered. Hence
we refer to these Wannier functions as the hybrid atomic
Wannier orbitals (“‘HAWOs”). In Figure S we show an HAO

(a) C3Hg (d) CsaHea
. 1. (c) CagHso
Yoy y
‘ ol ¢
(b) CioHie A
. L.
N AR ey
! I gy oAl o~
-~ ' T e Y gt -9 ‘«“:‘\t
e lulye <\ J}“' ‘;4??"&

Figure 4. C H, systems with projected charge centers of HAOs
shown as gray spheres, used in this work as example of sp® hybridized
covalent systems.

(a) (b)

g

(©)

\/z\)

® ®

Figure 5. (a) HAO representing an sp* orbital of an isolated C atom
(yellow sphere) used in this work. Charge center of the orbital is
shown in gray. Centers of the confining spheres used to determine
gross orientation are shown in cyan. (b) HAO shown in (a)
transferred to a C atom an adamantane (C;,H,4) molecule; (c) the
corresponding HAWO.

before and after transfer to adamantane and the corresponding
HAWO constructed from the KS states of adamantane.
HAWOs can thus be considered as analogue of NHOs
constructed from a given set of KS states with acceptable
representability. Notably, following the same approach,
templates of bonding and lone pair orbitals made of HAOs
can be used to construct localized Wannier functions rendering
orbital resolved description of the valence band.””*° Similarly,
templates of antibonding orbitals made of HAOs can be used
to extract a meaningful description of the unoccupied bands in
the line of the valence virtual orbitals.”"

2.B.1. TB Parameters in HAWO Basis. TB parameters in the
HAWO basis are computed from energetics of KS single
particle states as

= (q)ff’,ilHKslq)ﬁ,j)

— z eiE~(R/—§)Z (OS—I/Z)?;(OS—I/Z)ZJ_E%(?
K I ’

PR R i

(14)

Notably, similar TB parameters have been derived in the
past two decades from first principles based on either the
. . . - 4247 . .
maximally localized Wannier function or atomic orbi-
tals***” constructed from KS states. Much effort has been
reported in deriving TB parameters through projection of KS
states on pseudoatomic orbitals’”" as well. However, attempts
to calculate TB parameters in a hybrid atomic orbital basis
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constructed from first principles, as proposed in this work, has
been limited so far primarily to analytical models.>*>>

In Figure 6a for cyclopropane, we plot the TB parameters
calculated as per eq 14 for two HAOs participating dominantly
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Figure 6. (a) TB parameter calculated for cyclopropane. (b) Nearest
neighbor TB parameters between in-plane and out-of-plane orbitals in
C3H;, C4H,, CsHy, and C¢Hg molecules (shown in Figure 2) arranged
as a function of C—C bond lengths available in the molecules. (c)
DOS calculated from 50 lowest KS eigenvalues, compared with DOS
from eigenvalues of TB Hamiltonian constructed from 18 lowest KS
states, 18 being the total number of valence orbitals of cyclopropane.

in a C—C bond and a C-H bond. The t}> value is
comparable to that in adamantane (C,oHs) (Figure 12)
despite the substantial misalignment (Figure 2) of HAO and
the C—C bond in cyclopropane, while there is perfect
alignment of the two in C;jH 4 The hopping parameters are
obtained with 18 KS states, which is same as the total number
of valence orbitals of all the atoms, resulting thereby in density
of states in exact agreement with that obtained from DFT
(Figure 6¢) as discussed in the next paragraph. In Figure 6b we
plot hopping parameters for 7 and ¢ bonds as a function of C—
C bond lengths available in planar C;H; to C4Hg molecules. As
is evident in Figure 2, the best alignment of the HAOs along
the C—C bond is possible for C¢Hg and the worst is obviously
for the shorter bond of C;H; and similarly for C;Hg. Yet the
highest in-plane hopping parameter in terms of magnitude is
found for the shorter bond of C;H;, which is about 20% more
than that of the C—C in-plane bond of benzene, whereas the
C—C bond length in benzene is only about 2.2% more than the
shorter bond of C;Hj;. Similarly, the C—C nearest neighbor
hoping parameter and the bond length in C;H; are both within
1% of those of C;Hg, whereas in C;Hg the HAOs are almost
perfectly aligned along the C—C bond (Figure 4) while in
C;Hg they are misaligned by more than 20°. These results can
possibly be explained by the inherent bent nature of the
bonds™ in C;Hgs and C;H;, reflected by the symmetric
misalignment of the HAOs along the two C—C bonds while
perfect alignment is maintained along the C—H bonds. We
plan to examine this aspect for bent bonds in detail in the
future.

