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Chapter 1

Theory Of Curves

1.1 Parametrized Curves

Definition 1. A parametrized differentiable curve is a differentiable map α : I → R3

of an open interval I = [a, b] of real line into R3.

Example
α(t) = (cos t, sin t, bt)

parametrizes a helix with pitch b which is constant.

1.2 Regular curves, Arc Length Parametrization

Definition 2. α : I → R3 is called regular if α′(t) 6= 0 ∀ t ∈ I.

Definition 3. Given a differentiable curve α : I → R3 the arclength of the curve
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from a point t0 is defined as

s(t) =

∫ t

t0

| α′(t) | dt.

Now, we can use arc length as parametrization then the velocity of the curve
α′(t) will always be of length 1. Hence this parametrization is known as unit speed
parametrization.

1.3 The Local theory of curves parametrized by

arc length

Definition 4. Let α : I → R3 be a curve parametrized by arc length s ∈ I. The
number | α′′(s) |= k(s) is called the curvature of α at s.

At points where k(s) 6= 0 , a unit vector in the direction of α′′(s) is well defined
by the equation α′′(s) = k(s)n(s). Now

α′(s) · α′(S) = 1

. By differentiating we obtain

α′′(s) · α′(s) = 0

which implies that n(s) and α′(s) are perpendicular to each other.The vector n(s) is
known as normal vector to the curve at the point s.

Notation From here onwards the tangent vector α′(s) will be denoted as t(s).
Therefore we obtain

t′(s) = k(s)n(s).

Definition 5. The plane determined by tangent and normal vector is known as
osculating plane.

Definition 6. The unit vector b(s) = t(s) × n(s) is normal to the osculating plane
and will be called as binormal vector. Then

b′(s) = t′(s)× n(s) + t(s)× n′(s) = t(s)× n′(s)
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which implies b′(s) is normal to t(s). It follows that b′(s) is parallel to n(s). Therefore
we can write

b′(s) = τ(s)n(s)

for some function τ(s). The scalar function τ(s) is known as the torsion of the curve
at the point s.

• Now consider the following equation

n′(s) = b′(s)× t(s) + b(s)× t′(s) = −τb− kt

The following set of equations that we derived is known as Frenet’s equation

t′(s) = k(s)n(s), (1.1)

n′(s) = −k(s)t(s)− τ(s)b(s), (1.2)

b′(s) = τ(s)n(s). (1.3)

Theorem 1. Given differentiable functions k(s) > 0 and τ(s), s ∈ I,∃ a regular
parametrized curve α : I → R3 such that s is arc length k(s) is the curvature and
τ(s) is the torsion of α. Moreover, any other curve ᾱ satisfying the same conditions,
differs from α by a rigid motion,i.e, there is an orthogonal linear map ρ of R3 with
positive determinant and a vector C such that ᾱ = ρ ◦ α + C

This theorem is known as FUNDAMENTAL THEOREM OF LOCAL
THEORY OF CURVES.

1.4 The Local Canonical Form

Let α : I → R3 is unit speed parametrized differentiable curve without singular
points of order 1[by which we mean that there is no point for which α′′(s) = 0. Then
we can Taylor expand α(S) around any point s0. Without loss of generality let us
assume that s0 = 0. By Taylor expanding

α(s) = α(0) + sα′(0) +
s2

2
α′′(0) +

s3

6
α′′′(0) +R
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where R is of O(s3). Applying Frenet’s equation to this we obtain

α(s)− α(0) = (s− k2s3

6
)t+ (

s2k

2
+
s3k′

6
)n− s3

6
kτb+R.

We can chose an orientation such that origin O agrees with α(0) and t = (1, 0, 0), n =
(0, 1, 0) and b = (0, 0, 1). Under these condition α(s) is given by

α(s) = (x(s), y(s), z(s))

where

x(s) = s− k2s3

6
+Rx, (1.4)

y(s) =
ks2

2
+
s3k′

6
+Ry, (1.5)

z(s) =
s3

6
kτ +Rz. (1.6)

This representation is called the local canonical form of α in a neighbourhood of
s = 0. The physical interpretation of local canonical form is that each of the terms
x(s), y(s), z(s) represents the projection of the curve in τb, bn, nτ plane respectively.

