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Bogomolov’s Conjecture

Let X be a smooth projective geometrically connected curve over a
number field K with genus g > 1. Let J be the Jacobian of X . Fix
an embedding φ : X → J for some degree 1 divisor of X .

Bogomolov’s conjecture states that there is an ε > 0 such that

{x ∈ X (K ) | hNT(φ(x)) < ε}

is finite; hNT denotes the Neron-Tate height on J.

This conjecture was proved by Ullmo (1998) and Zhang(1998),



Our goal is to prove an effective version of Bogomolov’s conjecture
for modular curves X0(p2).

The approach will be to use the work of Shou-Wu Zhang (1993)
which in turn uses Arakelov intersection pairing.

To work in Zhang’s setting we need a minimal regular and
semistable model of X0(p2) over some number field.

In this talk I shall focus on the construction of this model. Towards
the end I shall briefly explain how we get to effective Bogomolov.



Modular Curves
We are interested in congruence subgroups of the modular group
SL(2,Z) of the form

Γ0(N) =
{(

a b
c d

)
∈ SL(2,Z) | c ≡ 0 (mod N)

}
.

Such a group Γ acts on the upper half plane by Möbius
transformations and the quotient Y (Γ) = H/Γ is a Riemann
surface. Usually Y (Γ) is non-compact but of finite type.

By adding finitely many points p1, . . . , pm ∈ P1(Q) we can
compactify Y (Γ) and get a compact Riemann surface:

X (Γ) = Y (Γ) ∪ {p1, . . . , pm}.

The points p1, . . . , pm are known as the cusps of Γ.

X (Γ) is a projective algebraic curve over C and its genus is
denoted by gΓ.



Toy Example

The group Γ0(2) is generated by τ = ( 1 1
0 1 ) and γ = ( 1 0

2 1 ).

The fundamental domain in H for Γ0(2) is:

Γ0(2) has 2 cusps corresponding to 0 and ∞ and

X0(2) = X (Γ0(2)) ∼= P1.



Modular Interpretation

In fact X0(N) is an algebraic curve over Q, and hence defined over
any number field K .

X0(N)(K ), the K points of X0(N), are in bijection with
isomorphism classes of pairs

(E ,C )

where E is an elliptic curve over K , and C ⊂ E (K ) is a cyclic
subgroup of order N.

Hence these objects are important in arithmetic geometry.

We shall denote by gN the genus of X0(N). This can be calculated
using the Riemann Hurwitz formula.



Models of Algebraic Curves

Let X be an algebraic curve over a number field K and let OK be
the ring of integers of K .

Definition

A model X of X over OK is a normal scheme with proper, flat
morphism X → SpecOK with 1 dimensional fibers, such that, the
generic fiber X0, which is a curve over K , is isomorphic to X .

For any prime p of OK , the fiber Xp is a curve over the residue
field κ(p) = Q(OK/p).

A fiber Xp is called special, if it is a singular curve.



Models of Algebraic Curves



Minimal Regular Model

A model X of X over OK is called regular if X is a regular
scheme. In this case X is an arithmetic surface.

If the genus g(X ) > 1, there is a unique regular model, X , which
is minimal in the sense of birational morphisms.

That is any proper birational morphism from X is necessarily an
isomorphism.

Equivalently X does not have any prime vertical divisor that can
be blown down without introducing a singularity.



Semi-stable Model

A model X of X over OK , is called semi-stable if

• all fibers are reduced,

• special fibers only have nodal singularities.

Stable reduction theorem (Deligne-Mumford) says that semi-stable
models always exist after base change.

That is if X → Spec K is not semi-stable, there is a finite
extension K ′/K so that

X ′ = X ×SpecOK
SpecOK ′

is semi-stable.



Minimal regular and semistable model for X0(p2)

We prove the following theorem:

Theorem (Banerjee, Borah, C.)

There is a minimal regular and semistable model for X0(p2) over
the ring of integers of K = Q( r

√
p, ζp+1) where r = (p2 − 1)/2.

Let us denote this model by X0(p2).

The special fibers of X0(p2) are precisely the fibers over primes q
of OK that lie above (p) ∈ SpecZ.

The geometry of the special fibers, crucial for our calculations,
depend on the residue of p modulo 12.



When p = 12k + 1 the special fibers of X0(p2) are as follows:



Edixhoven’s model

Edixhoven described a regular model XZ of X0(p2) over Z.
However, this model is not minimal or semi-stable.

Our starting point is this model. To this model we apply the
procedure that we shall elaborate on presently.

The calculations are slightly different for different values of p
modulo 12, let us restrict ourselves to p = 12k + 1.



The regular model XZ has only one special fiber over (p) ∈ SpecZ:

of these



Clearly XZ is not semistable as the special fiber is not reduced and
has triple intersections. We do the following:

1. Blow up all the triple intersection points to obtain X ]
0 (p2)Z.

Special fiber of X ]
0 (p2)Z. Multiplicity of each Li is p + 1.



2. Base change to OK to obtain X ]
0 (p2)OK

X ]
0 (p2)OK

= X ]
0 (p2)Z ×SpecZ SpecOK

with K = Q( r
√

p, ζp+1) where r = (p2 − 1)/2

The ideal pOK has the following prime factorization

pOK = pr1 · · · prs , s = ϕ((p + 1)/2),

where p1, . . . , ps are distinct prime ideals of OK and OK/pi ∼= Fp2 .

Hence, special fibers of X ]
0 (p2)OK

are (X ]
0 (p2)OK

)pi and are

isomorphic to (X ]
0 (p2)Z)(p) × SpecFp2 .

Unfortunately X ]
0 (p2)OK

is not normal.



