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1. Directed curves in Rn

Definition 1.1. A directed (or oriented) curve in Rn is a quadruple {Γ, A,B, v}
where Γ is a set of points in Rn; A and B are points in Γ , called respectively the
initial and final points of Γ ; v is a unit vector in Rn called the initial direction, for
which there exists a mapping P : [a, b] → Rn, called a parametrization of Γ, such
that the following conditions hold:
(a) There exists an open interval I , containing [a, b] and a mapping from I into
I into Rn which has derivatives of all orders and which coincides with P on [a, b]
(regularity conditions).
(b) P ([a, b]) = Γ, P (a) = A,P (b) = B and P ′(a) = αv for some α > 0 (direction).
(c)P ′(t) 6= 0 for all t ∈ [a, b] (for unit speed parametrization).
(d) P is injective (i.e. one to one) on [a, b)and (a, b] (prevent self intersection).
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Definition 1.2. (Parametrized Curve) A continuous mapping P : [a, b] → Rn
which satisfies (a), (c) and (d) is called a parametrized curve. A parametrized curve
determines precisely one directed curve ,{

P ([a, b]), P (a), P (b),
P ′(a)

‖P ′(a)‖

}
Proposition 1.3. Length of Γ, l(Γ) is given by,

l(Γ) =

∫ b

a

‖P ′(t)‖ dt

1.1. Unit speed Parametrization.

Definition 1.4. If P : [a, b] → Rnis a parametrization of the directed curve Γ we
define the length function by the formula

s(t) =

∫ t

a

‖P ′(x)‖ dx

If l = l(Γ) then s : [a, b] → [0, l] and, by the one-variable fundamental theorem
of calculus, s′(t) = ‖P ′(t)‖ > 0. Hence s is strictly increasing, S−1 : [0, l] → [a, b]
has derivatives of all orders on [0, l] and P ◦ s−1 maps [0, l] onto Γ. For the inverse
function s−1 we have,

(
s−1
)′

(t) =
1

s′ (s−1(t))
=

1

‖P ′ (s−1(t))‖
and ∥∥∥(P ◦ s−1)′ (t)∥∥∥ =

∥∥P ′ (s−1(t)
)∥∥

s′ (s−1(t))
=

∥∥P ′ (s−1(t)
)∥∥

‖P ′ (s−1(t))‖
= 1

Thus P ◦s−1 is unit speed and we can easily verify that it is a valid parametrization.

Proposition 1.5. Directed curves admit unit speed parametrizations.

1.2. Frenet-Seret Equations.

We discuss curvature and torsion of directed curves. Vector-valued differentia-
tion and orthonormal bases are the main tools used. We define geometric concepts
associated with a directed curve and derive a set of equationsthe FrenetSerret equa-
tionswhich capture the fundamental relationships between them. We look at curves
in R2 which motivate our analysis of surfaces in R3 along similar lines later.

Let P : [a, b]→ R2 denote a unit speed parametrization of the directed curve Γ and
let P (t) = (x(t), y(t)) for all t in [a, b] . At P (t) ∈ Γ the unit tangent, T (t), is Γ
given by

T (t) = P ′(t) = (x′(t), y′(t))

The normal is given by,

N(t) = (−y′(t), x′(t))
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Figure 1. Caption

We have 〈T (t), T (t)〉 = 1 and differentiating we get, by the product rule,

T ′(t) = κ(t)N(t)

Definition 1.6. The constant κ uniquely determined by above equation is known
as curvature.

In terms of coorninates,

κ(t)= 〈κ(t)N(t), N(t)〉 = 〈T ′(t), N(t)〉
= (x′′(t), y′′(t)) · (−y′(t), x′(t))
= y′′(t)x′(t)− x′′(t)y′(t)

Definition 1.7. We call |κ(t)| the absolute curvature of Γ at P (t)

|κ(t)| = ‖T ′(t)‖ = ‖P ′′(t)‖
In case of an arbitrary curve,

κ(t) = y′′(t)x′(t)−x′′(t)y′(t)
((x′(t))2+(y′(t))2)

