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1. Lecture 1 (28 November 2019)

This lecture1 will mostly deal with families and sequences of holomorphic function on a fixed
domain.

1.1. Montel’s theorem. The first result that we shall see is a theorem that broadly deals with
sequences of holomorphic functions on an open subset of the complex plane. It gives a criterion
for such a sequence to have a convergent subsequence.

Definition 1 (Normal family). Let F be a set of holomorphic functions on Ω an open subset of
C, it is called normal if any sequence {fn}∞n=0 of functions from F has a subsequence {fnk

}∞k=0
which converges uniformly to a function f : Ω → C on compact subsets of Ω. That is for any
K ⊂ Ω compact and ε > 0 there is a positive integer L such that

|f(z)− fnk
(z)| < ε for all z ∈ K and k > L.

Definition 2 (Uniform boundedness). A set of complex valued functions F on a Ω ⊂ C is said
to be uniformly bounded on E ⊂ Ω if there is M > 0 such that

|f(z)| < M for all f ∈ F and z ∈ E.
The number M is called the uniform bound for F on E.

Theorem 3 (Montel’s theorem). A set F of holomorphic functions on Ω ⊂ C open, is normal,
if it is uniformly bounded on any compact subset of Ω.

The proof has three parts, which I break up into two lemmas and an exercise. The proof of the
first lemma requires complex analysis in the form of Cauchy’s integral formula. Where as the
next two parts are proven using just topological arguments and hold in much more generality
than our situation.

Lemma 4. If F is uniformly bounded on a compact subset K ⊂ Ω, then F is equicontinuous on
K.

Proof. Recall that F is equicontinuous on K if for any ε > 0 there is a δ > 0 such that for any
z, w ∈ K and any f ∈ F if |z − w| < δ then |f(z)− f(w)| < ε.

Let r > 0 be such that |z1 − z2| > 3r for any z1 ∈ K and z2 ∈ C − Ω. Let M be the uniform
bound for F on K. Let z, w ∈ K such that |z−w| < r and γ be the circle {ζ ∈ C | |ζ−w| = 2r}.
Then γ ⊂ Ω and for any ζ ∈ γ

|ζ − z| ≥ |ζ − w| − |w − z| > r.

Now using the Cauchy integral formula

f(z)− f(w) =
1

2πi

∫
γ
f(ζ)

(
1

ζ − z
− 1

ζ − w

)
dζ.

We have the following bound∣∣∣∣ 1

ζ − z
− 1

ζ − w

∣∣∣∣ =

∣∣∣∣ w − z
(ζ − z)(ζ − w)

∣∣∣∣ ≤ |z − w|r2
.

Hence we get

|f(z)− f(w)| ≤ 1

2π

2πrM

r2
|z − w|.

1Prerequisites: Cauchy Integral formula, uniform convergence, Schwarz lemma and some basic notions from
point set topology.
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Hence for |z − w| < r we have |f(z)− f(w)| ≤ M
r |z − w| on K.

For ε > 0 choose δ < r such that M
r δ < ε, then for z, w ∈ K and |z − w| < δ we clearly have

|f(z)− f(w)| < ε. �

This result is very special for holomorphic functions. On the other hand consider the sequence
of functions {x 7→ xn} on the interval [0, 1]. These are of course uniformly bounded but are not
equicontinuous (why?).

Now we show that uniform boundedness and equicontinuity on a compact set together gives a
uniformly convergent subsequence. This result does not require the functions to be holomorphic
or even that the co-domain is C. It only uses the fact that the domain is a compact metric
space.

Lemma 5 (Arzela-Ascoli theorem). If F is uniformly bounded and equicontinuous on a compact
subset K ⊂ Ω, then any sequence of functions from F has a subsequence which is uniformly
convergent on K.

Proof. Let {fn} be a sequence of functions from F. Choose a countable dense subset of K,

A = {a1, a2, a3, . . .}.

Since {fn(a1)} is bounded, it has a convergent subsequence, {fn,1(a1)}. Again since {fn,1(a2)} is
bounded it has a convergent subsequence {fn,2(a2)}. Continuing in this manner we can assume
{fn,k(ai)} are all convergent for i ≤ k and choose a subsequence fn,k+1 of the sequence fn,k
such that {fn,k+1(ak+1)} converges. It is then easy to see that the diagonal subsequence {fn,n}
converges on all of A.

We shall now show that {gn = fn,n} is a uniformly Cauchy sequence on K, hence it converges
uniformly on K.

Let ε > 0, by equicontinuity of F we can find δ > 0 such that z, w ∈ K and |z − w| < δ implies
|f(z)− f(w)| < ε/3. Since K is compact, there is a positive integer N such that

N⋃
i=1

Bδ(ai) ⊃ K.

