1. Calculate the following
(a) Rectangular coordinates of the following points given in terms of their polar coordinates $(r, \theta):\left(2 \sqrt{3}, \frac{\pi}{3}\right)$ and $\left(-5, \frac{3 \pi}{2}\right)$
(b) All the polar representations of the following points given in terms of rectangular coordinates: $(\sqrt{6}, \sqrt{2})$ and $(-3,3)$
2. Sketch the following curves given by polar equations. First plot the points corresponding to the following values of $\theta: 0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi, \frac{3 \pi}{2}, 2 \pi$
(a) $r=\frac{12 \theta}{p i}$
(b) $r=\frac{\theta \sin \theta}{\pi}$
3. Convert the following equations. Can you guess what the curves are?
(a) Rectangular to polar: $x^{2}+y^{2}=2 x y$
(b) Polar to rectangular: $r=2 \sin \theta$
4. Limits and continuity
(a) $\vec{r}(t)=\left\langle\frac{t}{e^{t}}, \cos t, \frac{\ln (1+t)}{t}\right\rangle$. For what values of t is \vec{r} continuous? Calculate $\lim _{t \rightarrow 0} \vec{r}(t)$.
(b) $\vec{r}(t)=\langle\tan t, \cot t, t\rangle$. For what values of t is \vec{r} continuous. Calculate $\lim _{t \rightarrow \pi} \vec{r}(t)$.
5. Sketch the following curves (plot at least 5 points on each curve)
(a) $\quad \vec{r}(t)=\langle t, 2 t \sin t, 3 t \cos t\rangle, \quad t \geq 0$
(b) $\vec{r}(t)=\left\langle t^{3}, t^{2}\right\rangle$
6. For a curve given by a vector function \vec{r}, the tangent vector at $\vec{r}(t)$ is the vector $\vec{r}^{\prime}(t)$. The unit tangent at $\vec{r}(t)$ is the unit vector along $\vec{r}^{\prime}(t)$, and the tangent line at $\vec{r}(t)$ is the line passing through $\vec{r}(t)$ and having $\vec{r}^{\prime}(t)$ as the direction vector. Let

$$
\vec{r}(t)=\langle(4+\cos 4 t) \cos t,(4+\cos 4 t) \sin t, \sin 4 t\rangle, \quad 0 \leq t \leq 2 \pi
$$

(a) Calculate $\vec{r}^{\prime}(t)$.
(b) What are the tangent and unit tangent vectors at $\vec{r}(\pi)$ and the point $\left\langle\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}, 0\right\rangle$?
(c) What are the tangent lines at those two points to the curve?
7. Evaluate the following the following $\left(\frac{d}{d t} \vec{r}(t)=\vec{r}^{\prime}(t)\right)$
(a) $\frac{d}{d t}\left\langle t^{2}, e^{t}, \ln t\right\rangle$
(b) $\frac{d}{d \theta}\langle 2(\theta-\sin \theta), 2(1-\cos \theta)\rangle$
(c) $\int_{0}^{10}\left\langle t, t^{2}, t^{3}\right\rangle d t$
(d) $\int_{0}^{2 \pi}\langle 2(\theta-\sin \theta), 2(1-\cos \theta)\rangle d \theta$
(e) $\int_{-1}^{1}\left\langle 2 t \sqrt{1+t^{2}}, e^{t}, 2 t^{2}+1\right\rangle d t$
8. (Bonus) Consider the sun located at the origin $O=(0,0)$, the earth (E) is rotating around the sun at a distance $10 r$ (at constant speed). The moon (M) is rotating around the earth at a distance r from the earth (again at constant speed relative to earth). During one complete rotation by earth around sun the moon rotates 10 times around earth.
(a) Find a parametric equation for the curve traced out by the moon.
(b) Sketch the curve that you obtained.