As is evident in Figure 7a for C,jH g, the edge of the valence
band is already well described if we consider only the nearest
neighbor hopping in the HAWO basis. However, as shown in
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Figure 7. For C,,H,4 (a—d) evolution of density of states (DOS) with increase in range of hopping starting from (a) the nearest neighbor (nn) to
(d) all available hopping graduating through hopping between second (2n) and third (3n) nearest neighbors and beyond. Convergence of (e) TB
parameters and (f) spatial localization of 2sp® orbitals and (g) TB DOS, in terms of the number of KS states used in construction of HAWOs as
mentioned in the legend of (f). KS DOS is shown below (g). Similar convergence of TB parameters for (h) 2p, and (i) 2sp” orbitals in AGNR (3p

+1,p=2).

Figure 7b onward, the match of DOS from TB and DFT
improves drastically with increasing extent of hopping
considered up to the second nearest neigbour. This is
immediately understood by noting the non-nominal positive
value of the second nearest hopping element plotted in Figure
Figure 7e, arising due to the proximity of lobes of different
signs of the two HAOs. In Figure 7e—g, we demonstrate the
evolution of the TB parameters, HAWOs, and DOS from TB,
as a function of the number of KS states considered for the
construction of HAWOs. The rationale for this analysis is the
possibility that the antibonding subspace may not be
adequately represented by the unoccupied KS states if we
restrict the total number of KS states to be the same as the
total number of HAOs associated with all the atoms, which is
same as the total number of valence orbitals of all the atoms.
Indeed we see clear convergence of the shape of the HAWO
(Figure 7f) as well as the corresponding TB parameters
(Figure 7e) if we consider KS states in excess of the total
number of HAOs. Figure 7h,i suggests that the convergence
can be much quicker for unhybridized orbitals such as 2p,
compared to hybridized orbitals such as sp* and sp?, since the
unhybridized orbitals primarily constitute the edges of the
valence and conduction bands. However, the TB DOS
expectedly starts deviating from the DFT DOS more in the
conduction band (Figure 7g) if we include more KS states
beyond the total number of HAOs, owing to the semiunitary
nature of the net transformation matrix (0S"?) implied in eq
12 which will be rectangular in such scenarios. It is thus
important to decide on the number of KS states to be
considered depending on the purpose. If the aim is to
represent only the valence bands through well-localized
HAWOs, then it may be prudent to look for convergence of
HAWO:s in terms of KS states. However, if the band gap needs
to be represented accurately by the TB parameters, then the
number of KS states should be kept the same as the total
number of valence orbitals.

2.C. Bottom-Up Mapping of TB Parameters. The
HAWO basis derived from the KS states offers a multiorbital
TB basis which is by construction locked to the local
coordination as per the atomic neighborhood of each atom.
The TB parameters derived in such a basis should therefore be
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transferable from one system to another with a matching
atomic environment. A key aim of this work is to demonstrate
such a transferability for effective transfer of multiorbital TB
parameters in the HAWO basis from smaller reference systems
to larger target systems. The mapping of TB parameters is
done in two steps.

1. Pairs of atoms of the target system, not limited to nearest
neighbors, are mapped onto pairs of atoms in the reference
system based on a collection of criteria.

2. Among the mapped pairs of atoms, pairs of system orbitals
are mapped to pairs of reference orbitals through mapping of
their respective projected charge centers. In step 1 the criteria
to map pairs of atoms include matching structural parameters
such as their spatial separation and their individual nearest
neighborhoods characterized in terms of the type of
neighboring atoms and angles made by nearest neighbors on
the atoms. In particular, we use a parameter calculated as

N,
gx‘ = z ij(ri,j)
j (15)

where N; is the number of neighbors of the ith atom within a
suitably chosen cutoff radius, w is a weight factor which is a
function of the distance r;; of the jth neighbor of the ith atom,
and Z; is a characteristic number to be associated with each
type of atom. Z; can be chosen to be the atomic weight, as we
mostly used in this work, or a similar number which can
facilitate identification of a type of neighborhood or a region of
the system through values of {. In this work we chose the
weight factor w to be 1.0 within half of the cutoff radius,
beyond which the factor is smoothly reduced to zero using a
cosine function. The choice of cutoff radius depends on the
size of the reference system. It should not be too large for
variations to average out, nor should it be too small to become
insensitive to morphological variations in the reference system
itself. { allows us to map atom pairs effectively through a
prudent choice of values of {Z} since it would allow
assessment of the proximity of atoms to edges, interfaces, or
any kind of structural inhomogeneity without any exhaustive
structural relaxation.
In step 1, the minimum of the deviation
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obtained within a range of allowed deviations of structural
parameters is used as the criterion to choose matching pairs of
atoms between target and reference systems.