3/2

For curves in R3,

• N(t) = T ′(t)
‖T ′(t)‖

• B(t) = T (t)×N(t)
• N(t)×B(t) = ±T (t)
• B′(t) = 〈B′(t), N(t)〉N(t)
• We define the torsion of Γ at P (t) , τ(t) = −〈B′(t), N(t)〉
• N ′(t) = −κ(t)T (t) + τ(t)B(t)
• The Frenet-Serret equations can be expressed in matrix form T

N
B

 =

 0 κ 0
−κ 0 τ
0 −τ 0

 T
N
B


•
{T (t), κ(t) N(t) , B(t) τ(t)}
‖ ‖ ‖ ‖ ‖

P ′(t) ‖T ′(t)‖ T ′(t)/κ(t) T (t)×N(t) −〈B′(t), N(t)〉

2. Geometry of surfaces in Rn

2.1. Basic definitions. We consider cross section of R3 through the point p which
contains the unit normal. we can find a unit tangent vector at p,v, such that our
cross-section has the form

p+
{
xv + yn(p) : x, y ∈ R2

}
Definition 2.1. The intersection of this cross section with the surface, is a curve
on the surface called a normal section of the surface.

Definition 2.2. We call kp(v) the Normal curvature at point p in the direction v

Definition 2.3. (Principal curvatures)

k1(p) = max‖v‖=1 kp(v)
k2(p) = min‖v‖=1 kp(v)
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2.2. Geomtric interpretation of Gaussian Curvature.

Definition 2.4. The Gaussian curvature, K(p), at a point p on a surface S, is the
product of the principal curvatures, k1(p)k2(p).

Now, we consider various possibilities for the principal curvatures :

• k1(p) = k2(p)→ umbilical point.
• k1(p) = k2(p) = 0→ flat spot
• k1(p) > k2(p)→ non-umbilical point.

Proposition 2.5. At a non-umbilic point on a surface S in R3 we have:

K(p) > 0⇐⇒ near p, S is shaped like an ellipsoid
K(p) < 0⇐⇒ near p, S is shaped like a saddle point,

K(p) = 0⇐⇒ near p, S is shaped like a cylinder or cone.

At an umbilic point K(p) ≥ 0 and

K(p) > 0⇐⇒ nearp, Sis shaped like a sphere.
K(p) = 0⇐⇒ near p, S is very flat.

2.3. Gaussian curvature from Parametrizations. Let φ be a parametrization
of S.
We define:

l = 〈φxx,n〉 = 0, m = 〈φxy,n〉 , n = 〈φyy,n〉 = 0
E = φx · φx, F = φx · φy, G = φy · φy

Matrix for Weingarten operator is given by :[
l
E

Em−Fl
E
√
EG−F 2

Em−Fl
E
√
EG−F 2

E2n−2EFm+F 2l
E(EG−F 2)

]
K(p) = ln−m2

EG−F 2

3. Gaussian Curvature

3.1. Gauss Map.

Definition 3.1. Let S ⊂ R3 be an oriented surface. The Gauss map is the map
N : S → S2 which assigns to p ∈ S the unit normal. There are two unit normals;
the meaning of the word oriented is that we have chosen one. Thus,

‖N(p)‖ = 1, 〈N(p),v〉 = 0 for v ∈ TpS
The first fundamental form assigns to each p ∈ S the quadratic form Ip : TpS →

R defined by

Ip(v) = 〈v,v〉 = ‖v‖2

It assigns to each tangent vector v ∈ TpS ⊂ R3 the square of its length.
The second fundamental form is defined by :

Ip(v) = 〈N(p), α′′(0)〉 , v = α′(0)

where α : (ε, ε)→ S is a curve whose tangent vector at p is v.

Lemma 3.2. The second fundamental form is independent of the choice of curve
α used to define it.

Lemma 3.3. The derivative dNp : TpS → TN(p)S
2 of the Gauss map is a map

from a vector space to itself, i.e.
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TpS = TN(p)S
2

for p ∈ S2

Lemma 3.4. The derivative dNp : TpS → TpS is self adjoint, i.e.

