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Abstract. This report is a summary of the topics studied during my

project under Professor Chitrabhanu.

The report summarizes some basic definition of Knots , computes some Knot
groups classifies Knots on a Torus (Solid Torus and T2) and uses those

results to prove important results for tame and PL Knots such as Unknotting

Theorem and Non-Cancellation Theorem.
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1. Introduction

We will first introduce knots through a brief tour through history of the subject.
This brings us to think about how do we define knots mathematically? What
makes two knots the same or different? Can we find easy tests to distinguish knots
and how do we classify them? We will then, proceed to the commonly accepted
definition of a Knot and describe what makes two Knots Different.

Brief History

Knots were used in tying sails, climbing and even in cloth. Knots were also con-
sidered having spiritual and non secular symbolism due to their aesthetic qualities
in the past.Following the development of topology in the early 20th century, topol-
ogists such as Max Dehn, J. W. Alexander, and Kurt Reidemeister investigated
knots. This gave rise to mathematical study now known as Knot Theory.

Basic Definition of a Knot

The inspiration for definition of a knot comes from looking at the simplest of
knots commonly referred to as the unknot, unknot is a simple closed loop lying on
a 2-dimensional plane in R3. Since topologically, any closed loop is same as a circle,
the unknot can be seen as circle in 3-D Space. In the same way, a general knot can
be seen as a circle sitting in 3-D space which is twisted (in 3-D space).

Definition 1.1. K ⊂ R3 is a knot if ∃ a continuous map φ : S1 → R3 is continuous
and φ is a homeomorphism onto K.
(In general for any topological space X, K ⊂ X is a knot if φ : S1 → X is continuous
and φ is a homeomorphism onto K.)

Another equivalent definition is ,

If ∃ an embedding K : S1 → S3 ( In General , any topological space X ) then, K
is a knot

Remark 1.2. These definitions are equivalent since the map φ in definition 1 is
an embedding of S3 which is the map K
(By considering S3 as the one point compactification of R3.)
In Definition 2, K(S1) is the Knot as per definition 1.
Commonly , definition 1 is used in [1] and definition 2 is used in [2].

In general a link of n components is defined as follows,
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Definition 1.3. If there is a embedding of the disjoint union of unit circle
⋃n
i=1 S1

into the Euclidean space R3 whose image is L. Image of each of the circles is called
a component of L.

What makes two Knots different?

Knots are equivalent in 2 majors ways :
(i) Upto to Homeomorphism
(ii) Upto Ambient Isotopy

Definition 1.4. Two Knots K and K’ in a topological space X are equivalent upto
homeomorphism if there exists a homeomorphism h: X → X such that h(K) = K’

Definition 1.5. Two Knots K and K ′ in a topological space X are equivalent upto
ambient isotopy if ∃ h: X × [0, 1]→ X i ∈ [0, 1] continuous such that, hi: = h( , i)
is a homeomorphism ∀ i ∈ [0,1] and, h0 is the identity and h1(K) = K ′

Remark 1.6. Observe that the above two definitions each define an equivalence
relation. And, the equivalence classes of these Knots are called Knot types.
Commonly, Knot types refers to knots equivalent by homeomorphism (unless spec-
ified)

Definition 1.7. A knot is polygonal if it is the union of finitely many (edges) line
segments with endpoints (vertices). A knot that has same knot type as a polygonal
knot is called a tame knot else, it is a wild knot.

Equivalently, If ∃ a triangulation of S1 for which the embedding is piecewise linear,
the knot K is called tame

Let us see some examples of this.

Figure 1.

This is the projection of a trefoil knot into the 2D plane. These
points of overlap correspond to crossings in 3-D space.Trefoil is a
common example of a tame Knot.
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Figure 2. This is the projection the square Knot which is a
connected sum of two trefoils

Some examples of Links , :

Figure 3. This is the Borromean Ring which a link where remov-
ing any one component results in the trivial Link

Figure 4. This is simplest Link called the Hopf Link.
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Connected Sum of Knots

We will now continue to look into connected sums of knots which is a common
way of producing new knots from existing knots.