Let M be a large enough positive integer so that |gn(ai) − gm(ai)| < ε/3 for n,m > M and
i = 1, . . . , N . Now for any z ∈ K, |z − ai| < δ for some i ∈ {1, . . . , N} so

|gn(z)− gm(z)| ≤ |gn(z)− gn(ai)|+ |gn(ai)− gm(ai)|+ |gm(ai)− gm(z)| < ε.

This implies gn(z) is Cauchy and hence converges for each z ∈ K, let us call the limit g(z). This
shows gn converges to g point-wise. To show uniform convergence let ε > 0, choose a positive
integer M large enough so that |gn(z) − gm(z)| < ε/2 for n,m ≥ M and any z ∈ K. For any
z ∈ K there is an Nz > M such that |gNz(z)− g(z)| < ε/2,. Thus for any z ∈ K and n > M ,

|gn(z)− g(z)| ≤ |gn(z)− gNz(z)|+ |g(z)− gNz(z)| < ε.

�

Now we can complete the proof of Montel’s theorem.
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Exercise 1. Show that Kn = {z ∈ Ω : |z| ≤ n and |z −w| ≥ 1
n for all w ∈ C−Ω} is a compact

subset of Ω, Kn ⊂ Kn+1 and
∞⋃
n=1

Kn = Ω.

Exercise 2. Complete the proof of Theorem 3 using the previous exercise.

1.2. Uniform limits of Holomorphic functions. We have the following important results
about uniformly convergent sequence of holomorphic functions. The first is left as an exercise.

Exercise 3. Let {fn} be a sequence of holomorohic functions on Ω such that it converges uni-
formly on any compact subset of Ω to a function f : Ω → C. Show that f is also holomorphic
on Ω and f ′n converges to f ′ uniformly on compact subsets of Ω.

Theorem 6 (Hurwitz). Let Ω be a connected open set in C and {fn} a sequence of holomorphic
functions on Ω which converges to a holomorphic function f : Ω → C uniformly on compact
sets. Suppose all the fn are injective, then f is either injective or constant.

Proof. Assume f is neither injective nor constant. Pick z1, z2 ∈ Ω such that f(z1) = f(z2). Let
g(z) = f(z)− f(z1) and gn(z) = fn(z)− fn(z1), then {gn} converges to g uniformly on compact
subsets of Ω.

Since g is non-constant hence z2 is an isolated zero of g. Choose r small enough so that
Br(z2) ⊂ Ω and g does not vanish on Br(z2) except at z2, thus

1

2πi

∫
∂Br(z2)

g′(z)dz

g(z)
= 1.

On the other hand gn does not vanish on Br(z2) for any n since fn is injective. Hence

1

2πi

∫
∂Br(z2)

g′n(z)dz

gn(z)
= 0.

However by uniform convergence the later integrals should converge to the former, which is a
contradiction. �

Exercise 4. Let f : Ω → C be a non-constant holomorphic function and f(a) = 0 show that
there is r > 0 such that Br(a) ⊂ Ω and a is the only zero of f in this closed ball. Show that if
n is the order of vanishing of f at a then

1

2πi

∫
∂Br(a)

f ′(z)dz

f(z)
= n.

1.3. Biholomorphisms of the unit disc and the upper half plane. Let D = {z ∈ C :
|z| < 1} be the unit disc in the complex plane. We want to determine all the biholomorphisms
f : D→ D. This can be done using the Scharz lemma. First let us recall what a biholomorphism
is.

Definition 7. Let U and V be open subsets of C. A holomorphic function f : U → V is called
a biholomorphism if it has a holomorphic inverse g : V → U . If such a biholomorphism exists,
U and V are said to be biholomorphic.

For complex analysis two open sets that are biholomorphic are identical in every sense. In
particular a biholomorphism is also a homeomorphism so the open sets are topologically also
the same.
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Exercise 5. Give a biholomorphism f : D→ H, where H = {z ∈ C | Im z > 0} is the upper half
plane. What does f do to the boundary of D?

Let α ∈ D, and consider the meromorphic function

φα(z) =
α− z
1− αz

.

This has a pole outside the closed unit disc and is holomorphic on D. Note that

φα(α) = 0 and φ(0) = α.

We shall show that φα is a biholomorphism of the unit disk. If |z| = 1, then

|φα(z)| =
∣∣∣∣ α− z
z(z − α)

∣∣∣∣ = 1.

Hence by maximum modulus principle φα maps D to D. Finally a simple calculation shows that
φα ◦ φα(z) = z, that is φα is its own inverse.

We shall show that these are all the biholomorphisms of D upto rotations. We shall need the
Scharz lemma for that so let us recall the statement.

Theorem 8 (Schwarz lemma). Let f : D→ D be holomorphic such that f(0) = 0, then

(1) |f(z)| ≤ |z| for all z ∈ D and if equality holds for some z 6= 0 then f is a rotation, that
is f(z) = eiθz for some θ ∈ R,

(2) |f ′(0)| ≤ 1 and if equality holds then f is a rotation.