1.5 Global Properties of plane curves

Definition 7. A closed plane curve is a regular parametrized curve α : [a, b] → R2

such that α and all its derivatives agree on a and b, i.e,

α(a) = α(b), α′′(a) = α′′(b), ....

The curve is simple if it does not have any other point of self-intersection.

Theorem 2. Suppose, C is a simple closed plane curve in the plane R2. Then
R2 − C consists of exactly two connected components. One of these components is
bounded(interior of C) and the other is unbounded(the exterior) and the curve lies
in boundary of both these components.

This theorem is known as JORDAN CURVE THEOREM

Theorem 3. The Isoperimetric Inequality Let C be a simple closed plane curve
of length l and let A be the area bounded by C. Then, l2 − 4πA ≥ 0. The equality
holds if and only if C is a circle.
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1.6 Example

In this section we’ll explicitly work out the example of helix. The helix is represented
by the following map

α : R→ R3

α(s) = (a cos(
s

c
), a sin(

s

c
), b(

s

c
))

where c2 = a2+b2. We’ll first prove that the parametrization is arc length parametriza-
tion. ∫ s

0

| α′(t) | dt (1.7)

Now | α′(t) |= 1. Therefore, the value of the above integral is s, which essentially
proves that the parametrization is indeed arc length parametrization. Let us calculate
the torsion and the curvature of the curve.

α′(s) = (−a
c

sin
s

c
,
a

c
cos

s

c
,
b

c
),

α′′(s) = (− a
c2

cos
s

c
,− a

c2
sin

s

c
, 0),

Therefore,

k(s) =| α′′(s) |= a

c2
.

The normal vector will be

n(s) = (− cos
s

c
,− sin

s

c
, 0).

Now let us calculate the binormal vector

b(s) = t(s)× n(s) = (
b

c
sin

s

c
,−b

c
cos

s

c
,
a

c
),

b′(s) = (
b

c2
sin

s

c
,
b

c2
sin

s

c
, 0),

which implies that

b′(s) =
b

c2
n(s).

7



Therefore, the torsion of the curve at the point s is given by τ(s) = b
c2
. The torsion

of the curve is constant at every point. The equation of the osculating plane is given
by

(
b

c
sin

s

c
)x− (

b

c
cos

s

c
)y + (

a

c
)z − ab

c2
s = 0.

This curve has an interesting property that every tangent makes an an constant angle
of π

2
with the Z − axis, since (0, 0, 1) · t(s) = 0 for all s and both of’em are unit

vectors cos θ = 0 where θ is the angle between them.

We’ll explain an interesting property of osculating plane. The osculating plane at
s is the limit position of the plane determined by the tangent line at the point s and
α(s + h) when h → 0. To prove this let us take s = 0. We can chose an orientation
such that origin O agrees with α(0) and t = (1, 0, 0), n = (0, 1, 0) and b = (0, 0, 1).
Thus every plane containing tangent at s = 0 is of the form z = cy or y = 0. The
plane y = 0 is the rectifying plane which does not contain any point near α(0) except
α(0) itself. The condition for the plane z = cy to pass through s+ h is

c =
z(h)

y(h)
=

−k
6
τh3 + ....

k
2
h2 + k2

6
h3 + ....

Letting h → 0 we see that c → 0 , i.e, the limit position of the plane z = cy is the
plane z = 0, that is, osculating plane as we wished.
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Chapter 2

Regular Surfaces

2.1 Regular Surfaces

First we need to define the concept of a differential of a map.

Definition 8. Let, F : U → Rm where U is an open subset of Rn , be a differentiable
map. To each p ∈ U we associate a linear map dFp : Rn → Rm and let α : (−ε, ε)→
U be a differentiable curve such that α(0) = 0, α′(0) = w. By the chain rule the curve
defined as β = F ◦ α : (−ε, ε)→ Rm is also differentiable. Then, dFp(w) = β′(0).

