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Short Bio

Mirzakhani was born on 12th May 1977, in Tehran, Iran.

In the 1995 International Mathematical Olympiad, she became the
first Iranian student to achieve a perfect score and to win two gold
medals.

She obtained her BSc in mathematics in 1999 from the Sharif
University of Technology, Tehran.

She did her graduate studies at Harvard University, under the
supervision of Fields medallist Curtis T. McMullen and obtained
her PhD in 2004.



Short Bio

Her PhD thesis was published in 3 parts in 3 top journals of
Mathematics, Annals of Mathematics, Inventiones Mathematicae
and Journal of the American Mathematical Society.

Mirzakhani was awarded the Fields Medal in 2014 for ”her
outstanding contributions to the dynamics and geometry of
Riemann surfaces and their moduli spaces”.

She died of breast cancer on 14 July 2017 at the age of 40.



Mathematical contributions of Maryam Mirzakhani

Mirzakhani was mainly interested in Hyperbolic surfaces their
families. The central object that appears throughout her work
spread over some 20 papers is the Moduli of hyperbolic surfaces
with a fixed genus g and n punctures denoted by Mg ,n.
Her work can be very broadly divided into three parts.

I Volume calculation ofMg ,n and related spaces, leading the an
asymptotic count of simple closed geodesics on an individual
Riemann surface as well as a new proof of Witten conjecture.

I Teichmüller dynamics on Mg ,n: Here she proved a
long-standing conjecture of William Thurston showing
Thurston’s earthquake flow on Mg ,n is ergodic.

I Together with Alex Eskin and Amir Mohammadi, Mirzakhani
was able to show that complex geodesics in Mg ,n are
algebraic subvarieties.

In this talk I shall restrict to the first part.



Hyperbolic plane

The hyperbolic plane D is the open unit disk in C

D = {z ∈ C | |z | < 1}

endowed with the metric

dhyp =
dx2 + dy2

(1− |z |2)2
.

This is a metric of constant curvature −1. To see this one can
embed a small part of hyperbolic plane isometrically in R3 and
show that the Gaussian curvature is −1.
The unit sphere in R3 has constant curvature +1.



Hyperbolic distance

Recall in Euclidean plane if γ : [0, 1]→ R2 is a curve, and
γ(t) = (x(t), y(t)) then its length is

`(γ) =

∫ 1

0
|γ′(t)|dt =

∫ 1

0

√
(x ′(t))2 + (y ′(t))2dt.

In the hyperbolic plane we measure lengths of curves differently. If

γ : [0, 1]→ D, γ(t) = (x(t), y(t))

then length of γ is

`(γ) =

∫ 1

0

2|γ′(t)|
1− |γ(t)|2

dt =

∫ 1

0

2
√

(x ′(t))2 + (y ′(t))2

1− x2(t)− y2(t)
dt.



Geodesics

It turns out with this length measure also called hyperbolic metric,
the shortest curve between any two points is the unique circle
passing through those points and meeting the boundary at right
angles.

These curves of minimal length are called geodesics.

The distance between any two points in the Hyperbolic plane is the
length of the shortest curve joining the two points. Hence the
length of the unique geodesic between those points.

In general a geodesic on any surface is a curve which can not be
perturbed to get a shorter curve



Geodesics



Distance

Geodesic between the origin O = (0, 0) and the point A = (a, 0) in
D is the straight line OA, parametrized by

γ : [0, 1]→ D, γ(t) = (0, at).

Hence we can calculate the distance d(O,A) by

d(O,A) = `(γ) =

∫ 1

0

2|γ′(t)|
1− |γ(t)|2

dt

=

∫ 1

0

2|a|
1− a2t2

dt = ln
1 + |a|
1− |a|

.

Note that d(O,A)→∞ as a→ 1.

All distances can be calculated using this, since there are
isometries of D that take any two points to the origin and a point
on the x-axis.



Hyperbolic geometry

This is the starting point of hyperbolic geometry. Some jargon:

I D is a metric space, since we know how to measure distances.

I Distances go off to infinity as we approach the boundary so
this is a complete metric space.

I D is a Riemannian manifold of dimension 2, since it is an
(open) subset of R2 and we can measure lengths of curves.

I The geometry of D is a type of non-euclidean geometry since
it does not satisfy the parallel postulate of Euclid.



Hyperbolic surfaces

These are surfaces that can be built from geodesic polygons in the
hyperbolic plane by identifying sides (quotient space). For example:

is a surface of genus 2.



Punctured torus

Here we have a Geodesic quadrilateral with vertices on the
boundary of D and the quotient is a torus with a puncture.

