- 1. Calculate the following
 - (a) Rectangular coordinates of the following points given in terms of their polar coordinates (r, θ) : $(2\sqrt{3}, \frac{\pi}{3})$ and $(-5, \frac{3\pi}{2})$
 - (b) All the polar representations of the following points given in terms of rectangular coordinates: $(\sqrt{6}, \sqrt{2})$ and (-3, 3)
- 2. Sketch the following curves given by polar equations. First plot the points corresponding to the following values of θ : $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi, \frac{3\pi}{2}, 2\pi$

(a)
$$r = \frac{12\theta}{pi}$$
 (b) $r = \frac{\theta \sin \theta}{\pi}$

- 3. Convert the following equations. Can you guess what the curves are?
 - (a) Rectangular to polar: $x^2 + y^2 = 2xy$ (b) Polar to rectangular: $r = 2\sin\theta$
- 4. Limits and continuity
 - (a) $\overrightarrow{r}(t) = \left\langle \frac{t}{e^t}, \cos t, \frac{\ln(1+t)}{t} \right\rangle$. For what values of t is \overrightarrow{r} continuous? Calculate $\lim_{t \to 0} \overrightarrow{r}(t)$.
 - (b) $\overrightarrow{r}(t) = \langle \tan t, \ \cot t, \ t \rangle$. For what values of t is \overrightarrow{r} continuous. Calculate $\lim_{t \to \pi} \overrightarrow{r}(t)$.
- 5. Sketch the following curves (plot at least 5 points on each curve)

(a)
$$\overrightarrow{r}(t) = \langle t, 2t \sin t, 3t \cos t \rangle, \quad t \ge 0$$
 (b) $\overrightarrow{r}(t) = \langle t^3, t^2 \rangle$

6. For a curve given by a vector function \overrightarrow{r} , the **tangent vector** at $\overrightarrow{r}(t)$ is the vector $\overrightarrow{r}'(t)$. The **unit tangent** at $\overrightarrow{r}(t)$ is the unit vector along $\overrightarrow{r}'(t)$, and the **tangent line** at $\overrightarrow{r}(t)$ is the line passing through $\overrightarrow{r}(t)$ and having $\overrightarrow{r}'(t)$ as the direction vector. Let

$$\overrightarrow{r}(t) = \left\langle (4 + \cos 4t) \cos t, (4 + \cos 4t) \sin t, \sin 4t \right\rangle, \quad 0 \le t \le 2\pi$$

- (a) Calculate $\overrightarrow{r}'(t)$.
- (b) What are the tangent and unit tangent vectors at $\overrightarrow{r'}(\pi)$ and the point $\left\langle \frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}, 0 \right\rangle$?
- (c) What are the tangent lines at those two points to the curve?

7. Evaluate the following the following $\left(\frac{d}{dt}\vec{r}'(t) = \vec{r}'(t)\right)$

(a)
$$\frac{d}{dt} \langle t^2, e^t, \ln t \rangle$$

(b) $\frac{d}{d\theta} \langle 2(\theta - \sin \theta), 2(1 - \cos \theta) \rangle$
(c) $\int_0^{10} \langle t, t^2, t^3 \rangle dt$
(d) $\int_0^{2\pi} \langle 2(\theta - \sin \theta), 2(1 - \cos \theta) \rangle d\theta$
(e) $\int_{-1}^1 \langle 2t\sqrt{1 + t^2}, e^t, 2t^2 + 1 \rangle dt$

- 8. (Bonus) Consider the sun located at the origin O = (0,0), the earth (E) is rotating around the sun at a distance 10r (at constant speed). The moon (M) is rotating around the earth at a distance r from the earth (again at constant speed relative to earth). During one complete rotation by earth around sun the moon rotates 10 times around earth.
 - (a) Find a parametric equation for the curve traced out by the moon.
 - (b) Sketch the curve that you obtained.