Proposition 1. The differential of a map is well-defined ,i.e, it is independent of
the choice of the curve α.

Definition 9. A subset S ⊂ R3 is a regular surface if there exists a neighbourhood
V in R3 and a map X : U → V ∩ S of an open set U ⊂ R2 onto V ∩ S ⊂ R3 such
that

1. X is differentiable.

2. X is a homeomorphism.

3. (The Regularity condition) For all q ∈ U ,the differential dXq : R2 → R3 is
one-to-one.
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Let us try to find out what is actually meant by the regularity condition. Suppose
, X : U → R3 where U is an open set of R2. Suppose

X(u, v) = (x(u, v), y(u, v), z(u, v)).

Consider, the following Jacobian matrix of X∂x∂u ∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v

 .
If the map is regular at a point p, the linear transformation defined by the corre-
sponding Jacobian matrix is one-to-one. Therefore, the two columns of the Jacobian
matrix is linearly independent and it has rank 2. In other words, any of the 2 × 2
cofactor matrix has non-zero determinant.

Proposition 2. If f : U → R is a differentiable function on an open set U of R2.
Then the graph of f ,i.e, the subset of R3 given by (x, y, f(x, y) for (x, y) ∈ U , is a
regular surface.

Proof. We have to prove that X(u, v) = (u, v, f(u, v)) satisfy all the conditions of
Definition 9.
clearly, the map is smooth and the first two rows of the Jacobian matrix is linearly
independent implying that it has rank 2. All that is left to prove is that X is a
homeomorphism. X is injective and X−1 is the restriction to the graph of f of the
continuous projection map of R3 onto xy plane , X−1 is continuous.

Definition 10. Given a differentiable map F : U → Rm where U is an open set
in Rm, We say that a point p ∈ U is critical if dFp : Rn → Rm is not a surjective
mapping. The image F (p) ⊂ Rm of a critical point is called a critical value of F . A
point of Rm is called a regular value if it is not a critical value of F .

Consider, a map f : U → R where U is open in R3. The matrix of the linear map
dfp : R3 → R is given by

dfp =
[
fx fy fz

]
.

To say that dfp is surjective is equivalent to saying all the three partial derivatives
are not simultaneously zero. Hence a ∈ f(U) is a regular value of f if and only if all
the partial derivatives do not simultaneously vanish at any point of the pre-image of a
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Proposition 3. If f : U → R where U is an open subset of R3 is a differentiable
function and a ∈ f(U) is a regular value of f then f−1(a) is a regular surface in R3

Proof. we’ll outline the proof. Define a map F : U → R3 by F (x, y, z) = (x, y, f(x, y, z)).
Clearly, det(dFp) 6= 0 for a pre-image p of a regular value. Apply inverse function
theorem on F to construct a coordinate neighbourhood.

Proposition 4. Let, S ⊂ R3 be a regular surface and p ∈ S. Then ∃ a neighbourhood
v of p in S such that V is the graph of a differentiable function, which has one of
the following three forms: z = f(x, y), y = g(x, z), x = h(y, z).

This proposition essentially asserts that every regular surface is locally expressible
as a graph of a function.

Proposition 5. Let p ∈ S be a point of regular surface S and let X : U → R3 with
p ∈ X(U) ⊂ S such that conditions 1 and 3 of Definition 9 holds. Assume that X is
continuous, then X−1 is continuous.

2.2 Change of Parameters, Differentiable functions

on Surface

Now we are going to introduce a very important result about the coordinate charts.

Proposition 6. Change of Parameters Let, p be a point of regular surface S, and
let X : U → S,Y : V → S be two parametrizations of S such that p ∈ X(U)∩Y(V ) =
W. Then the ”Change of coordinates”

h = X−1 ◦ Y : Y−1(W )→ X−1(W )

is a diffeomorphism.

Proof. X−1 ◦Y is a homepormphism since it is composition of two homeomorphisms.
Now, define a map

F (u, v, t) = (x(u, v), y(u, v), z(u, v) + t)

where X(u, v) = (x(u, v), y(u, v), z(u, v)). By exploiting the fact that X is a parametriza-
tion we can orient our axis in such a way that det(dFq) 6= 0. Therefore, we can apply
inverse function theorem to find our required neighbourhood.
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Now, we are going to define the differentiability of a function on a regular surface.