As in step 1, in step 2 the mapping of one or a pair of HAOs
from the reference to target systems is done on the basis of
matching structural parameters, as well as a parameter
calculated as

N,
&= Z Cjwwc(ri,j)
j (16)

where {; corresponds to the jth atom in the neighborhood
defined by w"© around the projected charge center of the ith
HAO. The angle made by the directions of the projected
charge centers of the HAOs from their respective host atoms is
a key matching parameter in step 2. Additionally, if the HAOs
belong to different atoms, then the dihedral angle made by the
centers of the HAOs through the axis connecting their host
atoms is also a key parameter. Thus, in step 2, the minimum of
the deviation

target reference target
|§1 - 51 I+ |§2 -

5 referencel
2

within acceptable deviations of structural parameters defines
matching pairs of HAOs.

As an example, we show mapping from a small curved finite
patch (Figure 8a) to Cg. Since Cgy, constitutes a curved surface
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Figure 8. (a) Structure of reference system and (b) corresponding
charge centers of HAOs with intermediate hybridization (2sp®* +
2p.") between sp” and sp>. (c) Projected charge center with similar
hybridization for C4. (d) Corresponding matches of DFT DOS with
TB DOS with parameters mapped from the reference system.

without any edge, mapping should be done from the innermost
neighborhood of the chunk. Since in Cg, the angles made by
nearest neighbors at a given atom differ distinctly depending
on whether an angle opens inside a pentagon or a hexagon, the
matching parameters for mapping are mostly structural,
primarily the direct and dihedral angles. The reference patch
is cropped from Cg and passivated by H. We fix the tolerance
of { to zero, which implies that Cy is getting mapped from
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only six C atoms of the patch (Figure 8a) having all C
neighbors. Given the curvature of C4, we chose to use
confining spheres to influence the hybridization of sp* HAOs
in order to break their coplanarity and align them along nearest
neighbor C—C bonds, as shown in Figure 3c, where the
placement of confining potential spheres are as per the nearest
neighborhood in Cgj. The projected charge centers of HAOs
with intermediate hybridization (2sp®* + 2p,") between sp* +
p. and sp3, shown in Figure 8c, is used to map from that of the
reference shown in Figure 8b. The TB parameters t,,* 5, for
the shorter and longer C—C bonds are about —6.9 and —6.5
eV, whereas t,, ,, - values are about —2.36 and —2.0 eV. The

match of the DFT DOS with the DOS from TB parameters
mapped from the reference system is shown in Figure 8d,
which can be further improved beyond the valence bond by
considering HAOs for excited states, which will be taken up in
a subsequent work on optical properties.

2.D. Self-Energy Correction of TB Parameters. Self-

energy-corrected TB parameters {thqu j} in the HAWO basis

Ry,
are calculated by substituting Efy in eq 14 by quasiparticle
energies EQ% obtained at the G,W, level, which is the first-
order non-self-consistent GW approximation of MBPT.***°
Within the GW approximation, the quasi-particle energies are
approximated as

EL = EXS + (y )= —

KSy,, KS
z Vie W)

C

(17)
where VES

« is the mean-field exchange—correlation potential
and X7 is the self-energy operator derived by considering the
many-electron effects as a perturbation treated within a self-
consistent framework of Dyson’s equation formulated in terms
of the one-particle dynamic nonlocal Green’s function
constructed from the KS states. Similar efforts have been
reported in recent years on incorporating the SEC in TB
parameters computed in terms of the maximally localized
Wannier functions.”®”® Incorporation of the SEC in TB
parameters has also been attem?ted through matching specific
bands of the QP structure.®’ ™