The proof is a straightforward application of the maximum modulus principle and can be found
for instance in Complex Analysis, Stein and Shakarachi, Chapter 8, Section 2. Using this we
can easily determine all the biholomorphisms of D.

Proposition 9. Let f : D→ D be a bilolomorphism, then f = eiθφα for some α ∈ D and θ ∈ R.

Proof. This is obtained by applying the Schwarz lemma twice. Let α = f−1(0), then g(z) =
f ◦ φα(z) fixes 0. By Schwarz lemma |g(z)| ≤ |z| for all z ∈ D. By taking w = g(z) we have
|g−1(w)| ≤ |w|, which shows |z| ≤ |g(z)| so we must have |z| = |g(z)| for all z ∈ D and g(z) = eiθz
for some θ ∈ R which completes the proof of the proposition. �

Exercise 6. Show that biholomorphisms f : H→ H are of the form

f(z) =
az + b

cz + d
where

(
a b
c d

)
∈ SL(2,Z).
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2. Lecture 2 (29 November 2019)

In this lecture2 we shall determine which open subsets of C are biholomorphic to the open unit
disc D = {z ∈ C : |z| < 1}. But first we start with some definitions.

2.1. Homotopy version of Cauchy’s theorem. We start this section with a very important
theorem in complex analysis which allows us to define anti-derivatives of holomorphic functions
on certain open subsets of the complex plane which are called simply connected. As a conse-
quence we shall define an inverse to the exponential function called the logarithm on simply
connected open sets.

Definition 10 (Curve). Let Ω ⊂ C be open. A curve γ in Ω is a continuous function γ : [0, 1]→
Ω. A closed curve has the same starting and ending points that is γ(0) = γ(1).

We shall only deal with piecewise smooth curves so that we can do complex line integral on
them.

Definition 11 (Homotopy). Two curves γ1 and γ2 in Ω are said to be homotopic if γ1(0) =
γ2(0) = a and γ1(1) = γ2(1) = b and there is a continuous function H : [0, 1]× [0, 1] → Ω such
that H(s, 0) = a, H(s, 1) = b, H(0, t) = γ1(t) and H(1, t) = γ2(t). Such a function H is called
a homotopy between γ1 and γ2. A closed curve γ in Ω is called null homotopic if it is homotopic
to the constant curve c(t) = γ(0).

Theorem 12 (Cauchy’s theorem). If γ1 and γ2 are two piecewise smooth curves in Ω that are
homotopic and f : Ω→ C is holomorphic then∫

γ1

f(z)dz =

∫
γ2

f(z)dz.

This is an extremely powerful theorem and a detailed proof can be found in Stein and Shakarachi,
Chapter 3, Section 5. As a consequence of this theorem we find that if γ is a null-homotopic
closed curve in Ω then ∫

γ
f(z)dz = 0.

This motivates the following definition.

Definition 13. An open set Ω ⊂ C is called simply connected if it is connected and every closed
curve is null homotopic.

Intuitively this just means that Ω does not have any holes because the interior of any closed
curve can be filled in. The following theorem gives an equivalent condition which is often easier
to check.

Theorem 14. A connected open set U ⊂ C is simply connected if and only if for any closed
curve on γ in U and any holomorphic function f : U → C∫

γ
f(z)dz = 0.

Proof. Give reference. �

Exercise 7. Show that the annulus A = {z ∈ C | 0 < r < |z| < R} is not simply connected.

2Prerequisites: Homotopy version of Cauchy’s theorem, Simple connectivity
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Exercise 8. Show that any convex open set is simply connected and infer that D is simply
connected.

Let us now define a logarithm of a non-vanishing holomorphic function on a simply connected
open set.

Let Ω ⊂ C be open and simply connected and f : Ω → C be a holomorphic function such that
f(z) 6= 0 for any z ∈ Ω. Then there is a function g : Ω→ C holomorphic such that

exp(g(z)) = f(z).

Such a function is called a logarithm of f .

This follows easily from the Cauchy’s theorem because it allows us to define an anti-derivative
of a holomorphic function. Notice that if g does exist then differentiating f(z) = exp(g(z)) gives
us

f ′(z) = exp(g(z))g′(z)⇒ g′(z) =
f ′(z)

f(z)
.

Since f does not vanish on Ω the function f ′(z)/f(z) is holomorphic on Ω. Fix z0 ∈ Ω and choose
a complex number c0 such that exp(c0) = f(z0). For any z ∈ Ω we can always find a piecewise
smooth curve γ : [0, 1] → Ω such that γ(0) = z0 and γ(1) = z since Ω is path connected. We
define

g(z) =

∫
γ

f ′(z)

f(z)
dz.