Definition 11. Let, V → R be a function defined on an open subset of a regular
surface S. Then f is said to be differentiable at p ∈ V if for some parametrization
X : U → S with p ∈ X(U) ⊂ V the composition f ◦ X : R2 → R is differentiable at
X−1(p).

In a similar manner we can extend this definition for the functions from regular
surface to regular surface.

Definition 12. Parametrized Surfaces A parametrized surface X : U → R3 is a
differentiable map X from an open set U ⊂ R2 into R3. The set X(U) is called the
trace of X. X is regular if the differential dXq : R2 → R3 is one-to-one for all q ∈ U .

Proposition 7. Suppose, X : U → R3 is a regular parametrized surface and let
q ∈ U. Then there exists a neighbourhood V of q in R2 such that X(V ) ⊂ R3 is a
regular surface.

2.3 The Tangent Plane; The Differential of a Map

Proposition 8. Let X : U → S be a parametrization of a regular surface S and
q ∈ U . The vector subspace of dimension 2

dXq(R2) ⊂ R3

coincides with the set of tangent vectors to S at X(q).

Proof. Let, w be a tangent vector at X(q) ,i.e, w = α′(0) where α : (−ε, ε) :→
X(U) ⊂ S is differentiable and α(0) = X(q). Then β = X−1 ◦ α is the curve we are
looking for.

For the converse part define the curve γ : (−ε, ε)→ U given by

γ(t) = tv + q.

Take α = X ◦ γ.

This plane dXq(R2) is known as the tangent plane of the surface S at p and
hereafter will be denoted as Tp(S).
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The choice of parametrization determines a basis (∂X
∂u

(q), ∂X
∂v

(q)). The coordinates
of a vector w in this basis is given by (u′(0), v′(0)) where (u(t), v(t)) is the expression
in the parametrization X, of a curve whose velocity vector at t = 0 is w.

2.4 First Fundamental Form

Definition 13. The quadratic form Ip on Tp(S) is defined by

Ip(S) : Tp(S)→ R

w 7→ 〈w,w〉p
is called the first fundamental form of the regular surface S ⊂ R3 at p ∈ S.

.

We’ll express the fundamental form in the basis {Xu,Xv}

Ip(α
′(0)) = 〈α′(0), α′(0)〉p = 〈Xuu

′ + Xvv
′,Xuu

′ + Xvv
′〉p = E(u′)2 + 2Fu′v′ +G(v′)2

where
E = 〈Xu,Xu〉,

F = 〈Xu,Xv〉,

G = 〈Xv,Xv〉.

Now we are going to define area formally-

Definition 14. Let, R ⊂ S be a bounded region of regular surface contained in the
coordinate neighbourhood of the parametrization X : U → S. The positive number∫∫

Q

| Xu × Xv | du dv = A(R)

where Q = X−1(R), is called the area of R.
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2.5 Example

In this section we’ll explicitly show the details for two different regular surfaces,
namely 2− sphere and surface of revolution.

2.5.1 2− sphere

The 2− sphere is defined as the set {(x, y, z) | x2 + y2 + z2 = 1}. First, let us prove
that 2-sphere is a regular surface. We’ll prove it using regular value theorem. Define
the map

F : R3 → R

(x, y, z) 7→ x2 + y2 + z2.

Therefore, 2− sphere is the inverse image of the value 1. we have to prove that 1 is
a regular value of the map F. The Jacobian matrix of the map F is[

2x 2y 2z
]

Now, x, y and z can’t be simultaneously zero. Therefore, 1 is a regular value of the
map F. Hence, it is a regular surface using proposition 3.