3. COMPUTATIONAL DETAILS

Electronic structures of the ground states of all the systems
considered in this work were calculated using the Quantum
Espresso (QE) code,®* which is a plane wave based
implementation of DFT. We have used norm-conserving
pseudopotentials with the Perdew—Zunger (LDA) exchange—
correlation® functional and a plane wave cutoff of 60 Ry for
wave functions and commensurately more for charge density
and potential. Variable cell structural relaxation has been
carried out for all periodic systems. We used a 1 X 1 X 15
Monkhorst—Pack grid of k-points for AGNRsanda 1 X 1 X 29
Monkhorst—Pack grid of k-points for ZGNRs as well as for
ZBNNRs. Self-energy corrections to single particle levels have
been estimated at the non-self-consistent GyW, level of the
GW approximation implemented in the BerkeleyGW code.*
To calculate the static dielectric matrix required for
computation of the self-energy operator, the generalized
plasmon-pole model®” is used to extend the static dielectric
matrix in the finite frequencies. For all the nanoribbons,
parameters are chosen from ref 67. In-house implementation
interfaced with the QE code is used for generation of HAOs,
HAWOs from KS states, calculation of TB parameters in the
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HAWO basis, and mapping of TB parameters from reference
to target systems.

3.A. Mapping Self-Energy-Corrected TB Parameters
in HAWO Basis. 3.A.1. Nanoribbons. We have recently
reported®® estimation of the quasi-particle (QP) band gap for
graphene and hBN nanoribbons based on the self-energy
correction to TB parameters mapped from narrower ribbons
on the basis of a single 2p, electron per atom. The transfer was
made explicitly by identifying equivalent atoms based on
proximity to the ribbon edges as shown in Figures 2c—e, 3f,
and Sa in ref 68. In this section we begin by systematizing the
process of identifying the equivalent atoms through the
mapping mechanism proposed in section 2.C. The identi-
fication is primarily based on { values for atoms and & values
for HAO charge centers wherever sufficient variations of { and
& are available in the reference systems, as demonstrated in
Figures 9¢fi and 1lcfii for hBN and ZGNR, respectively.

1) rmap=7.0A

(@)

(©) r,,~1.6A () r  =50A

hBN12

hBN24
E(k) (eV)

— hBN24 (GW)
-~ hBNI12 to 24

Figure 9. (a, b) Hexagonal zigzag boron nitride nanoribbons
(hZBNNR, hBN) hBN12 and hBN24, respectively. (c, f, i) Plots of
{ and £ values “ref” (reference hBN12) and “sys” (target hBN24) for
different spatial ranges of neighborhood considered for mapping. (d,
g, j) Matching of DFT band structure and mapped TB band structure
for increasing r,,,,. (e, h, k) Matching of DFT+G,W, band structure
and mapped self-energy-corrected TB band structure for increasing
f,

map*

Mapping of AGNR from p = 1 to p = 4, as shown in Figure
10d,g,j,m, calls for matching of structural parameters as the key
strategy for mapping, since the width of reference AGNR with
p =1 of the 3p + 1 family is narrow enough and there are only
two types of C atoms per unit cell.

For hBN, an acceptable match (Figure 9¢g,j and h)k) between
explicitly computed band structures, and the same computed
from TB parameters with only 2p, orbitals mapped from a
narrower ribbon (Figure 9a), is achieved simultaneously at the
DFT and DFT+GyW, levels, with hopping considered within
the range of no less than 5 A. A higher spatial range of mapping
of self-energy-corrected TB parameters is required for
matching of band structures at the DFT+GyW, level for
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Figure 10. (a—c) Armchair graphene nanoribbons (AGNR) of family
n=3p+ 1with (a) p=1, (b) p=2, and (c) p = 4, respectively. (d, g,
j, m) Plots of { and £ values “ref” (reference p = 1 (d, g, j) and p = 2
(m)) and “sys” (target p = 4) for different spatial ranges (rmap) of
neighborhood considered for mapping. (e, h, k, n) Matching of DFT
band structure and mapped TB band structure for increasing 7.,y (£ i,
1, 0) Matching of DFT+G,W, band structure and mapped self-energy-
corrected TB band structure for increasing 7y,

AGNR (Figure 101), and more so for ZGNRs (Figure 11k)
with smaller band gaps. Notably, for AGNR, the match of self-
energy-corrected band edges for p = 4 naturally improves with
mapping from p = 2 (Figure 100). These trends simply relate

(@)
A

.

