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Plan of the Talk

Chiral P-wave superconductors, Vortices, Manorana Zero Modes
Braiding of vortices & Topological Quantum Computation

P-wave superconducting instability in Half Metal Fermi Liquids
From charge and spin current coupling

Infinite U repulsive Hubbard Model on a Honey Comb Lattice,
Nagaoka Ferromagnetism (Half metal) coexisting with
p-wave superconductivity (Grassman Tensor Network approach)

Possible Experimeental Realization



p-Wave Superconductivity

Attraction in the spin triplet channel

Orbital part is antisymmetric. Spin part symmetric

He® is a well known p-wave superfluid

Some heavy fermions are believed to be p-wave superconductors

Sr,RuQ, is a good example of a 2-dimensional p-wave superconductor
with a good experimental support

Pairing in nuclei and neutron stars have p-wave character



Sr,Ru0O,

structurally similar to

La,CuO,

Theoretical Prediction of p-Wave Superconductivity
T. M. Rice, M. Sigrist, J. Phys. Cond. Matter 7, 1L.643 (1995)
G. Baskaran, Physica B 223-224, 490 (1996); Trieste Workshop July 1995

Superconducting Tc ~ 1 K, very low !

Story: Piers Coleman’s Challenge at Trieste
and GB’s response




SUPERCONDUCTIVITY AND ELECTRON CORRELATIO

IN RUTHENATES
3ECKMAN AUDITORIUM

Dr. Mackenzie will review the physics of ruthenate

superconductivity, a field which was kick-started by the
experimental discovery of Yoshiteru Maeno and colleagues

n 1994 and further fueled soon afterwards k

y the

nspired

suggestions by Rice, Sigrist, and (independentlﬂ) Baskaran t
>r,RuO, was a candidate for spin triplet pairing.[He will'disci

the evidence that has accumulated supporting that hypothe
and try to give an objective assessment of the current state
<nowledge regarding the gap symmetry. He will particularly
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(SI'2+)2 Ru* (02')2 Ru* isin 4d* configuration

Sister compound SI‘ZFEO 4 is a spin-1 Mott insulator

— 7 So coulomb correlations and Hund coupling
X2-y? % are likely to be very important (GB)
+ t, Spin triplet pairing (p, + ip,) was predicted
T
Xy

G

7o 1. )

s

6 xz orbitals é yz orbitals xy orbitals .




Orbital part can have p, , p, or p, symmetry or
linear combinations such as p, +ip, or p,-ip,
(in 2D this will be favored, because of in plane orbital motion)

Spin part has to be symmetric under interchange. So it will be one of the
three triples or linear combinations.

Cooper pair amplitude (Superconducting order parameter is not a scalar

W= e"Ld (1) + 1Y) + idy (11T — [11))
+ d. (11 + 1IN (ke + iky).

direction d of triplet pairing



Excitations of 2D supercondctors

G —
Bogoliubov quasi particles and Q
quantized vortices / l \

h Traditionally
In a quantized vorex carrying flux quanta nc one views the

2e phase as a
The phase of the order parameter () winds by 27 2d vector

as we go around the vortex once

There is a normal core at the center of the vortex
of dimension f , the coherence length.

The size of the magnetic flux is A the London peneteration length



Single quantum vortex located at the origin in 2D s-wave superconductor

A(r,0)=A, f(r)e’



(¢.d) = (¢ + 7, —d)
Half Quantum Vortex \\i:mq

19 io —i6

P(r,0)=A(r)e?[e?|TT)+e 2 | L)1k, +ik )

/:}:??1:’4

W(r,0) = A’ | TT)+ L)k, +ik,)

Order parameter remains single valued



In the absence of vortices Bogoliubov quasiparticles are Bloch waves
They are positive energy excitations with a finite gap

S-wave superconductors are nodeleess and generically have a gap
(Extended-S can have nodes)
P, or p, states has a node because of they have odd parity

Ak, k) =Ak, Time reversal symmetry is not broken
o only parity symmetry is broken

Statessuchasp, +ip, or p —ip, aregaplessanddo note have a node

A.(k, k)= Ay x(k, *ik)

They violate both parity and time reversal symmetry (PT violation)

The orbital motion produces magnetic field perpendicular to the plane
which has been measured, for the case of Sr,RuQ, , by muon spin rotation
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Bogoliubov quasi particle is a linear combinations of
an electron and a hole of opposite spin
Their chrges are defined only module 2

hole
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How does one study quantized vortices and see how quasi particle states
get modified in the presence of vortices ?