2.5.2 Surface of Revolution

Let, S ⊂ R3 be the set obtained by rotating a plane curve C about an axis in the
plane which does not meet the curve. We shall take xz plane as the plane of curve
and z − axis as the axis of rotation.
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Let,
x = f(v), y = g(v), a < v < b, f(v) > 0

be a parametrization for C and u is the rotation angle with respect to z − axis.
Thus, we obtain a map

X(u, v) = (f(v) cosu, f(v) sinu, g(v))

from the open set U = {(u, v) ∈ R2, 0 < u < 2π, a < v < b} into S. X is clearly
differentiable and the Jacobian matrix will be−f(v) sinu f ′(v) cosu

f(v) cosu f ′(v) sinu
0 g′(v)


Since, the columns cannot be linearly dependent the differential is one-to-one. There-
fore, X satisfies condition 3 of the definition 9. To prove that X−1 is continuous we
have to prove that u is a continuous function of (x, y, z).

tan
u

2
=

sinu

1 + cosu

=

y
f(v)

1 + x
f(v)

=
y

1 +
√
x2 + y2

⇒ u = 2 arctan
y

1 +
√
x2 + y2

Thus u is a continuous function of (x, y, z). Therefore, X−1 is continuous and X is
homeomorphism. The coefficients of the first fundamental form is given by

E = (f(v))2, F = 0, G = (f ′(v))2 + (g′(v))2

Note If C ⊂ R2 is simple closed regular curve which is symmetric about an axis
r then the surface obtained by rotating C around this axis can also be proved to be
a regular surface. We mention this surfaces as extended surface of revolution.
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2.5.3 Helicoid

Consider, a helix given by (cosu, sinu, au). Through each point of the helix draw
a line parallel to the xy plane and intersecting z − axis. The surface generated by
these is called helicoid and admits the following parametrization

X(u, v) = (v cosu, v sinu, au), 0 < u < 2π,−∞ < v < +∞.

The coefficients of the first fundamental form is given by

E(u, v) = v2 + a2, F (u, v) = 0, G(u, v) = 1.

The arc length of a parametrized curve is given by

s(t) =

∫ t

0

√
Iα′(t) dt.

If α(t) = X(u(t), v(t)) is contained in a coordinate neighbourhood corresponding the
parametrization X(u, v), the arclength will be

s(t) =

∫ t

0

√
E(u′)2 + 2Fu′v′ +G(v′)2 dt (2.1)

Because, of this equation we are allowed to talk about the ’arclength element’

ds2 = Edu2 + 2Fdudv +Gdv2
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Chapter 3

The geometry of the Gauss map

3.1 The definition of the Gauss map and its fun-

damental properties

Given a parametrization X : U → S of a regular surface S at a point p ∈ S , where
U is an open subset of R2 , we can choose a unit normal vector at each point of X(U)
by the rule

N(q) =
Xu × Xv

| Xu × Xv |
(q), q ∈ X(U)

More generally if V ⊂ S is an open set and N : X(U) → R3 is a differentiable
map which associates to each q ∈ V a unit normal vector at q , we say that N is a
differentiable field of unit normal vectors on V.

A regular surface is orientable if it admits a differentiable field of unit normal
vectors defined on the whole surface; the choice of such a field is called an orientation
of S.

Definition 15. Let, S ⊂ R3 be a surface with an orientation. The map N : S → R3

takes its values in the unit sphere

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}.

The map N : S → S2, thus defined , is called the Gauss map of .S
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The differential dNp of N at p ∈ S is a linear map from Tp(S) to TN(p)(S
2). Since,

Tp(S) and TN(p)(S
2) are the same vector spaces , dNp can be looked upon as a linear

map on Tp(S).

The linear map dNp : Tp(S) → Tp(S) operates as follows. For each parametrized
curve α(t) in S with α(0) = p , we consider the parametrized curve N ◦ α(t) = N(t)
in the sphere S2. The tangent vector N ′(0) = dNp(α

′(0)) is a vector in Tp(S).

Proposition 9. The differential dNp : Tp(S) → Tp(S) of the Gauss map is a self-
adjoint linear map.

Definition 16. The quadratic form Πp, defined in Tp(S) by Πp(v) = −〈dNp(v), V 〉
is called the second fundamental form S at p.