(©) T 1-6A (€)) Tap=5-0A
: ‘ —T

1) T ap— 10-0A

T

¥

Z12

€ wvd »e

Y

—~

o

~
w

_Q\

-f; | o

— Z24 (DFT)
- Z12to24

< ¥
o e
o

724
el Sl

e

J_(\

~

Figure 11. (a, b) Zigzag graphene nanoribbons (ZGNR, Z), Z12 and
724, respectively. (c, f, i) Plot of { and & values “ref” (reference Z12)
and “sys” (target Z24) for different spatial ranges of neighborhood
considered for mapping. (d, g, j) Matching of DFT band structure and
mapped TB band structure for increasing r,,,. (e, h, k) Matching of
DFT+GyW, band structure and mapped self-energy-corrected TB
band structure for increasing 1y,
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to the degree of localization of the states at the band edges: the
more they are delocalized, the larger is the spatial range within
which the self-energy correction to TB parameters is to be
considered.

3.A.2. Nanodiamonds. Figure 12 suggests that the extent of
SEC to TB parameters is spatially limited mostly within the
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Figure 12. TB parameters involving a C atom in C,oH,4 with three C
neighbors, computed using 56 KS states with and without SEC at the
GoW, level, and plotted as a function of distance from the atom. TB
parameters from DFT are same as those plotted in Figure 7e.

third nearest neighborhood, implying possible transferability of
self-energy-corrected TB parameters to large covalent systems
from smaller reference systems which are large enough to
accommodate the full spatial range of non-nominal SEC to TB
parameters. Accordingly, mapping in nanodiamonds is
demonstrated with C;Hg and C,jH;s (adamantane) as

reference systems to map to nanodiamonds C,¢H;, (pentam-
antane) and Cg,Hg,.

We start with attempts to map C,oH;4 Cy¢Hs,, and CgHgy
targets from C,Hy reference in sp® HAO basis. The mapping
process starts with plotting the distance of atom pairs (C—H,
C—C, H-H) for target and reference systems. As seen in
Figure 13a, there is a one-to-one correspondence of C—C
bonds between CyHjg and all targets up to approximately 2.5 A,
which is the second nearest C—C distance. For C—H and H—
H pairs, such correspondence exists up to about 3 and 3.75 A,
respectively. These correspondences decide the range of
hopping parameters to be mapped. Notably, C;Hg has two
varieties of C atoms—one with two (two) C (H) neighbors
and the other with one (three) C (H) nearest neighbors—
whereas C;gH;s has C atoms with three (one) C (H)
neighbors and two (two) C (H) neighbors. Additionally,
C,6Hj, and CyyHy, have C atoms with all C nearest neighbors
(nn). An exact match of  among all atoms of reference and
target systems is thus impossible in these examples. Matching {
and & will therefore be less effective in mapping from C;Hj.
Also, since there is only one C atom with two (two) C (H)
neighbors in C;Hg, matching { can be restrictive in terms of
the variety of orientations. We thus opt for matching structural
parameters within a tolerance for { set to the minimum
difference of { values between similar types of atoms in
reference and target systems to ensure maximal matching of
besides finer matching of structural parameters. As is obvious, a
better choice of reference system than C;Hg with C atoms
having all varieties of neighborhoods can be easily made.
However, we deliberately chose to test mapping from C;Hj,
which is the smallest possible reference system with just one C
atom with two (two) C (H) neighbors, since such C atoms
dominate the surfaces of the nanodiamonds and are thereby
expected to host the states at the edges of the valence and
conduction bands. Surprisingly, as is evident in Figure 13c,
with mapping of only the nn-hopping terms from C;Hj to
C,oH,¢ the mapped TB DOS already matches reasonable well
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Figure 13. Distribution of distance between pairs of atoms in (a) reference (C;Hg) and (b) target (C;oH,¢) systems. (c, d) Match between DFT
DOS and mapped TB DOS as demonstration of efficacy of mapping of TB parameters from C;Hg to C;oH,4 with increasing spatial range of
neighborhood considered for mapping. (e) Match between DFT+GyW, DOS and mapped self-energy-corrected TB DOS.
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with the DET DOS of C,oH /¢ in terms of the band gap and the
DOS around band edges. With an increase in the range of
hopping to 2.7 A (nn, 2n), 3 A (nn, 2n, 3n), and 4 A (2n, 3n,
4n)) for C—C, C—H, and H—H pairs based on the availability
of one-to-one mapping (Figure 13a,b), the match of mapped
TB DOS and DFT DOS (Figure 13d) extends deeper into the
valence band. The quality of match improves further with
additional mapping of C—H and H—H atom pairs up to 4.5 A
(Figure 13d) without compromising on tolerance factors.
Notably, the ranges of hopping of C—H and H—H, although
more than that of C—C, are actually consistent with the range
of C—C hopping, since the farthest H atoms considered are
associated with two second nearest C atoms. The same
mapping parameters are then used to map self-energy-
corrected TB (SEC-TB) parameters of C;Hg to C;oHig,
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leading to a good match of not only the SEC-TB mapped band
gap and the QP band gap calculated at the G,Wj level, but also
the self-energy-corrected DOS of the valence band (Figure
13e). Next, we attempt mapping C,sHj, from smaller
references, starting with mapping from C;Hg to C,cHs,,
which is an about S times increase in system size. Mapping of
only nearest neighbor C—C and C—H hopping underestimates
the band gap by about 15% (Figure 14c). Mapping all hopping
parameters up to 4.5 A, which is the maximum range of
hopping available in the reference, drastically improves the
overall match of not only mapped TB DOS and DFT DOS
(Figure 14d) but also mapped SEC-TB DOS and DFT+G,W,
DOS (Figure 14e), as is seen in the case of mapping C;oH ¢
from C;Hj.
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Finally, we demonstrate mapping to Cg,H¢, from C;oH,
which is an about 6 times enhancement in system size.
Mapping of only the nearest neighbor C—C and C—H bonds
results in a good match of the mapped TB band gap (Figure
15c) with the DFT band gap. With further mapping of
hopping parameters up to 2.75 A (nn, 2n), 4 A (nn, 2n+), and
4 A (2n, 3n+) (Figure 15a,b) for C—C, C—H, and H—H pairs,
a satisfactory match of the entire valence band and a good
match (Figure 15d) of the band gap is achieved. Mapping of
the SEC of TB parameters from C,oH,¢ to Cg,Hg, results in a
QP band gap of about 7.2 eV, which is within 5% deviation
from the QP band gap implied in the literature.””~">