Definition 1.8. If M and M’ are two n - manifolds, then their connected sum of
M and M ’denoted by M # M’ is defined as ,

M#M ′ := M \Bo ∪hM ′ \B′0

where B and B’ are n - balls contained in M and M’ respectively and ,
h:∂B → ∂B′ is a homeomorphism

Remark 1.9. If A and B are two sets with disjoint interiors C = A ∪h B is the
quotient of the union A ∪ B with the association

x ∼ y in C if

{
y = h(x), x ∈ ∂A and y ∈ ∂B
x = y,Otherwise.

where, h : ∂A→ ∂B is a continuous.
In general, the connected sum of two Manifolds, M and M’ is M ∪h M’ where,
h : ∂M → ∂M ′ is continuous.

Extending this idea we define the connected sum for the Pair (M,N) and (M’,N’)
where N and N’ are locally flat n -sub-manifolds of m - Manifolds M and M’.

Here by locally flat we just mean that for every point in N there is a neighbourhood,
U of M such that U ∩N ∼= Bn and U ∼= Bm.
Then their connected sum is denoted by

(M,N)#(M ′, N ′) := (M ∪h1 M ′, N ∪h2 N ′)
Where h1:∂Bm ⊂M → ∂Bm ⊂M ′ is a homeomorphism and,
h2:∂Bn ⊂ N → ∂Bn ⊂ N ′ is the corresponding homeomorphism obtained from
the locally flat neighbourhoods isomorphic Bn in Bm chosen for M.

In the case of Knots N and N’ are the knot K and K’ and M = M’ = S3 and the
connected sum is denoted by K # K’ .

For example,

Figure 5. Observe that the Square Knot is connected sum of two
Trefoils of opposite orientation obatined.
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Fundamental Groups , Knot Groups and Wirtinger Presentation

Knot Invariants.

A knot invariant is a function , f that assigns to Knot K an object f(K) such that
equivalent knots are assigned to similair objects.
Thus, if two knots K and K’ have different objects for the same invariant f ; (f(K)
and f(K’) are not similair) then, K and K’ are of different type (ie: not equivalent).
Hence choosing a good invariant is crucial to distinguishing knots. Some examples
are as follows ,

Numerical And Algebraic Invariants :

• Crossing Number : Minimal number of simple ”self-intersections” in
amongst any of the projection of a knot or link.
• Genus of Link : Number of ”handles” on a minimal surface S spanning

the link L.
• Minimax number : This is the minimum number of local maxima of the

knot K:S3 → R3 in a given direction. (Relates to the Total Curvature of
the Knot , [Milnor - 1950] )
• Alexander Polynomial :Polynomial associated with each knot type.
• Alexander Matrix : The presentation matrix whose determinant is the

Alexander Polynomial
• Torsion Numbers :Invariant generated by the finite cyclic covering

spaces of a knot complement.
• Unknotting Number : This is the minimum number of crossing that

have to be changed to turn a projection of the Knot into the Unknot
(Holds only for Polygonal Knots).

Miscellaneous Invariants:

• Tricolorability : This is simple invariants for polygonal knots which
refers to whether or not a Knot can be coloured by using atleast 2 of the 3
distinct colours so that each crossing has all the same colours or all
different colours. The Unknot is to not be tricolorable. However the
trefoil is tricolorable.

For the rest of this report we will focus only on Topological Invariants.

Topological Invariants :

• Knot Group : Fundamental Group of the Knot Complement.Moreover,
since knots of the same knot type have homeomorphic complements, the
Knot group is the same for each element of the knot type.
• Link Group : Fundamental Group of the Link Complement
• Knot Signature : These are knot invariants obatined from Seifert

Surfaces of the Knot.
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Remark 1.10. The Link group unlike, the knot group is not a standard link
Invariant.Since, there are two different links that have the same Link Group.
For Example,

Figure 6. Both of these links have homeomorphic compliments
however they’re not the same since one is made from two unknots
and the other from an unknot and a trefoil.