Exercise 9. Using Cauchy’s theorem show that g(z) does not depend on the choice of γ. More-
over g is holomorhic on Ω and g′(z) = f ′(z)/f(z).

Now consider the function F (z) = f(z) exp(−g(z)), then F is clearly holomorphic on Ω and

F ′(z) = f ′(z) exp(−g(z))− f(z)f ′(z) exp(−g(z))/f(z) = 0

Since Ω is connected this implies that F is constant, moreover F (z0) = f(z0)/ exp(c0) = 1. Thus
f(z) = exp(g(z)) just as we wanted.

Note that this is only one branch of the logarithm of f , in fact h(z) = g(z) + 2πi would also
work fine. So g is not unique (but two such functions will only differ by an integer multiple of
2πi).

Exercise 10. Let Ω be a simply connected open subset of C and f a non-vanishing holomorphic
function on Ω. Let n be a positive integer then show that there is a holomorhic function g on Ω
such that gn(z) = f(z) for all z ∈ Ω.

Exercise 11. Let Ω be a simply connected open set in C and f a hon-vanishing holomorphic
function on Ω. Let g be a logarithm of f . Show that if f is injective then so is g, and g(z)+2πi /∈
g(Ω) for any z ∈ Ω. On the other hand give an example where g is injective but f is not.

2.2. Riemann Mapping theorem. The theorem of this sub-section although first formulated
by Riemann was first proven by Koebe according to the book of Stein and Shakarachi.

Exercise 12. Show that if Ω ⊂ C is biholomorphic to D then Ω is simply-commected and Ω 6= C.

Theorem 15 (Riemann Mapping). Any simply-connected, proper open subset of C is biholo-
morphic to D.
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Let Ω be a proper simply connected open subset of C. Fix a point z0 ∈ Ω. We shall look at the
set of injective, holomorphic functions

F = {f : Ω→ D | f(z0) = 0}.

The proof can be broken up into 3 parts. Firstly we shall show that F is non-empty. Secondly we
shall show that there is a function f in F whose derivative at z0 has the maximum modulus among
the all the functions in F. Finally we shall show that the function f is surjective, completing
the proof.

Step 1. Since Ω is proper choose a ∈ C − Ω. The z 7→ z − a is non-zero on Ω and since Ω is
simply connected we can define a logarithm for z − a, that is there is a holomorphic function

h : Ω→ C

such that exp(h(z)) = z − a. Clearly this h is then injective.

Since h is non-constant and holomorphic it is an open mapping. Hence, we know that h(Ω)
contains a small closed ball of some radius r around h(z0). Let w0 = h(z0) + 2πi, since
Br(h(z0)) ⊂ h(Ω) we must have

Br(w0) ∩ h(Ω) = ∅.
This is because if h(ζ1) ∈ Br(w0), then h(ζ1) = h(ζ2) + 2πi where h(ζ2) ∈ Br(h(z0)), then by
applying exp we see that ζ1 = ζ2 which is a contradiction.

We thus have |h(z)− w0| > r for any z ∈ Ω. The function f : Ω→ C given by

f(z) =
1

h(z)− w0

is thus bounded, |f(z)| < 1/r for all z ∈ Ω. By translating and scaling we get a function in F

g(z) =
f(z)− f(z0)

1/r + |f(z0)|
.

The function g is clearly injective, |g(z)| < 1 for any z ∈ Ω and g(z0) = 0. Proving that F is
non-empty. �

Step 2. The family F is uniformly bounded hence normal. Let r > 0 be small enough so that
Br(z0) ⊂ Ω and let γ = ∂Br(z0) be the boundary circle. Let f ∈ F then by the Cauchy’s integral
formula for derivatives

|f ′(z0)| =
∣∣∣∣ 1

2πi

∫
γ

f(ζ)

(ζ − z0)2
dζ

∣∣∣∣ ≤ 1

r
.

Let B = sup{|f ′(z0)| : f ∈ F} which is clearly finite. Moreover, B > 0 since there is atleast
one injective function in F, (a holomorphic function is not injective if it’s derivative vanishes at
some point). There is a sequence of functions {fn} from F such that fn(z0) → B as n → ∞.
By Montel’s theorem this sequence has a subsequence gk = fnk

which converges to a function
f : Ω→ C uniformly on compact subsets.

The function f is holomorphic being locally uniform limit of holomorphic functions. Since
|f ′(z0)| = B > 0 f is non-constant, hence injective being a limit of injective functions. Since
gk(z)→ f(z) for all z and |gk(z)| < 1 we must have |f(z)| ≤ 1. Since f is an open mapping we
must have

f(Ω) ⊂ D.
�
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Step 3. We shall show that if f is not surjective then there is a function g ∈ F such that
|g′(z0)| > |f ′(z0)| thus arriving at a contradiction. Assume that the f : Ω→ D obtained in Step
2 is not surjective and choose a ∈ D− f(Ω). We have a biholomorphism of the unit disc φa that
takes a to 0

φa(z) =
z − a
1− az

.