Definition 17. Let C be a regular curve in S passing through p ∈ S , k the curvature
C at p , and cos θ = 〈n,N〉 where n is the normal vector to C and N is the normal
vector to S at p. The number kn = k cos θ is then called the normal curvature of
C ⊂ S at p.

Proposition 10. All curves lying on a surface and having at a given point p ∈ S
the same tangent line have at this point the same normal curvatures.

This proposition allows us to speak of the normal curvature along a given direction
at p. Given a unit vector v ∈ Tp(S) , the intersection of S with the plane containing
v and N(p) is called the normal section of S at p along p.

It can be shown that for each p ∈ S there exists an orthonormal basis {e1, e2} of
Tp(S) such that dNp(e1) = −k1e1 and dNp(e2) = −k2e2. Moreover, k1 and k2 are the
maximum and minimum of the second fundamental form Πp restricted to the unit
circle of Tp(S).

Definition 18. The maximum normal curvature k1 and the minimum normal cur-
vature k2 are called the principle curvatures at p; the corresponding directions , i.e,
the directions given by eigenvectors {e1, e2} are called the principle directions at p.

Definition 19. If a regular connected curve C on S is such that for all p ∈ C is a
principle direction at p, then C is said to be a line curvature of S.
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Proposition 11. A necessary and sufficient condition for a connected regular curve
C on S to be a line of a curvature of S is that

N ′(t) = λ(t)α′(t),

for any parametrization α(t) of C where N(t) = N ◦α(t) and λ(t) is a differentiable
function of t. In this case, −λ(t) is the principle curvature along α′(t).

Definition 20. Let, p ∈ S and let dNp : Tp(S) → Tp(S) be the differential of the
Gauss map. The determinant of dNp is the Gaussian curvature K of S at p. The
negative of half of the trace of dNp is called the mean curvature H of S at p.

Definition 21. A point of a surface S is called

1. Elliptic if det(dNp) > 0.

2. Hyperbolic if det(dNp) < 0.

3. Parabolic if det(dNp) = 0 with dNp 6= 0.

4. Planar if dNp = 0

Definition 22. I at p ∈ S , k1 = k2, then p is called an umbilical point S; in
particular, the planar points (k1 = k2 = 0) are umbilical points.

Proposition 12. If all points of a connected surface S are umbilical points, then S
is either contained in a sphere or in a plane.

Definition 23. Let p be a point in S. An asymptotic direction of S at p is a direction
of Tp(S) for which the normal curvature is zero. An asymptotic curve of S is a regular
connected curve C ⊂ S such that for each p ∈ C the tangent line of C at p is an
asymptotic direction.

Definition 24. Let, p be a point on a surface S. Two non-zero vectors w1, w2 ∈
Tp(S) are conjugate if 〈dNp(w1), w2〉 = 〈w1, dNp(w2)〉 = 0. Two directions r1, r2 are
conjugate if a pair of two non-zero vectors w1, w2 parallel to r1, r2 , respectively, are
conjugate.
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3.2 The Gauss map in local coordinates

Let, X(u, v) be a parametrization at a point p ∈ S of a surface S and let, α(t) =
X(u(t), v(t)) be a parametrized curve on the surface S withα(0) = p. The tangent
vector to α(t) at p is

α′ = Xuu
′ + Xvv

′

dN(α′) = N ′(u(t), v(t)) = Nuu
′ +Nvv

′.

Since, Nu and Nv belongs to Tp(S) we can write

Nu = a11Xu + a21Xv, Nv = a12Xu + a22Xv, (3.1)

and therefore

dN

[
u′

v′

]
=

[
a11 a12
a21 a22

] [
u′

v′

]
(3.2)

The expression of the second fundamental form in the basis {Xu,Xv} is given by

Πp(α
′) = −〈dN(α′), α′〉 = −〈Nuu

′ +Nvv
′,Xuu

′ + Xvv
′〉 = e(u′)2 + 2fu′v′ + g(v′)2

where since 〈N,Xu〉 = 0 = 〈N,Xv〉 we obtain

e = −〈Nu,Xu〉 = 〈N,Xuu〉,

f = −〈Nu,Xv〉 = −〈Nv,Xu〉 = 〈N,Xuv〉 = 〈N,Xvu〉,
g = 〈Nv,Xv〉.