Use Bogoliubov de Gennes Equations, derivable from mean field BCS Hamiltonian

- oo L

[A* B = (AB + BA)/2] r and @ are the polar coordinates

h2 (a +8 I+ gAY u NaY.nl:J(A
v S{ggY‘lOr

)llf + WIePA(r) * (V, + iV,)]WT + H.c.}

i, ¥ =[H,¥]=

hZ
2m

(@, +9, )W +gAW¥

. . -I_ — 1.If -I_ + IIf
The combination Y " v T = T
Solves the BGD equation [H Y ] E Y






Normal state quasi particles at the vortex core
get Andreev reflected at the boundary of the
core and establish bound quasi particle states

in the gap of the quasi particle spectrum /

Because the boundary has a non trivial topology
for the phase of the order parameter / l \
the bound gp-states could have
non-trivial topological and robust character

/ Electron k|
Superconductor
\Hole -k 1
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Nature of localized quasi particle states in Half vortices

) Number of degree of freedom
y T (E) = vy(—E) (number of fermi oscillators)
is half as that of a single vortex

The zero-energy level becomes a self-conjugate Majorana Fermion

yI(E =0) = y(E = 0)

Contrast it with midgap states in domain walls in polyacetylene

The Majorana Fermion zero mode is stable against local perturbations such as
external scalar, electromagnetic vector potentials, spin orbit coupling, local
variation of the order parameter etc,



/KCbA

y,=[dr| gr-RWw(r) + ¢ r-RW'(r) ]

N / V= Y, 1%, N /
— ) —
— Q - A complex fermion mode whose
Real and i i
/ | \ Welspuraeaspociatyt & | \

/1 I§:

Majorana mode Majorana mode



How Majorana fermion transforms under U(1) gauge transformation

A overall phase of the superconducting gap shifts by 9
2

is equivalent to rotating the electronic creation and annihilation Operators by

f“Iﬂ._,_, — el "I‘l — E'_’-"ME‘I"{I

. 3 —_ 3
Equivalently the solution (u,v) transforms accordingly (Lh U) = (”- el /2 ve ! b/ ”)

The important consequence of this
transformation rule is that under change of the phase of the
order parameter by 277 the Majorana fermion in the vortex
changes sign: y — —vy. This is an obvious consequence
of the fact that the quasiparticle is a linear combination
of fermionic creation and annihilation operators carrying
charge *=1.



%
Considere a system of 2n vortices, far from each other at distances | >>¢ = XF

To each vortex there is a bound zero energy Majorana mode
Denoted by the operator 7/1 i=12, .....,2n

They can be combined to give n complex fermion operators
Therefore the ground state degeneracy is 2"
(each fermion level may be full or empty)

If the vortices move adia-
batically slowly so that we can neglect transitions between
subgap levels, the only possible effect of such vortex mo-
tion 1s a unitary evolution in the space of ground states.



Let us fix the initial positions of vortices. Consider now
a permutation (braiding) of vortices which returns vortices
to their original positions (possibly in a different order).

Such braid operations form a

braid group B>,

(multiplica-

tion in this group corresponds to the sequential application
This group is generated
by elementary interchanges 7; of neighboring particles

of the two braid operations)

(i = 1.....2n — 1) modulo the relations
T, =17, |i—jl>1,
Lt =111, i = jl=1.
; \/ N
\ A
- T.

i+1 —_—

r \\ /\ T

i




We seek a (projective) representation of the braid group B,

Since the Majorana fermions y; change sign under a
shift of the superconducting phase by 27, we introduce
cuts connecting vortices to the left boundary of the system

------------ 7 — e
Yi— Y+t T ? | i
T; .4 Yis1 /= Vi,
Vi > Y forj #iandj #1i + 1

Now the action of operators 7; may be extended
from operators to the Hilbert space. Since the whole
Hilbert space can be constructed from the vacuum state
by fermionic creation operators, and the mapping of the
vacuum state by 7; may be determined uniquely up to a
phase factor, the action (6) of B,, on operators uniquely
defines a projective representation of B,, in the space of
ground states.