〈dNp(u),v〉 = 〈u, dNp(v)〉
for u,v ∈ TpS

Lemma 3.5. Let α : (−ε, ε) → S be a curve in S parameterized by arclength. By
the geometric definition of the cross product, the vectors N,α′, N ∧α′ are orthonor-
mal at each point α(s). The vector α′ is a unit vector tangent to S and N(α) is a
unit vector normal to S so N ∧ α′ is a unit vector tangent to S and is orthogonal
to both N and α′. Since ‖α′‖ = 1 we also have 〈α′, α′′〉 = 0. Hence the curvature
vector can be written as :

α′′ = knN + kg (N ∧ α′) , kn := 〈α′′, N〉 , kg := 〈α′′, N ∧ α′〉
The coefficient kn is called the normal curvature and coefficient kg is called the
geodesic curvature. By definition

Iα (α′) = −〈α′′, N(α)〉 = −kn
By the Pythagorean Theorem :

k2 = k2n + k2g

Lemma 3.6. The eigenvalues k1, k2 of dNp are called the principal curvatures and
the determinant

K := det (dKp) = k1k2

is called the Gauss curvature. The average value

H := k1+k2
2

of the principal curvatures is called the Mean curvature. Thus λ = k1 and λ = k2
are the two solutions of the characteristic equation.

λ2 + 2Hλ+K = 0

Definition 3.7. Weingarten Equations.

Nu = a11xu + a12xv. Nv = a21xu + a22xv

where

a11 = fF−eG
EG−F 2 , a12 = gF−fG

EG−F 2

a21 = eF−fE
EG−F 2 ,, a22 = fF−gE

EG−F 2

Corollary 3.8. The Gauss curvature is given by :

K = eg−f2

EG−F 2

and the Mean curvature is given by :

H = 1
2
eG−2fF+gE
EG−F 2

3.2. Isometries.

Definition 3.9. A diffeomorphism ϕ : S→ S is an isometry if for all p ∈ S and all
pairs w1,w2 ∈ Tp(S) we have

〈w1,w2〉p = 〈dϕp (w1) ,dϕp (w2)〉ϕ(p)
The surfaces S and S are then said to be isometric.
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Definition 3.10. A map ϕ : V → S of a neighborhood V of p ∈ S is a local
isometry at p if there exists a neighborhood V of ϕ(p) ∈ S such that ϕ : V→ V is
an isometry. If there exists a local isometry into S at every p ∈ S, the surface S is
said to be locally isometric to S and S is locally isometric to S

Proposition 3.11. Assume the existence of parametriztions x : U → S and x :
U→ S such that E = E,F = F,G = G in U. Then the map ϕ = x◦x−1 : x(U)→ S
is a local isometry.

Definition 3.12. A diffeomorphism ϕ : S → S is called a conformal map if for all
p ∈ S and all v1, v2 ∈ Tp(S) we have

〈dϕp (v1) ,dϕp (v2)〉 = λ2(p) 〈v1, v2〉p
where λ2 is a nowhere-zero differentiable function on S; the surfaces S and S

are then said to be conformal. A map ϕ : V → S of a neighborhood V of p ∈ S
into S is a conformal map at p if there exists a nighborhood V of ϕ(p) such that
ϕ : V → V is a conformal map. If for each p ∈ S, there exists a conformal map at
p, the surface S is said to be conformal to S.

cos θ =
〈dϕ(α′),dϕ(β′)〉
|dϕ(α′)||dϕ(β′)| =

λ2〈α′,β′〉
λ2|α′||β′| = cos θ

Proposition 3.13. Let x : U → S and x : U → S be parametrizations such
that E = λ2E,F = λ2F,G = λ2G in U, where λ2 is a nowhere-zero differentiable
function in U . Then the map ϕ = x ◦ x−1 : x(U)→ S is a local conformal map

Theorem 3.14. Any two regular surfaces are locally conformal.