Notice that φa ◦ f : Ω→ D does not vanish. Hence we have a holomorphic function h : Ω→ D
such that h2(z) = φa ◦ f(z), in particular we can take

h(z) = exp

(
log(φa(f(z)))

2

)
.

Let b = h(z0) then clearly b2 = φa(0) = a. Let g = φb ◦ h. Then a calculation using chain rule
shows that

g′(z0) =
1 + |b|2

2b
f ′(z0).

Thus |g′(z0)| > |f ′(z0)|. �

This completes the proof of the Riemann mapping theorem.

Exercise 13. Let Ω be a proper, simply connected, open subset of C and z0 ∈ Ω. Show that
there is a unique biholomorphism f : Ω → D such that f(z0) = 0 and f ′(z0) is a positive real
number

Exercise 14. Find biholomorphisms from D to the following open subsets of C:

(1) B = {z ∈ C | −π/2 < Im z < π/2},
(2) Q = {z ∈ C | Im z > 0,Re z > 0},
(3) S = C− [−∞, 0],
(4) T = {z ∈ C | 0 ≤ arg z ≤ A < 2π},
(*) A = {z ∈ C : |z| < 1 and |z − 1| < 1}.

The previous theorem is very special for proper simply connected open sets and fails for other
types of open sets. For example let A(r) = {z ∈ C | 1 < |z| < r} be an annulus then clearly
A(r) is homeomorphic to A(r′) but if r 6= r′ then they are not biholomorphic. See Theorem
14.22 of Rudin, Real and Complex Analysis.

There is the following extension of the Riemann mapping theorem.

Theorem 16. Let U be a simply connected open set in C such that the boundary ∂U is a simple

closed curve then any biholomorphism φ : U → D extends to a homeomorphism φ̃ : U → D.

A proof of this can found in Rudin, Real and Complex Analysis, Chapter 14, Theorem 14.19.
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3. Lecture 3 (30 November 2019)

In this lecture we shall see a generalisation of analytic continuation along curves and analytic
coverings.

3.1. Analytic continuation. An analytic function element at z ∈ C is a pair (f,D) where
D is a disc containing z and f : D → C is holomorphic. If (f1, D1) and (f2, D2) are analytic
function elements at z then we say (f1, D1) ∼ (f2, D2) if

z ∈ D1 ∩D2 and f1 = f2 on D1 ∩D2.

Exercise 15. Show that ∼ is an equivalence relation.

Definition 17. Let Ω ⊂ C be a connected open set and γ be a curve in Ω. Let (f,D) be a
function element at a = γ(1). Then a function element (g,D′) at γ(1) is called an analytic
continuation of (f,D) along γ if there is a partition of [0, 1], 0 = s0 < s1 < . . . < sn = 1 and a
collection of function elements

C = {(f1, D1) . . . (fn, Dn)}
such that γ([si−1, si]) ⊂ Di, (fi−1, Di−1) ∼ (fi, Di) as function elements at γ(si−1), (f1, D1) =
(f,D) and (fn, Dn) = (g,D′). Such a collection C will be called a holomorphic chain along γ
starting at (f,D) and ending at (g,D′).

Exercise 16. Let z0 ∈ C and (f,D) be a function element at z0. Let γ be a curve in C starting

at z0. Suppose there is Ω ⊂ C open, containing γ and a holomorphic function f̃ : Ω→ C which
agrees with f on D, then show that (f,D) can be analytically continued along γ.

The next theorem says that analytic continuations along curves are unique if they exist.

Theorem 18. Let γ be a curve in C. Let (f,D) and (f ′, D′) be function elements at γ(0).
Let (g,B) be an analytic continuation of (f,D) along γ and (g′, B′) an analytic continuation of
(f ′, D′) along γ. If (f,D) ∼ (f ′, D′) at γ(0) then (g,B) ∼ (g′, B′) at γ(1).

Proof. Let C = {(f1, D1), . . . , (fn, Dn)} be a holomorphic chains along γ, starting at (f,D) and
ending at (g,B). Let B = {(f ′1, D′1), . . . , (f ′m, D

′
m) be another chain starting at (f ′, D′) and

ending at (g′, B′).

Without loss of generality we may assume n = m and both chains correspond to the same
partition 0 = s0 < . . . < sn = 1. (Otherwise we may just refine the partitions by taking their
union and repeat the function elements as required).