We need to construct operators
7(T;) obeying T(T,-)']/J,'[T:(T,-)]_l = T;i(yj), where T;(7;) is defined by (6)

Recall {vi. vy J p = 20, j  then (upto a phase factor)

T 1
(1) = ﬂxp(? T;+1’Ff) = E(l + Yis1Yi)



In the case of two vortices, the two Majorana fermions
may be combined into a single complex fermion as W =
(v1 + iy2)/2. T = (y; — iy2)/2. The ground state is
doubly degenerate, and the only generator of the braid
group T is represented by

7(T) = exp(% ’:r’z’:r’l) = exp[f % QVTy — I)J

i

= exp(f e r,rz) ? (8)



In the case of 4 vortices we have two complex fermions
W, = (y; + iv2)/2, Wy = (y3 + iv4)/2 (and similarly for W] and W)
The ground state degeneracy is 4 and 3 generators T, , T, and T, are given by

e,—:"rrﬁi
LI /4

7(T)) = exp(f % rrg_”) = ‘ o iT/4

e:'frrfﬂr

e—:"rrfft
—im /4

. T2 e
7(T3) = exp(z e rrg_ }) = i/

el /4

1 0 0 —i

TT 1 ] , ] —q
7(Ty) = eXP(T ’}’3’}’2) = E(l + yay2) = E[l + (W] + W) (U] — W] = 7 g _li. li g
—i 0 0 ]

o ® ® L) -I- -I- -I-
The matrices are written in the basis (0). ¥10), ¥310), ¥ ¥3[0))



Half Metallic Ferromagnets



/ Some Half Metals
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Instability of the Half Metal Ferromagnet

Majority spin electrons
A small density of minorty spin electrons

How do they couple ?



Hubbard Model
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Infinite U Repulsive Hubbard Model



Infinite repulsive U Hubbard model at Half Filling
is an insulator with dangling or fee spins.
Ground state has a 2V fold spin degeneracy.

Nagaoka Theorem:

For bipartite lattices with nearest neighbor hoping a single hole removes
the massive degeneracy and creates a fully spin polarized
Ferromagnetic ground state.

How about finite density of holes ?

Theoretical studies indicate that ferromagnetism might survive upto
about 20 % of doping.

All focus in the literature has been on Nagaoka Ferromagnet, a half metallic state



Instability of half metallic Fermi Liquid (GB, Zhengcheng Gu, Hong-Chen Jiang) 2015)
= tz 1_”L LJT(I—HJ_L]-FI?C

—|—tZl—nT Lj¢(1—?1jT]+hc

f N o |
(1 — ?13-1»]&4 = CipCipCyy = S; Cit

—
cis(1—nj1) = cjpeely = 4 Where 9 = € Cif ete

H =ty (I-ny)elieis(l—njy) +he +tY clesSTSH +hee.
(i7) (27)
oy — 049 — 40 — Jo
H = tu_aﬂ)ﬂZ(chcﬂJrh.c.)
(id)



H

2
t(1 —do) Z(CJTCJT + h.c.) Charge kinetic energy -

(1) Spin-kinetic energy coupling
EtZ(chcﬂ +clieiy) (Si51 4+ 5i51) £
(ig)

1
1T 1T ] —F :rl' :r"
§f- E (circit — CjpCat) [ 2+ (S; x S;i)]

(i) \\
Charge current —
Spin Chirality current coupling

Dilute gas of holes O
and down spins in the V
background of dense up spins



Spin current excitations are topological and carry non-zero chirality
Skyrmions in 2 dimensions and Monopoles in 3-dimensions

Skyrmions are capable of binding a single hole and

Gain energy through charge and spin current interaction
Skyrmions form pairs and provide opportunity for pairing of two holes bound to them

This is a spin triplet cooper pair
having unit orbital angular momentum (1, = +1 or -1)

The system gains energy by having a small and optimal density of
Skyrmions in the ground state. (N, ;0. /Npge << 1)

p +tip and p-ip order parameter symmetry correspond to
Chiral spin liquids with opposite macroscopic chirality



Skyrmion and anti Skyrmion:

Mapping of spins in the plane R> —™> Unit sphere S?

http:/lwww.riken.jp/enilresearchi/rikenresearch/highlights/6527



http://www.revolvy.com/main/index.php?s=Skyrmion



N
l hole

A hole in a twisted spin configuration

Doucot and Wen, Phys Rev B (2002)



GrassmannTernsor Product States — A variational approach
(a new and powerful variational approach for strongly interacting fermions developed by Verstraete, Cirac, Wen, Gu and others

following DMRG, matrix product and tensor network states)
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Possible Experimental Realizations