Definition 3.15. Isothermal coordinates,

E = λ2(u, v) > 0, F = 0, G = λ2(u, v)

3.3. Equations of Compatibility. We can express xu, Xv and N in the basis
determined by them as,

xuu = Γ1
11xu + Γ2

11xv + L1N

xuv = Γ1
12xu + Γ2

12xv + L2N

xvu = Γ1
21xu + Γ2

21xv + L2N

xvv = Γ1
22xu + Γ2

22xv + L3N

Nu = a11xu + a21xv

Nv = a12xu + a22xv

We determine the Cristoffel symbols by taking suitable inner products as follows,{
Γ1
11E + Γ2

11F = 〈xuu,xu〉 = 1
2Eu

Γ1
11F + Γ2

11G = 〈xuu,xv〉 = Fu − 1
2Ev{

Γ1
12E + Γ2

12F = 〈xuv,xu〉 = 1
2Ev

Γ1
12F + Γ2

12G = 〈xuv,xv〉 = 1
2Gu{

Γ1
22E + Γ2

22F = 〈xvv,xu〉 = Fv − 1
2Gu

Γ1
22F + Γ2

22G = 〈xvv,xv〉 = 1
2Gv

3.4. Theorema Egregium. We derive relations between the Cristoffel symbols
as below and hence express Gaussian Curvature completely in terms of Christoffel
symbols showing its invarian under isometries.
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(xuu)v − (xuv)u = 0

(xvv)u − (xuu)v = 0

Nuv −Nvu = 0
A1xu +B1xv + C1N = 0

A2xu +B2xv + C2N = 0

A3xu +B3xv + C3N = 0
Ai = 0, Bi = 0, Ci = 0, i = 1, 2, 3

Γ1
11xuv + Γ2

11xvv + eNv +
(
Γ1
11

)
v

xu +
(
Γ2
11

)
v

xv + evN

= Γ1
12xuu + Γ2

12xvu + fNu +
(
Γ1
12xu +

(
Γ2
12

)
u

xv + fuN
)

Γ1
11 Γ2

12 + Γ2
11Γ2

22 + ea22 +
(
Γ2
11

)
v

= Γ1
12Γ2

11 + Γ2
12Γ2

12 + fa21 +
(
Γ2
12

)
u(

Γ2
12

)
u
−
(
Γ2
11

)
v

+ Γ1
12Γ

2
11 +Γ2

12Γ
2
12 − Γ2

11Γ
2
22 − Γ1

11Γ
2
12

= −E eg−f2

EG−F 2

= −EK

Theorem 3.16. The Gaussian curvature K of a surface is invariant by local isome-
tries.

Theorem 3.17. (Bonnet) Let E, F, G, e, f, g be differentiable functions. defined in
an open set V ⊂ R2, with E > 0 and G > 0. Assume that the given functions satisfy
formally the Gauss and Mainardi-Codazzi equations and that EG − F2 > 0. Then,
for every q ∈ V there exists a neighborhood U ⊂ V of q and a diffeomorphism x: U
→ U → x(U) ⊂ R3 such that the regular surface x(U) ⊂ R3 has E,F,G and e, f, g
as coefficients of the first and second fundamental forms, respectively. Furthermore,
if U is connected and if

x : U→ x(U) ⊂ R3

is another diffeomorphism satisfying the same conditions, then there exist a transla-
tion T and a proper linear orthogonal transformation ρ in R3 such that x = T◦ρ◦x

4. Parallel transport

Definition 4.1. Let w be a differentiable vector field in an open set U ⊂ S and
p ∈ U. Let y ∈ Tp(S). Consider a parametrized curve

α : (−ε, ε)→ U

with α(0) = p and α′(0) = y, and let w(t), t ∈ (−ε, ε), be the restriction of the
vector field w to the curve α. The vector obtained by the normal projection of
(dw/dt)(0) onto the plane Tp(S) is called the covariant derivative at p of the vector
field wrelative to the vector y. This covariant derivative is denoted by (Dw/dt)(0)
or (Dyw) (p)

Definition 4.2. A parametrized curve α : [0, l]→ S is the restriction to [0, l] of a
differentiable mapping of (0 − ε, l + ε), ε > 0, into S. If α(0) = p and α(l) = q, we
say that α joins p to q.α is regular if α′(t) 6= 0 for t ∈ [0, l]

Definition 4.3. Let α : I→ S be a parametrized curve in S. A vector field w along
α is a correspondence that assigns to each t ∈ I a vector

W(t) ∈ Tα(t)(S)



8 SAYANTIKA MONDAL

The vector field w is differentiable at t0 ∈ I if for some parametrization x(u, v) in
α (t0) the components a(t), b(t) of w(t) = axu+bxv are are differentiable functions
of t at t0. w is differentiable in I if it is differentiable for every t ∈ I.