Assume that (g,B) � (g′, B′). Let i be the smallest integer such that (fi, Di) � (f ′i , D
′
i). Clearly

i > 1 and (fi−1, Di−1) ∼ (f ′i−1, D
′
i−1) at γ(si−1). We also have

γ(si−1) ∈ Di−1 ∩Di ∩D′i−1 ∩D′i.
Further fi = fi−1 on Di−1 ∩Di and f ′i = fi−1 on D′i ∩D′i−1. Hence, fi = f ′i on Di ∩D′i because
of the connectedness of the intersection. Hence we have a contradiction. �

Exercise 17. Show that if γ is a closed curve and (g,D′) is an analytic continuation of a
function element (f,D) at γ(0), then it may not be true that (f,D) ∼ (g,D′). (Hint. Use
logarithm or square root.)

Theorem 19. Let Ω ⊂ C be a connected open set. Let z0 ∈ Omega and (f,D) be a function
element at z0 such that it can be analytically continued along any curve in Ω. If γ0 and γ1

are curves in Ω such that γ0(0) = γ1(0) = z0 and γ0(1) = γ1(1) = z1 and are homotopic then
analytic continuations at z1 along γ0 and γ1 are equivalent.
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Proof. Consider a homotopy H : [0, 1] × [0, 1] → Ω between γi. Fix s ∈ [0, 1] and look at the
curve γs(t) = H(t, s). This is a curve which starts at z0 and ends at z1. Let (gs, Ds) be the
function element at z1 obtained by analytic continuation of (f,D) along γs. We shall show that
there is a δ > 0 such that (gs, Ds) ∼ (gs′ , Ds′) for |s− s′| < δ.

Let C = {(f1, D1), . . . , (fn, Dn)} be a holomorphic chain along γs starting at (f,D) and ending
at (gs, Ds), and let 0 = t0 < . . . < tn = 1 be the corresponding partition. Since γs([ti−1, ti]) is a
compact subset of Di,

εi = inf{|z − w| : z /∈ Di, w ∈ γs([ti−1, ti])} > 0

Choose ε > 0 such that ε < min{ε1, . . . , εn}, then by uniform continuity of H on the compact set
[0, 1]× [0, 1] we have δ > 0 such that |γs(t)−γs′(t)| < ε for |s−s′| < δ. Hence γs′([ti−1, ti]) ⊂ Di.
It follows that C is a chain along γs′ , and (gs, Ds) is an analytic continuation of (f,D) along γs′
too. Thus by uniqueness of analytic continuation (gs, Ds) ∼ (gs′ , Ds′).

Let U = {s ∈ [0, 1] | (gs, Ds) ∼ (g0, D0), then from the above result we conclude that U and
[0, 1]−U are both open subsets of [0, 1] hence one of them must be empty. Since U is non-empty
and in particular 0 ∈ U we have U = [0, 1] which completes the proof of the theorem. �

Corollary 20 (Monodromy theorem). If Ω ⊂ C is open and simply connected and if (f,D) is a
function element at z0 ∈ Ω which can be analytically continued along any curve in Ω, then there

is a holomorphic function f̃ : Ω→ C such that f̃ = f on D.

Proof. For any z ∈ Ω we have a path γ : [0, 1] → Ω from z0 to z. Let (g,B) be an analytic
continuation of (f,D) along γ. If γ′ is another path in Ω from z0 to z then it is homotopic to γ
because Ω is simply connected. Let (g′, B′) be an analytic continuation of (f,D) along γ′. Then
by the above theorem we have (g,D) ∼ (g′, D′) and in particular g(z) = g′(z).

Hence the function f̃(z) = g(z) is well defined on Ω. To see that it is holomorphic at z note

that f̃ = g on B ∩ Ω. �

3.2. Analytic coverings. These are an important class of holomorphic functions which are
local homeomorphisms with a lifting property. The primary example as we shall see is the
exponential function.

Definition 21. Let U, V be open subsets of C. A function f : U → V is called a holomorphic
covering map if f is holomorphic and each z ∈ V has an open neighborhood W such that

f−1(W ) =
⊔
i∈I

Wi

such that f |Wi is a biholomorphism onto U for each i, ie. there is a holomorphic function
gi : W →Wi such that f ◦ gi(z) = z. Such W is called a uniformly covered neighborhood.

The exponential function exp : C → C − {0} is the prime example for a holomorphic covering
map. To see that it is a covering let z0 = reiθ be any point in C− {0}. Consider

U = C− {ρe−iθ | ρ ∈ [0,∞)}.
This is an open set containing z0. Then

exp−1(U) =
⊔
n∈Z

Vn where Vn = {z ∈ C | 2πn− θ < Im z < 2π(n+ 1)− θ}

and exp : Vn → U is a holomorphic bijection, which implies that it is a biholomorphism, showing
that U is a uniformly covered neighbourhood of z0.
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Exercise 18. Show that pn : C−{0} → C−{0} given by pn(z) = zn is a holomorphic covering
map.

Exercise 19. Let P : C→ C be a polynomial function and let

S = {z ∈ C | P ′(z) = 0}.
Let V = C− P (S) and U = C− P−1(P (S)) then show that P : U → V is a covering.