Moller et al. pPHYSICAL REVIEW B 78, 024420 (2008)

He® on graphene (Hiroshi Fukuyama et al. PRL 2012)

Ferromagnetic

Long-range magnetic order in a purely organic 2D
layer adsorbed on epitaxial graphene

Garnica et al., Nat. Phys. 9, 368 (2013)



InCu,3V 1,305 with [InOg] and [MOs] polyhedra (left)



Long-range magnetic order in a purely organic 2D
layer adsorbed on epitaxial graphene

Garnica et al., Nat. Phys. 9, 368 (2013) Spin Resolved STM Study of TCNQ lattice
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] Emergence of Ground State degeneracy
7\ Without spontaneous symmetry breaking

Vv

Quantum Order
No local order parameter description
Quantum Rigidity

c ——

The degeneracy is visible in torus geometry

This degeneracy leads to anyon quasi particles
and quantum number fractionization in 2d
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It is a highly Frustrated
Quantum Spin System

_ T __T y__u z __Z
H = —J, E 070y — Jy E 0;0y, —J. E o0,

r-links y-links z-links
Local Conserved Quantities
wz2=1

I - | RS- S N .
p = 9192093949506  Eigen values of W, =1, -1




aral

B

ap, if (7, k) 1s an x-link;

K. = atal. if (7, k) is an y-link:
Tk Jo s J :

— F

v

— P

-

K, Wy =0 Vij,p =

“op, if (4, k) is an z-link.

(H,W,] =0,

wz2=1

Eigen values of W =1, -1

I"I-"'p = G’ixﬁgﬂ'iﬂ'iﬂ'gﬂﬁ = j‘:lgf‘fggffg._lff_lgI‘Lf_lj,(-,ffm

Number of unit cell 2N Number of sites N  Number of Plaquettes N

Number of spins 2N

(W, W, =0 Vq,p

Hilbert space dimension 22N Number of W ’s isN  They can take 2" different values
So ther are 2" different W sectors

22N=2N+2N+

2N | 2N

2N different Wp sectors

2N

o o 2N

2N




Dirac or complex Fermion

= _,L( 40 7@ Majorana or

Real fermions

Hilbert space dimensions
%;‘-:—'\IZ ZSF‘—:ZT;%:‘EXJZ:Q

¥ =2



Majorana Fermions
A system with n fermionic modes 1s usually described by the

annihilation and creation operators ay, {1.1. (k=1,...,n).

Instead, one can use their inear combinations,

.I. ﬂli',; — H-;:I;_,
Col—1 = Q) + ay, Cok = P

which are called Majorana operators.

The operatorsc; (7 =1,...,2n) are Hermitian and obey

i} L L . .
c; =1, cicp = —cc; i 7 #L.



Hilbert space enlargement Used in RVB theory
(GB, Anderson, Zou, 1987)

e

{H.T.rLJTr.ral.nI} {|T> : |l>} - |”“::'TJ.1 |“}TJ.* Ol)Tl *|1O)Tl}

+ T _ st a. N - AN =
1
b* = ay —I—rLJTr. Y = — (H-T — HD ., b =a; + n{. c= —1 (ﬁ’-l — rLD

Dimension of enlarged Hilbert space is 4*"
compared to physical Hilbert space dimension 22"

T . N Yy . o B I z . o ey N
g, Wby, o Wby, o b5 b

Local Constrant s
D;|€) = |€) for all j Dj = bjbjbjc;



Ky = ooy  —— Ky = (-ib?’c_.}-){-ibi?c;f} = —j (-ib?'bﬁj CjCr,

a takes values =, y or z

!

41 .7 — aphx TP E———
ijp = by —— Uy = —Ujy,

7 ? Z A A 2J, u 1f 7 and k are connected,
= — 3:CiCls e = )
41— Jk=3 s ik 0 otherwise,
7,

~ - ﬂ'j.f.: CE_.I;;_.
Wi = z.bj b

u’=1
Eigen values u, = 1, -1

___Majorana operators

\'/ v Remarkably, the operators u,;;, commute

with the Hamiltonian and with each other



A two body interaction term (four fermion term) is
reduced to a two body term

Kj = (ibfe;)(ibfer) = —i (ibgby) cjor —— 1 (05 ) CCy

RVB mean field factorisation becomes exact !