Proposition 1.11. If B is a bounded subset of R3 and if R3\ B is path connected
then, the natural inclusion induces a map i : π1(R3 \B)→ π1(S3 \B) which is an
isomorphism

Proof. (Here, S3 is seen as , one point compactification of R3 with the point ∞ )
Let us choose U to be an open ball around ∞ contained inside S3 \B.
(This is possible since B is bounded)
Then, U ∼= R3 (As it is a open ball) and U ∩ R3 ∼= R3 \ 0 ∼= S2

So, U and U ∩ R3 are simply connected.
So, by Van Kampen’s Theorem taking U and R3 \B
(This works since they are both path connected open subsets of S3 \B).
The map i becomes an isomorphism as, U is simply connected.
Hence Proved. �

Computing the fundamental group in general is a tedious task.
However, computing the knot group for tame knots is rather simple.

Wirtinger Presentation. For this section the word overpass refers to part of the
knot that crosses above the plane in its orthogonal projection (This will make more
sense in the images).

Definition 1.12. A projection is a orthogonal projection in where the pullback of
each point of projection has atmost 2 points and there are only finitely many point
with pullback of 2 points which are called crossings.

Theorem 1.13. The Knot group of a knot K with a given projection , P has a the
presentation

[x1, x2, ..., xn | r1, ..., rn]

Where, each xi corresponds to an overpass in the projection of P and each ri is a
conjugation relation in terms of xi.
Moreover, the nth relation is combination of the other (n - 1) relations .
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Proof. Let us consider an equivalent knot K ′ with the n overpasses and the rest of
the knot lies on the projected plane P.

(Since in equivalent knots , Knot complements are homeomorphic they have the
same Knot group).
So we can divide the knot in to n cases similair to the case discussed below:

Figure 7. The blue line indicates the arcs of the knot

Here jth arc (αj) crosses over the ith arc (αi)and kth arc(αk). Here the jth arc
(αj) is an overpass.Let l (βl) be the part of arc j (αj) that crosses over.

Now, corresponding to each crossing of the Knot we will have the above setup.
Start with a rectangle R that covers the entire Knot K.Consider rectangular sheets
Ri chosen such that they cover the arcs αi and are curved to run parallel to the
arcs and meets R.In particular, we also choose part l (βl) of arc j αj to lie in the
rectangular sheet Rj .
Over this arc l ( βl ) we place a rectangle Sl such that two edges identify with arcs
parallel to αj crossing in the interior of Ri and Rk and other two sides with arcs
parallel to αk and αi in the interior of Rj respectively.
Repeating this process for each crossing we obtained a 2 - D complex X containing
K’ as a subspace. Finally, we lift K’ slightly into the complement of X.

Now, R3\ K’ deformation retracts onto this complement X (This is evident from
a little bit of geometry).
Now , given any loop in X we give it a sequence xε1i1 ...x

εk
ik

where εi = 1 if the loop
crosses xi from right to left (or follows the right hand rule) or - 1 if the loop crosses
from left to right (does not follow the right hand rule).

Remark 1.14. Here the right hand rule is the standard Right hand Thumb Rule
(ie : you place thumb along arc αi if the right hand curls in the direction the loop
crosses over the right hand rule holds)

Every loop in X has a sequence associated with it.Since the rectangular sheets in
X are simply connected,it follows that if two loops with common endpoints γ and



10 ASHWIN AYILLIATH KUTTERI

γ′ have the same sequence then, they are homotopic.

Finally, consider the rectangle Sl,Since, Sl is simply connected the constant loop
from a corner point of Sl is the same as the boundary loop of Sl.
This implies that the loop, This gives us the relation xjxkx

−1
j x−1i = 1.