This surface is has genus 1 and 1 puncture.



Hyperbolic surfaces

Since these surfaces are obtained from the hyperbolic plane, they
naturally have a metric: length of a curve is the length of the
corresponding curve in the polygon.

Geodesics are images of the geodesics in the polygon.

As a Riemannian manifold they have constant curvature -1. This
makes the surface somewhat rigid.

Note that a compact hyperbolic surface can not be embedded
isometrically in R3. Any compact surface in R3 has a point of
positive curvature.



Genus

The genus of a closed surface is just the number of holes it has. A
surface is hyperbolic if it has genus at least 2.

Genus 2 Genus  3



Moduli Space

There is a nice enough topological space Mg ,n parametrizing all
possible hyperbolic surfaces of genus g with n punctures.

Points of Mg ,n correspond to isometry classes of hyperbolic
surfaces.

Mg ,n is called the moduli space of genus g hyperbolic surfaces
with n punctures.

This space is almost a manifold, but not quite. It is an orbifold of
dimension 6g − 6 + 2n, the quotient of a manifold by the action
(not free) of a finite group.



Simple closed geodesic

Let X be a closed hyperbolic surface.
A path γ : [0, 1]→ X is a simple closed geodesic if:

I γ([0, 1]) is a geodesic, for s, t close by γ([s, t]) is the shortest
path between γ(s) and γ(t).

I γ(0) = γ(1),

I γ(s) 6= γ(t) if 0 ≤ s < t < 1.

In words γ has the same starting and ending points, which is also a
geodesic and which does not cross itself.



Curves

Red curve is not closed, blue curve is closed but not simple, green
curve is simple and closed.



Number of geodesics of bounded length

Any closed curve can be slightly perturbed to get a closed geodesic.

In fact on hyperbolic surfaces, there is a unique geodesic in each
free homotopy class of closed curves.

It was known that the number cX (L) of closed geodesics on X of
length at most L has the asymptotic expression

cX (L) ∼ eL

L
.

Not much was known about the number of simple closed geodesics
in general.



Simple closed Geodesics
There are infinitely many simple closed geodesics on any
hyperbolic surface X of genus > 0.

For example on the punctured torus any (m, n) torus knot is a
simple closed curve and the unique geodesic in its free homotopy
class is a simple closed geodesic.

The (m, n) torus knot is the image of a line in R2 with slope m/n
for integers m and n passing through the origin, under the quotient
map R2 → T .

A (2,3) torus knot also called the Trefoil knot.



(5, 3) Torus Knot

Renato Paes Leme, https://observablehq.com/@renatoppl/torus-knots

https://observablehq.com/@renatoppl/torus-knots


Torus knots

Manuel Arrayás and José L. Trueba, https://arxiv.org/abs/1106.1122

https://arxiv.org/abs/1106.1122


Counting simple closed Geodesics

Let us now fix a closed hyperbolic surface of genus g with n
punctures, X ∈Mg ,n.

Let sX (L) be the number of simple closed geodesics in X whose
length is at most L. Then Mirzakhani proves that asymptotically

sx(L) ∼ η(X )L6g−6

where η(X ) is a constant depending on the surface X .

Moreover η :Mg ,n → R+ is a continuous function.



Pants decomposition

One of the main ingredients of the proof of the asymptotic formula
for sX (L) is Mirzakhani’s recursive formula for the volume ofMg ,n.

Given a surface of genus g with n punctures it can be cut along
3g − 3 +n simple closed geodesics, to get 2g − 2 +n pairs of pants:

Similarly we can glue 2g − 2 + n pairs of pants along pairs of
boundary geodesics to get a surface of type (g , n).



Fenchel-Nielsen coordinates

To glue any two boundary geodesics of two pairs of pants, there
are two parameters involved

I the length of the boundary geodesics being glued,

I the twist parameter.

Different length and twist parameters give rise to different surfaces.

This rise to Fenchel-Nielson coordinates on (a cover of) Mg ,n,
(l1, . . . , l3g−3+n, τ1, . . . , τ3g−3+n), li > 0 and τi ∈ [0, li ).



Weil-Peterson volume

The volume of Mg , n can be measured in terms of the
Fenchel-Nielson coordinates

Vol(Mg ,n) =

∫
· · ·

∫
1 dl1 . . . dl3g−3+ndτ1 . . . dτ3g−3+n.

Mirzakhani gave a recursive formula for these volumes.

Using this and a generalisation of McShane identity she proved her
formula for sX (L).

In another direction she also proves the Witten conjecture by
showing that the volume can also be expressed in terms of Chern
classes of line bundles on Mg ,n.