Therefore, we obtain the following matrix equation

−
[
e f
f g

]
=

[
a11 a12
a21 a22

] [
E F
F G

]
(3.3)

Hence, we have

a11 =
fF − EG
EG− F 2

, a12 =
gF − fG
EG− F 2

, a21 =
eF − fE
EG− F 2

, a22 =
fF − gE
EG− F 2

. (3.4)

These equations are known as equations of Weingarten. From this we obtain the
Gaussian curvature

K =
eg − f 2

EG− F 2
(3.5)

and the mean curvature as

H =
eG− 2fF + gE

2(EG− F 2)
(3.6)
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3.3 Examples

3.3.1 The Tractrix

The Tractrix is the curve of which the segment of the tangent line between the
point of tangency and some line r in r in the plane, which does not meet the curve,
constantly equals 1. First let us find the equation of the curve. Suppose, the curve
lies in the x − z plane and z − axis is the line r. Let, the equation of the curve
is z = f(x). Take any arbitrary point (h, f(h)) on the curve. The equation of the
tangent at this point is given by

z − f(h)

x− h
= f ′(h)

Therefore the z coordinate of the point where the curve meet the x − axis is given
by

z = f(h)− hf ′h.

Therefore, we obtain
h2(1 + (f ′(h))2) = 1

⇒ f ′(h) =

√
1− h2
h

⇒ f(h) =

∫ √
1− h2
h

dh

Substitute h = sin θ ∫
cos2 θ

sin θ
dθ

If we assume that f(π
2
) = 0 then we obtain the following parametrized curve

θ 7→ (sin θ, log | tan
θ

2
| + cos θ)

Now, let us consider the surface of revolution obtained by rotating this curve
w.r.t z − axis. The surface admits the following parametrization

X(θ, φ) = (sin θ cosφ, sin θ sinφ, log | tan
θ

2
| + cos θ) for 0 < θ ≤ π

2
, 0 < φ < 2π
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Then, coefficients of the first fundamental form is given by

E = 〈Xθ,Xθ〉 = cot2 θ

F = 〈Xθ,Xφ〉 = 0

G = 〈Xφ,Xφ〉 = sin2 θ

The Gauss map will be

Xθ × Xφ

| Xθ × Xφ |
= (− cos θ cosφ,− cos θ sinφ, sin θ).

Hence, we obtain
e = 〈N,Xuu〉 = − cot θ

f = 〈N,Xuv〉 = 0

g = 〈N,Xvv〉 = sin θ cos θ

From equation 3.5 the Gaussian curvature obtained is

K =
− cot θ cos θ sin θ

cot2 θ sin2 θ
= −1

This surface with Gaussian curvature −1 is called the pseudosphere.

3.3.2 Beltrami-Enneper theorem

Theorem 4. The absolute value of the torsion τ at a point of an asymptotic curve
whose curvature is nowhere zero is given by

| τ |=
√
−K

where K is the Gaussian curvature of the surface at a given point.

Proof. Suppose, p is a point on the given surface S and α(t) is the asymptotic curve
where α(0) = p. Define, {e1, e2, e3} to be the coordinates of Frenet trihedron at the
point p where e1 is the tangent, e2 is the normal and e3 is the binormal vector at a
point p. Since, α(t) is an asymptotic curve the binormal vector is equal to the unit
normal to the surface upto a sign. The Gaussian curvature is given by

K = det(dNp).
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Since dNP is self-adjoint and the normal to the curve α(t) lies on the tangent plane
Tp(S) then we obtain

K = Πp(e1)ΠP (e2)− 〈dNp(e1), e2〉2

Since, α is asymptotic Πp(e1) = 0. The other term is given by

〈dNp(e1), e2〉 = 〈N ′(0), α′′(0)〉 = 〈e′3, n〉.

Since, binormal and unit normal to the surface are equal upto sign, using Frenet
equations the above expression equals to the torsion τ of the curve at the point p.
Therefore,

K = −τ 2 ⇒| τ |=
√
−K
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