Figure 8. The boundary loop is xjxkx
−1
j x−1i

This is commonly written in the form

rl : xjxkx
−1
j = xi

.
We repeat this for each of the n squares Sl getting our n-relations.
Since, Deformation retraction induces isomorphism, we have,
π1(R3 −K) ∼= π1(R3 −K ′) ∼= π1(X) ∼= [x1, x2, ..., xn | r1, ..., rn]
This gives the proof. One can also check that nth relation is a sequence of the other
(n - 1) relations

�

Application of the Wirtinger Presentation

Knot Group of the Trefoil. We can calculate for the knot group for trefoil using
The Wirtinger presentation, we get the 3 relations as described above
Simplifying these relation we get that ,
The knot group of the trefoil is [x, y : xyx = yxy]
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Knot Group of the Square Knot and Granny Knot. Using the trefoil we
can calculate for the Square and Granny Knot.
Let the rectangle , R be {(x, 0, z)|a ≤ x ≤ b,−ε ≤ z ≤ ε} ,
and K be the square Knot

A := {(x, y, z) ∈ R3|z < ε} \K , B : = {(x, y, z) ∈ R3|z > −ε} \K
Let X∗ be one point-compactification of X.

Then, A ∼= {(x, y, z) ∈ R3|z < ε}∗\ Trefoil

Similairly, B ∼= {(x, y, z) ∈ R3|z > −ε}∗\ Trefoil

Since, {(x, y, z) ∈ R3|z < ε} is homeomorphic to R3

We have, π1(A) ∼= [ x ,y : yxy = xyx ] , π1(B) ∼= [ z ,w : zwz = wzw ]

Consider π1(A ∩B) ∼= [ a , b : ] (A ∩B ∼= R3 minus two parallel lines)

Where a and b loops corresponding to one of the parallel straight line segments in
rectangle R both of which correspond to x in A and, we can show a and b loops
both correspond to w in B
So, by Van Kampen’s Theorem,
We have the knot group = π1(A ∪B)
= [ x , y ,z , w : xyx = yxy , zwz =wzw , w = x]
= [x , y , z : xyx = yxy , zxz = xzx]
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Knots on a Torus and Solid Torus

Theorem 1.15. Chord Theorem
If X is a path connected subset of the plane and, C be a chord (straight line segment)
with endpoints in X and length l(C).
Then for each n ∈ N,∃ a chord Cn parallel to C with endpoints in X such that

l(Cn) =
l(C)

n

Using this we can show that:

Theorem 1.16. A loop of class (a, b) of π1(T 2) is a Knot iff a = b = 0 (or)
GCD(a, b) = 1

Proof. Suppose (a,b) loop class has a non- trivial knot.Let d : = GCD(a,b).
Suppose, d > 1. P : C→ T2 , P(x + iy ) = (eix,eiy) is a covering map.

Using Homotopy Lifting Property,
Let w : [0,1] → T2 be the knot and w̃ : [0, 1]→ C be lift.

So, w̃(1)− w̃(0) = 2π(a+ ib)
From the chord theorem, ∃ s , t ∈ [0,1] such that, w̃(s)− w̃(t) = 2π(ad + i bd ).

Since, d is a divisor of a and b, w(s) = w(t)

Contradiction
�

Remark 1.17. There is only a single knot of type (a,b) GCD(a,b) = 1,
which corresponds to the loop whose lift under the covering map P is a straight line

with slope
b

a
when a 6= 0 otherwise it has imaginary axis as its lift

Definition 1.18. hL(eiθ, eiφ) := (ei(θ−φ), ei(φ))
hM (eiθ, eiφ) := (eiθ, ei(θ−φ))
hI(e

iθ, eiφ) := (eiφ, eiθ)
hS(eiθ, eiφ) := (ei(−θ), ei(φ))

These are the 4 Twist Homeomorphisms on T2

Given a loop of type (a,b),
h∗L((a,b)) = (a - b,b)
h∗I((a,b)) = (b,a)
h∗M ((a,b)) = (a, a - b)
h∗S(a, b) := (- a ,b)

Lemma 1.19. Given any loop of type (a,b) and d : = GCD(a,b) then, ∃ a self-
homeomorphism h on T2, such that h∗((a,b)) = (0,d)

Proof. Proof is by using Euclid’s Algorithm for finding GCD,
Using hI and hS we assume that,
WLOG Let 0 ≤ a ≤ b , ∃ b1 and q1 ∈ Z such that, b = q1a + b1,

h∗q1M ((a,b)) = (a,b1)
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Repeating this process and composing these twist homeomorphisms,

We can produce homeomorphism h , h∗((a,b)) = (0,d)

Hence Proved. �

Definition 1.20. Consider the covering map q : C\{0} → T2 q(reiθ) = (ei ln(r), eiθ)
X ⊂ C \ {0} lies in a fundamental region,
if ∃ neighbourhood U ⊂ C \ {0} such that q|U is a homeomorphism.