Definition 4.4. Let w be a differentiable vector field along α : I→ S. The expres-
sion of (Dw/dt)(t), t ∈ I, is well defined and is called the covariant derivative of w
at t.

Definition 4.5. A vector field w along a parametrized curve α : I → S is said to
be parallel if Dw/dt = 0 for every t ∈ I

Proposition 4.6. Let w and v be parallel vector fields along α : I → S. Then
〈w(t), v(t)〉 is constant. In particular, |w(t)| and |v(t)| are constant, and the angle
between v(t) and w(t) is constant.

Proposition 4.7. Let α : I → S be a parametrized curve in S and let w0 ∈
Tα(t0)(S), t0 ∈ I. Then there exists a unique parallel vector field w(t) along α(t),
with w (t0) = w0.

Definition 4.8. Let α : I→ S be a parametrized curve and w0 ∈ Tα(t0)(S), t0 ∈ I.
Let w be the parallel vector field along α, with w (t0) = w0. The vector w (t1) , t1 ∈
I, is called the parallel transport of w0 along α at the point t1

5. Geodesic Curvature

Definition 5.1. A nonconstant, parametrized curve γ : I→ S is said to be geodesic
at t ∈ I if the field at it’s tangent vectors γ′(t) is parallel along γ at t, this is :

Dγ′(t)
dt = 0

γ is a parametrized geodesic if it is a geodesic for all t ∈ I.

Definition 5.2. A regular connected curve C is S is said to be a geodesic if, for
every p ∈ C, the parametrisation α(s) of a coordinate neighborhood of p by the
arc length s is a parametrized geodesic; that is, α′(s) is a parallel vector field along
α(s)

Definition 5.3. Let w be a differentiable field of unit vectors along a parametrized
curve α : I → S on an oriented surface S. Since w(t), t ∈ I , is a unit vecto field,
(dw/dt)(t) is normal to w(t), and therefore

Dw
dt = λ(N ∧ w(t))

The real number λ = λ(t), denoted by[Dw/dt] is called the algebraic value of the
covariant derivative of w at t.

Definition 5.4. Let C be an oriented regular curve contained in an oriented surface
S, and let α(s) be a parametrization of C, in a neighborhood of p ∈ S, by the arc
length s. The algebraic value of the covariant derivative [Dα′(s)/ds] = kg of α′(s)
at p is called the geodesic curvature of C at p.

Lemma 5.5. Let a and be differentiable functions in I with a2 + b2 = 1 and ϕ0 be
such that a (t0) = cosϕ0,b (t0) = sinϕ0. Then the differentiable function

ϕ = ϕ0 +
∫ t
t0

(ab′ − ba′) dt
is such that cosϕ(t) = a(t), sinϕ(t) = b(t), t ∈ I, and ϕ (t0) = ϕ0.

Lemma 5.6. Let v and w be two differentiable vector fields along the curve α : I→
S, with |w(t)| = |v(t)| = 1, t ∈ I. Then
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Dw
dt

]
−
[
Dv
dt

]
= dϕ

dt

where ϕ is one of the differentiable determinations of the angle from v to w, as
given by the previous Lemma.

Proposition 5.7. Let x(u,v) be an orthogonal parametrization (that is, F = 0 )
of a neighborhood of an oriented surface S, and w(t) be a differentiable field of unit
vectors along the curve x(u(t), v(t)). Then,[

Dw
dt

]
= 1

2
√
EG

{
Gu

dv
dt − Ev

du
dt

}
+ dϕ

dt

where ϕ(t) is the angle from xu to w(t) in the given orientation.

