1. Suppose $z=x^{2}+y^{3}$, where $x=s t$, and y is an unknow function of s and t. But we know that when $(s, t)=(2,1)$, then $\frac{\partial y}{\partial t}=0$. Find $\frac{\partial z}{\partial t}(2,1)$.
2. Suppose the following function is used to model the monthly demand for bicycles:

$$
P(x, y)=200+20 \sqrt{0.1 x+10}-12 \sqrt[3]{y}
$$

In this formula, x represents the price (in dollars per gallon) of automobile gasoline and y represents the selling price (in dollars) of each bicycle. Furthermore, suppose the price of gasoline t months from now will be

$$
x=1+0.1 t-\cos \frac{\pi t}{6}
$$

and the price of each bicycle will be

$$
y=200+2 t \sin \frac{\pi t}{6}
$$

At what rate will the monthly demand for bicycles be changing in 6 months from now?
3. Let $z=x^{3}+y^{3}+3 x y$, where $x=e^{r} \cos \theta$, and $y=e^{r} \sin \theta$. Calculate $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$, at $x=\frac{e}{2}$, and $y=\frac{e \sqrt{3}}{2}$.
4. Consider the curve given by the equation

$$
5 x^{2}+5 y^{2}+6 x y=4
$$

Find the points on the curve where the tangent line is parallel to x axis or the line $x+y=0$. (Hint. use impliciit differentiation)
5. Find the tangent plane to the surface $9 z^{2}-x^{2}+9 y^{2}=9$ at $\left(1,1, \frac{1}{3}\right)$, and $\left(4,1, \frac{4}{3}\right)$.
6. Suppose a rain drop falls on the surface given by the equation $z=2 x^{2}+5 y^{2}$, at the point $(-2,1,13)$. In which direction will the rain drop start falling? (Hint. It will fall in the direction of steepest downward slope at that point.)
7. Find and analyze all the critical points of $f(x, y)=2 x^{3} y-y^{2}-3 x y$, using the second derivative test.
8. Find the global extrema for the function $g(x, y)=x^{3}+y^{3}-3 x-3 y$, in the region $\{(x, y) \mid-2 \leq x \leq 2,-2 \leq y \leq 2\}$.