Furthermore if, h is any self-homeomorphism on C \ {0} such that its support,
supp(h) := {z ∈ C \ {0}|h(z) 6= z} ⊂ U , then, h induces a self-homeomorphism on
T2 given by,

h′ :=

{
qhq−1, x ∈ q(supp(h))

Id,Otherwise

The loops (1,0) = { (eiθ, 1) } and (0,1) are called Longitude and Meridian of T2

respectively.

Definition 1.21. If J and K are two knots are transversal at a point p ∈ J ∩K,
if ∃ a small neighbourhood U and h : U → R2 homeomorphism such that h(U ∩ J)
and h(U ∩K) are perpendicular lines meeting at h(p).

Example :
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Theorem 1.22. If K and K ′ are two knots of class (0,± 1) then, K and K’ are
ambient isotopic.

Proof. We will sketch the idea of the proof.
Case - 1 : If K and K ′ are disjoint ,

• Let A be the annular region between lifts of K and K’ for covering map q
(ie : K̃ and K̃ ′)

• Show A lies in a fundamental region and ,Int(A) has no other liftings .

• Use this to produce the ambient isotopy H with support of Ht lies in a small
enough neighbourhood of A taking K̃ to K̃ ′.

• Show that this produces ambient isotopy between K and K ′.

Case - 2: K and K’ tranversally intersect finitely many times
WLOG K is a meridian (ie : the loop (0,1) ), show that if K ′ intersect K transver-
sally finitely many times, it is ambient isotopic to K ′′ which is disjoint from K.
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Finally, show that for any simple closed curve G in C \ {0} and ε > 0. ∃G′ in
the ε neighbourhood of G ( blue arc as shown below) that is homotopic to G and
intersects q−1(M) transversally atmost finitely many times , for any meridian M

Using the Knot corresponding to G’, we return to the previous 2 cases. �

Combining these results,

Theorem 1.23. Any knot is of the knot type (0,1) upto homeomorphism. And,upto
Ambient Isotopy, any knot types are of the form (a,b) , (-a,-b)
GCD(a,b) = 1
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Knots on a Solid Torus and Higher Dimensional Knots

Definition 1.24. A topological space V is called a Solid Torus; If ∃ a homeomor-
phism , h from S1 ×D2 to V . Such a homeomorphism h is called a framing of V.

Given simple closed curve J on the boundary of V ( J ⊂ ∂ V) we are interested in
2 kinds classified in the following way :

• J is an essential curve in ∂ V but, homologically trivial in V.

• J is an essential curve in ∂ V but, homotopically trivial in V.

• J is an essential curve in ∂ V and is the boundary of a disk in V.

• J = h( 1 ×∂D2 ), for some framing h of V.

If any one of the above conditions holds J is called a meridian. Otherwise, if J
satisfies any of the following:

• J = h( S1 × 1) for some framing h of V

• J generators H1(V)

• J intersects some meridian in V transversally at a single point.

J is then called a longitude of V.
As a consequence of these properties, A longitude is equivalent upto homeomor-
phism and meridians are equivalent upto ambient isotopy
X = S3 \ V where, V is a solid torus.

The homology groups of X ( Hi(X) ) are

{
Z i = 0, 1

0 Otherwise

Combining all this results we get,

Theorem 1.25. Upto ambient isotopy there is a unique longitude which is
homologically trivial in X.
Moreover , if h is a framing of V, h(S1 × 1) is the homologically trivial closed loop
in X.

Finally, We will be using a higher dimensional result.