We have free maj orana fermion hopping Hamiltonian

i

~ 9 ~ ~ 2J,  u; 1 7 and k are connected
H — E qu;l.tajtf;l.? fiﬂ; — y

4 < 0 otherwise,

A complex interacting Hard core boson problem is reduced to a
Free majorana fermion problem Hilbert space dimension 22N

Sufficient to solve a one particle problem on a Honey comb lattice !
Hilbert space dimension 2N
From this we can build the many particle Fock space of dimension 22N



To satisfy local Constrant and go to physical Hilbert space
we need to do some projection (similar to Gutzwiller projection in RVB theory)

14D\ ~
|LI'1L'} = H( 5 J) |LI'u} c L

J

However, to calculate physical quantities such as energy spectrum
spin-spin correlation functions etc., no such projection is necessary !

This follows from an emergent local Z, Gauge symmetry in the problem

(,k.\)- — T (’(i-j Zt) L :i'l W,W'M/)
¢ —> .0, Mg = Yp

Dimension of enlarge Hilbert space is 4%
compared to physical Hilbert space dimension 22N \Wi | Son Q’ U
1 T = W,

‘J

No. 6§ possiple el 7 {T‘k
Ao 2N s JRacite we. of GAge o



Each W sector has 2*" gauge copies.
Gauge invariant quantities are the physical observables

22N = 2n | 2Y | 2° o o o 2N | 2N
4N = | 2N x 22N N y Q2N

vortex free sector examples from two-vortex sectors full vortex sector

W, =-1 is defined as a vortex excitation



Solving the free Majorana problem in different W, sectors

cann:rn wcal —

{ bf E)ff

/0
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QT

. L C
B Zj_.ﬁ: AjiCicy,

A 1s a real skew-svmmetric matrx
Tie
T 1 ~ 0
Ek(ﬂ-kﬂ-£~ — g}f Er = U
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Absolute ground state energy is obtained in the
Sector where W_ =1 in all plaquettes

(Lieb’s Theorem)

The spectrum of free fermions is obtained by Fourier transform
If we use periodic boundary condition

1

H = {Ea’h‘l} Zs.ﬁh.f.;e ‘45=}L-t#*c~‘5=}tc’f# H = 5 E E.;—fl;m {qjﬁ'—q.iﬂq.;e
- o, A,
. A i(ere)
! E:{{ ) = 0 if(q) ‘4}&“ {{-1) — Z e quﬁl}h.r.,u
unit cell U= if(q 0 t
a _ 1 E—é{cl.l*sjc,
fla) = Q(Jxe”q'“ﬂ + Jyettanz) 4 J:) q.A T VF ' A

=(q) = x(f(q)]




Phase diaeram of the model T}
J=1(0,0,1)

A,

gapped

B

gapless

Ay

gapped

At.r

gapped

=+ —

J =(1,0,0) J=(0,1,0)

The triangle 1s the section of the positive octant

(Jy, Jy, J. =2 0) by the plane J, + J, 4+ .J. =1
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Toric Code Hamiltonian as a limit of Kitaev Model

in the gaped phase
5
—®mp © 5
n, i 177
m;

Perturbation theory in powers of
the ratios J,/J, and J /J,

2 72
Jny
Heﬂ’ —
Q,=o’. o’ o- o
P left{p) ~ right(p) ~ up(p) - down(p)

o

T 41T

2T,
N
(N

D At )

vertices

plaquettes

%)



Hepp=—Jesr | Y As+ > By

vertices plagquettes
|9 = I I nf. [ -— I I o
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To create a pair of e, or move an e through a path + ¢ and . are bosons;
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s (t) =[] P |
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Jjet &)
To create a pair of m, or move an m through a path t

t" we must apply: iy
\"“r"f gl
T ’.\9 i
1 TN it
S+ [.T-J.] — I I (‘Tff : '\_’;f'
jet’ iR
N _I
_ ~ : I [
4 N // : g £ | 1 o 1
'* oy e —]_ l.r — : 'f-""l 1 I\‘--'"I 1
.F..i} e \' o 1 I :
G A ] \\ - T __l_\\
— m e m e (‘?f"'____{_”f T




€IM composite is a fermion

€T € T e e T e T e an

¥\\H ~ LS o Fh L
- 18

€ T e 1t e 1 e Tr e T e In




In the gapful phase we have only Abelian Anyons
Application of an external magnetic field
or addition of a specific 3 spin interaction term
Produces a phase where there are