In Figure 16 we show similar mapping of TB parameters at
the DFT and DFT+G,W, levels for Si based nanodiamonds. As
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Figure 16. (a, c) Match between DFT DOS and TB DOS with
parameters mapped from Si;Hg. (b, d) Match between DFT+G,W,
DOS and SEC-TB DOS using mapped self-energy-corrected TB
parameters from Si;Hg.

in the case of nanodiamonds, mapping of hopping up to
second nearest Si neighbors and H atoms associated with them
from Si;Hg renders a good match of the SEC-TB band gap
with the explicitly estimated DFT+GyW, band gap almost up
to 6 times escalation of the system size. These results imply
consistency in transferability of self-energy-corrected TB
parameters with increasing principal quantum number of
valence orbitals.

4. CONCLUSION

In conclusion, construction of naturalized hybrid atomic
orbitals (HAOs) is proposed as the common eigenstates of
the noncommuting set of finite first moment matrices
corresponding to the orthogonal directions. Hybridization
and orientations of HAOs are numerically naturalized as per
their anticipated immediate atomic neighborhood. Choice of
gauge based on the HAOs leads to the construction of the
hybrid atomic Wannier orbitals (HAWOs) from Kohn—Sham
(KS) single particle states, rendering a multiorbital orthonor-
mal tight binding (TB) basis locked to the nearest
neighborhood. HAWO basis allows calculation of single TB
parameters per bond from first principles and facilitates their
easy transfer across isostructural systems through mapping of
immediate atomic neighborhoods and projection of charge
centers learned in the process of naturalization of the HAOs.
The mapping allows effective bottom-up transfer of self-
energy-corrected TB parameters estimated within the GW
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approximation of many-body perturbation theory in the
HAWO basis, from smaller reference systems to much larger
target systems having similar covalent atomic neighborhoods,
suggesting a possible route toward computationally inex-
pensive estimation of quasi-particle structures of large covalent
systems within an acceptable range of accuracy, with extra
computational cost scaling as N?, beyond the explicit
computation of self-energy correction for smaller reference
systems which typically scale as N* Demonstrated in
nanoribbons and nanodiamond systems, the transferability of
self-energy-corrected multiorbital TB parameters in the
HAWO beasis is rooted at the spatial localization of the extent
of self-energy correction predominantly within the third
nearest neighborhood, which appears to be robust for o
bonds but less so with 7 bonds and unpaired electrons.
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