Definition 1.26. f:Bk → Mn be a embedding is flat if ∃ neighbourhood Bk ⊂ U
open in Rn such that f : U →M is an embedding and f(Bk) is a flat ball.

Theorem 1.27. A knot K in Sn is trivial iff K is the boundary of a flat 2 - ball in
Sn
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Properties of PL Knots

From this point on we will consider, each space to be a Simplicial Complex. (In
particular, Knots).Each map after a suitable subdivision of the domain and the
range sends simplexes linearly to simplexes. (such maps are called PL maps)
We will also assume that every 3-Manifold is homeomorphic with a simplicial com-
plex.

Theorem 1.28 (Dehn’s Lemma). Suppose that f : D2 → M3 is a map into a 3 -
Manifold such that,
If x ∈ ∂D2 and y 6= x ∈ D2 =⇒ f(x) 6= f(y).
Then, ∃ an embedding g : D2 →M3 such that f(∂D2) = g(∂D2)

Corollary 1.29. J ⊂ ∂M is a simple closed curve in a 3 - Manifold, M
If J is homotopically trivial in M, then, J bounds a properly bounded disk D ie:
∂D ⊂ ∂M , Int(D) ⊂ Int(M)

Definition 1.30. An embedding f: B → M from a k - Ball , B to a n - Manifold
M is called flat (Topologically) extends to an embedding f ′ : U → M where, U is a
neighbourhood of B.
Then, f(B) is called a flat ball in M. In our case , k = 1 and n = 3

Theorem 1.31. A knot , K is equivalent to the trivial (Unknot) knot in S3 iff ∃ a
flat 2 - ball in S3 bounded by K.Moreover, any PL 2 - Ball (the disk) is flat.

Theorem 1.32. If K is a tame Knot then, K is trivial (ie : K is equivalent to the
unknot) iff The knot group π1(S3 \K) ∼= Z

Proof. The proof is as follows,

If K is trivial then, π1(S3 \K) ∼= Z

•• Conversely, if π1(S3 \K) ∼= Z for a tame knot K.

• Then, Consider the closed tubular neighbourhood, V.
V ∼= S1 × D2.

• Since, there is a longitude of V ,L is homotopically trivial in S3 \ V .
• So, L is homotopically trivial in (S3 \ Int(V ))

By Dehn’s Lemma, L bounds a disk, D in S3 \ Int(V )
Since, L is a longitude, there is an annular region A, between L and the Knot K
Then, A

⋃
D is now a PL disk whose boundary is K.

Therefore by the previous theorem, K is a trivial Knot.
Hence Proved. �
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Corollary 1.33. K is not the trivial knot iff the natural inclusion of π1(∂V ) →
π1(S3 \ Int(V ) ) is injective

Theorem 1.34. Connected sum K = K1 # K2 of two tame knots is trivial iff K1

and K2 Trivial

Proof. From the definition of connected sum, we can produce two balls B1 and B2

that cover K.
B1 is ball containing K1 and B2 is the ball containing K2 such that their intersec-
tion K1 ∩K2 is on the boundary of B1.
Now, π1(S3 \K1) ∼= π1(B1 \K)
Also,π1(S3 \K2) ∼= π1(B2 \K)
This gives the following commutative diagram.

•π1(∂B1 \K) •π1(B1 \K)

•π1(B2 \K) •π1(S3 \K)

Now, if K1 or K2 are non-trivial and K is trivial, then both of these inclusions (from
π1(∂B1 \K) ) will be injective.
From, Van Kampen’s Theorem, π1(S3 \ K) contains a copy of both these knot
groups.
Contradiction.
Therefore, K1 and K2 are both unknots.
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�

Conclusions

(1) Knots on torus are of Knot type ( 0 , 1) and upto Ambient Isotopy [(a,b)]
= { (a,b) , (-a,-b) }

(2) Connected Sum ( K # K’ ) contains a copy of each of their knot groups.

(3) Connected Sum of n - Non-trivial Tame Knots is a Non-trivial Knot.

(4) Any PL Torus bounds a solid Torus on atleast one side.
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