Non Abelian Anyons



3 spin interaction term

(model continues to be exactly solvable and all W, commute with the full
Hamiltonian)

xr W =z —

H = Z E -A-jﬁ.:f'jf'ﬁ.:
{7,k)

= Afla)  if(q) CCY
“Ala) = (—-if{q)* —&{q}) s

fla)= QJ(E”':‘-“”;'—I—E:?{':"“E:' —|—1) &

A(q) = 4k (sin(q, N )+sin(q, —ny ) +sin(q, 119—111)) |

£(q) = £4/3J2|dq|2 + A2
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E Ko, 0;0p = K 1230705 03 + Ko30, 050, + K34505 0, 05 + Kys560,05 gg

(i, j,kyep

X . 2..¥ y x 2
+K55]1’_T5 O T4 +K513UEUITUE.



How do we get Non Abelian anyons ?

We start with spins but end up with
two types of emergent elementary constituents in the problem

@ excita@ @jorana ferm@

The physical spectrum for a given flux configuration contains
only propagating complex (Dirac) fermion excitations
(linear combination of majorana fermions)

However, on introduction of the 3 spin interaction term
a flux excitation binds a single localized majorana fermion mode
for J’s near the isotropic pointJ, = J =J,

The Majorana Fermion Flux composite is our Non Abelian Anyon



Eun ~ 0.1536.  AE (%) ~ —0.04, AE (%) ~ —0.07.

® Majorana Fermion




In the Abelian phasd two well isolated vortices have
a non degenerate ground state

The vortices interact and the degeneracy is in general split.
However, the splitting vanishes exponentiall as a function of separataion



In the Non Abelian phasd two well isolated vortices have
a doubly degenerate ground state

2 well separated vortices Ground state degeneracy is (\i ,Z > — :Z



M

M well separated vortices Ground state degeneracy is (\"? )

6 well separated vortices Ground state degeneracy is ( J’i



For M well separated vortices Ground state degeneracy is <J7~)
Let us denote the ground states by

’\\l/(‘l\“’('““) a =12, - <E>

a ( Wm $r-$'¢







Ville Lahtinen' and Jiannis K Pachos New Journal of Physics 11 (2009) 093027




Superselection sectors: 1 (vacuum),

Quantum dimension: diy =1,
Topological spin: g =1,
Frobenius-Schur indicator: 2 = 1,

Global dimension: D2 Y 42 — 4.

Fusion rules: sxe=1, EX 0o =0,
Braiding rules:
Definition of R7Y:
v X v X Rit = —1
L
N — Y . - .
4—3?@’ R
Z z
Topological S-matrix:
a N 1 1
1 | X 2 2
- def NN _ 1 1
(‘Sz)ry - 5 .'\_>I'| o o1 = 2 ?
| v 1 _i_
Nk Vi V2

¢ (fermion),

o (vortex).

dt‘ =1 dcr — \/5;
0. =—1, 0,=0= exp(%iu
. = 1, 3, = 3¢ = (_1}(&2—1};’8_

ogxo=1+4c¢.



Anomalous spin-spin correlation function and
Quatnum number fractionization
GB, Mandal, Shankar PRL 2007
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We Co



Any one of the component of Pauli spin operators create a
Composite of a Majorana Fermion a pair of flux excitations,
while on acting on the ground state.

o 1672 T, ccl67

This state evolves in time. The fluxes stay localized.
The Majorana fermion gets delocalized.

® Majorana Fermion




Non-Abelian Statistics of Half-Quantum vortices in p-Wave Superconductors
D.A. Ivanov, Phys. Rev. Lett. 86, 268 (2001)

Superconductivity in Sr,RuQ,
Y. Maeno et al., Nature 372, 532 (1994)

Theoretical Prediction of p-Wave Superconductivity
T. M. Rice, M. Sigrist, J. Phys. Cond. Matter 7, 1L.643 (1995)
G. Baskaran, Physica B 223-224, 490 (1996); Trieste Workshop July 1995

The intriguing superconductivity of strontium ruthenate
Y. Maeno, T. M. Rice, M. Sigrist, Physics Today (p 42-47), Jan 2001

The superconductivity of Sr,Ru0, and the physics of spin-triplet pairing
A.P. Mackenzee, Y. Maeno, Rev. Mod. Phys. 75, 657 - 712 (2003)
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