Theorem 22. Let U be a simply connected open set and h : W → V a holomorphic covering,
then for any holomorphic function f : U → V there is g : U →W such that f = h ◦ g.

Such a g is called a lift of f through h. The previous theorem says that for a holomorphic
covering such lifts always exist. The function g is not unique though.

Proof. Let u0 ∈ U and pick any point w0 ∈ W such that h(w0) = f(u0). Let A be a uniformly
covered neighborhood of v0 and let A′ be the component of f−1(A) that contains w0. There is
a holomoprhic function k : A→ A′ such that h(k(z)) = z for all z ∈ A. Let B0 ⊂ f−1(A) be an
open disc around u0. Define g0 : B0 →W by g0 = k ◦ f . Clearly h ◦ g0 = f on B0.

We shall show that the function element (g0, B0) at u0 can be analytically continued along any
curve γ in U starting at u0. For any s ∈ [0, 1] let As be a uniformly covered neighborhood of
f(γ(s)), and by continuity of f there is a disc Ds ⊂ f−1(As) centered at γs. Let D0 = B0.
Choose δs > 0 be small enough so that for s ∈ (0, 1), γ((s − δs, s + δs)) ⊂ Ds, if s = 0 let
γ([0, δ0)) ⊂ D0 and γ((1− δ1, 1]) ⊂ D1.

By compactness of [0, 1] there is a finite set 0 = s0 < s1 < . . . < sn−1 < sn = 1 such that
[0, δ0), (s1 − δs1 , s1 + δs1), . . . , (1− δ1, 1] covers [0, 1]. Moreover by throwing out a few intervals
and shortening some if necessary we may even assume that si−1 < si − δsi < si−1 + δsi−1 < si.

Let ti ∈ (si − δsi , si−1 + δsi−1), t0 = 0 and tn+1 = 1, then γ([ti−1, ti]) ⊂ Di−1 = Dsi−1 and
f(Di) ⊂ Ai = Asi .

Note that γ(t1) ∈ D0 ∩D1 and let A′i be the component of h−1(A1) which contains k(γ(t1)) and
let k1 = h−1 : A1 → A′1 then clearly g1 = f ◦k1 : D1 →W agrees with g0 on D0∩D1 and we get
a function element (g1, D1). Continuing in this manner we get function elements (gi, Di) giving
an analytic continuation of (g0, D0) along γ.

By the monodromy theorem we have thus a holomorphic function g : U →W . Moreover f = h◦g
on D0 hence on the entire U since U is connected. �

Exercise 20. Show that if h : U → V is a holomorphic covering where U is connected and V
is simply connected then h is a biholomorphism.

Exercise 21. Define logarithm of a non-vanishing holomorphic function on a simply connected
open set using the fact that the exponential map is a holomorphic covering.
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4. Lecture 4 (1 December 2019)

In this lecture we shall prove the Little Picard theorem. We shall give a proof of this theorem
using a covering map to C− {0, 1} from the upper half plane H. The covering map is obtained
using the Riemann mapping theorem and Schwarz refelction principle.

4.1. Reflection principle. This gives a way of extending an analytic functions through reflec-
tion along lines and circles.

Theorem 23. Let V be any domain which is symetric about the line L = {z ∈ C | Im z = 0} = R
and let A = V ∩ L. Let V + = V ∩ H and f : V + ∪ A → C be a continuous function which is

holomorphic on V +, and such that f(A) ⊂ R then there is an extension f̃ : V → C holomorphic
which agrees with f on V +.

For a proof we refer to Stein and Shakarachi, Complex Analysis, Theorem 5.6, Chapter 2. We

can easily define f̃ using the reflection along L given by z, namely define

f̃(z) = f(z) for z ∈ V −H.
One can then show that this is holomorphic on the entire V using Morera’s theorem. We can do
the same for any line L if V is symmetric about L and f maps the portion of L that intersects
V to R.

Similarly we have a reflection ρ about the unit circle C = {z ∈ C | |z| = 1} given by ρ(z) = 1/z.
Let V be an open set such that ρ(V ) = V . Let V + = V ∩ D and A = V ∩ C. Suppose
f : V + ∩A→ C is continuous and holomorphic on V + such that f(A) ⊂ R then f extends to a

holomorphic function f̃ : V → C that agrees with f on V +. In particular we define

f̃(z) = f(1/z) for z ∈ V − D.
Again this generalises to any circle C is the complex plane.

4.2. Little Picard Theorem. The group SL(2/Z) acts on H by möbius transformations

γ(z) =
az + b

cz + d
where γ =

(
a b
c d

)
∈ SL(2,Z).

Clearly γ(z) = τ(z) if τ = −γ. Thus in fact the group Γ = SL(2/Z)/{±I} acts on H.