Proposition 5.8. (Liouville). Let α(s) be a parametrization by arc length of a
neighborhood of a point p ∈ S of a regular oriented curve C on an oriented surface
S. Let x(u, v) be an orthogonal parametrization of S in p and ϕ(s) be the angle that
xu makes with α′(s) in the given orientation. Then

kg = (kg)1 cosϕ+ (kg)2 sinϕ+ dϕ
ds

where (kg)1 and (kg)2 are the geodesic curvatures of the coordinate curves v = const.
and u = const. respectively.

Proposition 5.9. Given a point p ∈ S and a vector w ∈ Tp(S),w 6= 0 there exist
an ε > 0 and a unique parametrized geodesic γ : (−ε, ε) → S such that γ(0) =
p, γ′(0) = w.

6. Gauss-Bonnet Theorem and its applications

Theorem 6.1. (of Turning Tangents) We have for plane curves :∑k
i=0 (ϕi (ti+1)− ϕi (ti)) +

∑k
i=0 θi = ±2π

where the sign depends on the orientation of α.

6.1. Local Gauss-Bonnet.

Theorem 6.2. GAUSS-BONNET THEOREM (Local) Let Let x: U→ S be
an isothermal parametrization of an oriented surface S, where U ⊂ R2 is homeo-
morphic to an open disk and x is compatible with the orientation of S.

Let R ⊂ x(U) be a simple region of S and let α : I → S be such that ∂R =
α(I). Assume that α is positively oriented, parametrized by arc length s,and let
α (s0) , . . . , α (sk) and θ0, . . . , θk be, respectively, the vertices and the external edges
of α. Then ∑k

i=0

∫ si+1

si
kg(S)ds+

∫∫
RKdσ +

∑k
i=0 θi = 2π

where kg(s) is the geodesic curvature of the regular arcs of α and K is the Gaussian
curvature of S

Proof. Let u = u(s), v = v(s) be the expression of α in the parametrization of x .
We have :

kg(s) = 1
2
√
EG

{
Gu

dv
ds − Ev

du
ds

}
+ dϕi

ds

k∑
i=0

∫ si+1

si

kg(s)ds =

k∑
i=0

∫ si+1

si

(
Gu

2
√
EG

dv

ds
− Ev

2
√
EG

du

ds

)
ds

+

k∑
i=0

∫ si+1

si

dϕi
ds

ds
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i=0

∫ si+1

si

(
P du
ds +Qdv

ds

)
ds =

∫∫
A

(
∂Q
∂u −

∂P
∂v

)
dudv

It follows that:

k∑
i=0

∫ si+1

si

kg(s)ds =

∫∫
x−1(R)

{(
Ev

2
√
EG

)
v

+

(
Gu

2
√
EG

)
u

}
dudv

+

k∑
i=0

∫ si+1

si

dϕi
ds

ds

(
Ev

2
√
EG

)
v

+
(

Gu

2
√
EG

)
u

= 1
2

{(
λv

λ

)
v

+
(
λu

λ

)
u

}
= 1

2λ {(log λ)vv + (log λ)uut}λ
= 1

2λ (∆ log λ)λ = −Kλ∑k
i=0

∫ si+1

si
kg(s)ds = −

∫∫
R
Kλdudv +

∑
i

∫ si+1

si

dϕi

ds ds

on the other hand, by the theorem of turning tangents,

k∑
i=0

∫ si+1

si

dϕi
ds

ds =

k∑
i=0

(ϕi (si+1)− ϕi (si))

= ±2π −
k∑
i=0

θi

Putting these facts together, we obtain :∑k
i=0

∫ si+1

si
kg(s)ds+

∫∫
R
Kdσ +

∑k
i=0 θi = 2π.

�

6.2. Global Gauss-Bonnet.

Proposition 6.3. Every regular region of a surface admits a triangulation

Proposition 6.4. Let S be an oriented surface and {xα} , α ∈ A, a family of
parametrizations compatible with the orientation of S. Let R ⊂ S be a regular region
of S. Then there is a triangulation of J of R such that every triangle T ∈ J is
contained in some coordinate neighborhood of the family {xα} . Furthermore, if the
boundary of every triangle of J is positively oriented, adjacent triangles determine
opposite orientations in the common edge

Proposition 6.5. If R ⊂ S is a regular region of a surface S, the Euler-Poincar
characteristic does not depend on the triangulation of R. It is convenient, therefore,
to denote it by χ(R)

Proposition 6.6. Let S ⊂ R3 be a compact connected surface; then one of the
values 2, 0,−2, . . . ,−2n, . . . is assumed by the Euler-Poincar characteristic χ(S).
Furthermore, if S′ ⊂ R3 is another compact surface and χ(S) = χ (S′) , then S is
homeomorphic to S.