3. Normalise X ]
0 (p2)OK

to get X [
0 (p2)OK

.

Special fiber of X [
0 (p2)OK

.



4. Finally desingularise X [
0 (p2)OK

and blow down the rational
components with self-intersection −1. This yields the minimal
regular model X0(p2)OK

which is also semistable as desired.



Arakelov’s Intersection Pairing

Let X → SpecOK be an arithmetic surface with generic fiber
X = XK .

For each embedding σ : K → C we have a connected Riemann
surface

Xσ = X ×SpecK ,σ SpecC.

Collectively we denote

X∞ =
⊔

σ:K→C

Xσ.

For two divisors C ,D on X the Arakelov pairing is given by

〈C ,D〉 = 〈C ,D〉fin + 〈C ,D〉∞.



Where
〈C ,D〉fin =

∑
x∈X (2)

log |OX ,x/(Cx ,Dx)|

is the usual algebraic intersection.

Moreover, in the special case when C and D have no common
prime divisors

〈C ,D〉∞ = −
∑

σ:K→C

∑
α,β

nα,σmβ,σg
σ
can(Pα,σ,Qβ,σ),

where Cσ =
∑

α nα,σPα,σ and Dσ = mβ,σQβ,σ and gσcan is the
canonical Green’s function on Xσ.



Canonical Sheaf

Let X be a smooth projective curve over K of genus gX > 1 and
XOK

the minimal regular model. Let ωX be the canonical sheaf
on X .

The quantity

ω2
X =

〈ωX , ωX 〉
[K : Q]

is independent of K if X is semi-stable, so is an invariant of X .

We call this the stable arithmetic self-intersection number of X .



Main Result

We obtain an asymptotic expression for ωp2 = ω2
X0(p2) for primes

p > 13.

Theorem (Banerjee, Borah,—)

ωp2 = 2gp2 log p2 +
p log p2

8
+ o(p log p2).

In comparison Mayer shows that the asymptotic expression for ω2

in the case of X1(N) is 3gN log N + o(gN log N).

We shall first mention applications of this result, then give an
outline of our proof.



Effective Bogomolov

S.W. Zhang introduced the admissible pairing, for divisors on
arithmetic surfaces, closely related to the Arakelov pairing.

Let ω2
a denote the admissible self-intersection of the canonical

sheaf.

Using the geometry of the special fiber the admissible self
intersection can be calculated from the Arakelov self intersection.

Zhang showed that the ε in Bogomolov’s conjecture can be
explicitly controlled in terms ω2

a .



Using Zhang’s work we can prove the following effective version of
Bogomolov’s conjecture.

Theorem

For a sufficiently large prime p, and any ε > 0, the set{
x ∈ X0(p2)(Q) | hNT(φ(x)) <

(
1

2
− ε
)

log(p2)

}
is finite whereas{

x ∈ X0(p2)(Q) | hNT(φ(x)) ≤ (1 + ε) log(p2)
}

is infinite.



Certain Horizontal Divisors

Consider the cusps of Γ0(p2) corresponding to 0 and ∞. These are
points of X0(p2)(Q).

Let H0 and H∞ be the horizontal divisors of X0(p2)OK

corresponding to these points of the generic fiber.

H0 intersects exactly one of C̃0,2 and C̃2,0; we call that component

of the special fiber C̃0.

H∞ intersects the other component and we label that C̃∞.



Certain Vertical Divisors

Define the vertical divisors

V0,p =
(
12− 12gp2

)
C̃0 + 7C̃ 1

1,1 + 7C̃ 2
1,1 +

k∑
i=1

p − 1

2
xL̃i

+
k∑

i=1

6k−1∑
l=1

[
lx +

p − 1− 2l

p − 1

(
12− 12gp2

)]
Al,i +

k∑
i=1

6k−1∑
l=1

(lx)Bl,i ,

and

V∞,p =
(
12− 12gp2

)
C̃∞ + 7C̃ 1

1,1 + 7C̃ 2
1,1 +

k∑
i=1

p − 1

2
xL̃i

+
k∑

i=1

6k−1∑
l=1

[
lx +

p − 1− 2l

p − 1

(
12− 12gp2

)]
Bl,i +

k∑
i=1

6k−1∑
l=1

(lx)Al,i .



Main Lemma
With all these definitions in place it is now easy to see that for any
canonical divisor KX0(p2) the divisor

Dm,p = KX0(p2) − (2gp2 − 2)Hm + Vm,p, m = 0,∞

is orthogonal to any vertical divisor with respect to the Arakelov
pairing.

As a consequence we have:

Lemma

ω2
X0(p2) =− 4gp2(gp2 − 1) 〈H0,H∞〉

+
1

gp2 − 1

[
gp2 〈V0,p,V∞,p〉 −

V 2
0,p + V 2

∞,p

2

]
+ O(log p).



Asymptotic formula

In the proposition the first summand involves pairing between
horizontal divisors. It can be calculated using the canonical Green’s
function

〈H0,H∞〉 = [K : Q]gcan(0,∞).

An estimate for the Green’s function was obtained in our first
paper.

Theorem (Banerjee, Borah, —)

gcan(0,∞) = − log p

p2
+ o

(
log p

p2

)
.



The remaining terms
1

gp2 − 1

[
gp2 〈V0,p,V∞,p〉 −

V 2
0,p + V 2

∞,p

2

]
involve intersections of vertical divisors only and can be explicitly
computed.

Together they yield the asymptotic expression for the stable
arithmetic self intersection

ω2
p2 =

〈
ωX0(p2), ωX0(p2)

〉
(p2 − 1)/2

.
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