There is a homomorphism SL(2,Z) → SL(2,Z/2Z) and let Γ′ be the kernel. Clearly −I ∈ Γ′

and take Γ(2) = Γ′/{±I}. It can be shown that Γ(2) is generated by the classes of

σ =

(
1 0
2 1

)
and τ =

(
1 2
0 1

)
.

The function τ(z) = z + 2 is just a translation and fixes ∞. Where as σ(z) =
z

2z + 1
fixes 0.

Let Q be the region in the upper half plane given by

Q = {z ∈ H | −1 ≤ Re z < 1, |2z + 1| ≥ 1, |2z − 1| > 1}.
We shall prove that Q is a fundamental domain for the action of Γ(2), that is any Γ(2) orbit of
H intersects Q at exactly 1 point.

Proposition 24. The region Q satisfies the following:

(1) If γ1, γ2 ∈ Γ(2) are distinct elements then γ1(Q) ∩ γ2(Q) = ∅.
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(2) H = ∪γ∈Γ(2)γ(Q)

Statement (1) is equivalent to γ(Q) ∩Q = ∅ for any element of Γ(2) other than the identity. It
is easy to see that τ(Q) ∩ Q = ∅ and σ(Q) ∩ Q = ∅. We outline the proof of this fact in the
following exercise.

Exercise 22. Show that for γ ∈ Γ(2) which is not the identity γ(Q)∩Q = ∅ using the following
steps:

(1) Show this first for γ =

(
a b
c d

)
where c = 0.

(2) If c = 2d then show that a = d = ±1 prove it in this case.

(3) Finally if c 6= 0 and c 6= 2d then first show that γ−1 also satisfies this. Show that
|cz + d| > 1 for all z ∈ Q. It then follows that Im γ(z) < Im z. If there is z ∈ Q such
that φ(z) ∈ Q then use φ−1 to get a contradiction.

We outline the proof of statement (2) in the following exercise.

Exercise 23. Show that H =
⊔
γ∈Γ(2) γ(Q) through the following steps:

(1) Fix z in H. Show that there is a γ0 ∈ Γ(2) such that Im γ(z) ≤ Im γ0(z)

(2) Use γ = τkσ±1τ−n(γ0(z)) and part 1 to show that for some n and k, γ−1(z) ∈ Q.

Now we shall construct a function λ : H→ C−{0, 1} and show that it is a holomorphic covering.
Let Q+ = {z ∈ Q | Re z > 0} be the right half of Q. By the Riemann mapping theorem there is
a biholomorphism λ : Q+ → H since Q+ is simply connected. By Theorem 16 this map extends
to a homeomorphism λ : Q+ → H. Without loss of generality we may assume that λ(0) = 0,

λ(1) = 1 and λ(∞) =∞ (otherwise replace λ by λ′ where λ′(z) = (λ(z)−λ(0))(λ(1)−λ(∞))
(λ(z)−λ(∞))(λ(1)−λ(0))).

By the reflection principle λ extends to all ofQ through the formula λ(z) = λ(−z) for z ∈ Q−Q+.
This defines a continuous bijection λ : Q → C − {0, 1} which is holomorphic on the interior of
Q. Figure 1 shows this map on Q, it maps Q+ to the upper half plane, the boundary of Q+ to
the real line and the rest of the interior of Q to the lower half plane.

Now extend λ to the entire upper half plane as follows. For any z ∈ H, there is a unique element
γ ∈ Γ(2) such that z ∈ γ(Q), hence γ−1(z) ∈ Q. We define

λ(z) = λ(γ−1(z)).

Exercise 24. Show that this definition makes λ holomorphic on the entire H.

Finally to see that λ is a covering we have to demonstrate uniformly covered neighbourhoods
whose union is the entire C−{0, 1}. Let A1 = (−∞, 0], A2 = [0, 1] and A3 = [1,∞), then define

U1 = C− (A2 ∪A3), U2 = C− (A1 ∪A3), U3 = C− (A1 ∪A2).

Clearly U1 ∪U2 ∪U3 = C−{0, 1} and we claim that U1 are uniformly covered. I shall show this
only for U1 and leave the rest as exercise. If Q◦ is the interior of Q then

λ−1(U1) =
⊔

γ∈Γ(2)

γ(Q◦),

and by the definition of λ it is a biholomorphism from γ(Q◦) to U1.
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Figure 1. Modular Function

Theorem 25 (Little Picard). Let a, b ∈ C be two distinct points and f : C → C − {a, b} be
holomorphic, then f is constant.

Proof. Let g(z) =
f(z)− a
b− a

, then g : C → C − {0, 1} is holomorphic. Since λ : H → C − {0, 1}
is a holomorphic covering map, there is a holomorphic function h : C→ H such that g = λ ◦ h.

Then k(z) = (h(z)− i)/(h(z) + i) is a holomorphic map from C to D hence constant. Thus h is
also a constant and therefore so is g. Finally that would imply f is constant. �
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