Proposition 6.7. With the above notation, the sum∑k
j=1

∫∫
x−1
j (Tj)

f (ui, vj)
√

EjGj − F2
j dujdvj
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does not depend on the triangulation J or on the family {xj} of parametrizations
of S.

Theorem 6.8. GLOBAL GAUSS-BONET THEOREM Let R ⊂ S be a reg-
ular region of an oriented surface and let C1, . . . ,Cn be the closed, simple, piecewise
regular curves which form the boundary ∂R of R. Suppose that each Ci is positively
oriented and let θ1, . . . , θp be the set of all external angles of the curves C1, . . . ,Cn.
Then ∑n

i=1

∫
ci
kg(s)ds+

∫∫
R
Kdσ +

∑p
l=1 θl = 2πχ(R)

where s denotes the arc length of Ci, and the integral over Ci means the sum of
integrals in every regular arc of Ci.

Proof.
∑
i

∫
ci
kg(s)ds+

∫∫
R
Kdσ +

∑F,3
j,k=1 θjk = 2πF∑

j,k θjk =
∑
j,k π −

∑
j,k ϕjk = 3πF −

∑
j,k ϕjk∑

j,k θjk = 2πEi + πEe −
∑
j,k ϕjk∑

j,k θjk = 2πEi + πEe − 2πVi − πVet −
∑
l (π − θi)∑

j,k

θjk = 2πEi + 2πEe − 2πVi − πVe − πVet − πVec +
∑
l

θi

= 2πE − 2πV +
∑
i

θi

n∑
i=1

∫
Ci

kg(s)ds+

∫∫
R

Kdσ +

p∑
i=1

θl = 2π(F − E + V )

= 2πχ(R)

�

Corollary 6.9. If R is a simple region of S, then∑k
i=0

∫ si+1

si
kg(s)ds+

∫∫
R
Kdσ +

∑k
i=0 θi = 2π

Corollary 6.10. Let S be an orientable compact surface; then∫∫
s
Kdσ = 2πχ(S)

6.3. Applications. Applications of the Gauss-Bonnet Theorem :

(1) A compact surface of positive curvature is homeomorphic to a sphere.
(2) Let S be an orientable surface of negative or zero curvature. Then two

geodesics γ1 and γ2 which start from a point p ∈ S cannot meet again at
a point q ∈ S in such a way that the traces of γ1 and γ2 constitute the
boundary of a simple region R of S.

(3) Let S be a surface diffeomorphic to a cylinder with Gaussian curvature
K < 0. Then S has at most one simple closed geodesic.

(4) If there exist two simple closed geodesics Γ1 and Γ2 on a compact connected
surface S of positive curvature, then Γ1 and Γ2 intersect.

(5) Let α : I → R3 be a closed, regular, parametrized curve with nonzero
curvature. Assuming that the curve described by the normal vector n(s)
in the unit sphere S2 is simple. Then n(I) divides S2 in two regions with
equal areas.
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(6) Let T be a geodesic triangle in an oriented surface S. Assuming that the
Gauss curvature K does not change sign in T Let θ1, θ2, θ3 be the external
angles of T and let ϕ1 = π − θ1 ϕ2 = π − θ2, ϕ3 = π − θ3 be its interior
angles. By the Gauss-Bonnet theorem,∫∫

T
Kdσ +

∑3
i=1 θi = 2π

Thus, ∫∫
T
Kdσ = 2π −

∑3
i=1 (π − ϕi) = −π +

∑3
i=1 ϕi

It follows that the sum of the interior angles
∑3
i=1 ϕi of a geodesic triangle

is :
(a) Equal to π if K = 0
(b) Greater than π if K > 0
(c) Smaller than π if K < 0


