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ABSTRACT

In the realm of di↵erential topology, Morse theory stands out as a powerful technique for

analyzing the topology of manifolds through the study of di↵erentiable functions defined

on them. Marston Morse’s foundational insights suggest that a di↵erentiable function on

a manifold typically reflects its topology in a direct manner. By leveraging Morse theory,

researchers can uncover CW-complex structures and handle decompositions of manifolds,

thereby gaining significant insights into their homology.

Morse theory o↵ers a straightforward approach to understanding the topology of man-

ifolds by examining the critical points of Morse functions. These critical points play a

central role in constructing Morse complexes, discrete structures that capture essential

topological information about the manifold. Through Morse theory, one can establish

a deep connection between the geometry of a manifold and its homological properties,

providing a powerful tool for topological classification and analysis.

Furthermore, Morse theory facilitates the computation of homology groups of manifolds,

o↵ering a systematic way to quantify their topological features. By imposing the Morse-

Smale condition, which ensures the genericity of Morse functions, researchers can con-

struct boundary operators and define Morse homology, which is isomorphic to singular

homology. This equivalence enables the translation of geometric intuition into algebraic

language, facilitating rigorous mathematical analysis.

In recent years, Morse theory has found diverse applications in mathematics and physics,

ranging from symplectic geometry to algebraic topology. Particularly noteworthy is its

utility in the study of Grassmannian manifolds, where Morse theory provides a direct ap-

proach to computing homology groups and unraveling the intricate topological structure

of these spaces.

Here we will discuss all of these aspects with its application by computing the homology

of Grassmannian.
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Chapter 1

Introduction
One of the fundamental inquiries in smooth manifolds revolves around the quest for

topological invariants—properties of a manifold contingent solely upon its underlying

topology. Morse theory o↵ers a mechanism to construct such invariants by leveraging

the critical points of certain suitably smooth functions f : M �! R. To illustrate this

concept, let’s consider the torus, depicted below within R3, with critical points marked

corresponding to a height function.

Imagine the torus immersed in space, gradually submerged under rising water. As the

water level ascends, covering points c, b2, b1, and finally a, observe how the topology of

the submerged portion evolves:

• Before point (c), the torus remains above the water level.

• After the water crosses point c, the submerged region becomes homeomorphic to a

disk—a contractible space.

• Between points c and b2, the topology remains unchanged.

• After the water passes through point b2, the topology becomes more intricate. The
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1 Introduction

submerged region resembles a disk with an attached strip of the torus—homotopic

to an open cylinder.

• Upon covering point b1, another strip is added to the manifold, rendering it homo-

topic to a cylinder with a 1-dimensional cell attached.

• Upon reaching point a, the entire torus is submerged, completing the manifold.

Specifically, the addition from the previous step forms a disk—a 2-dimensional cell.

In this example, we’ve intuitively constructed a cell skeleton of T2 using the analogy of

rising water. However, this intuitive concept can be formalized by examining the critical

points of the height function restricted to the torus.
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Chapter 2

Homology
2.1 Idea of Homology

Let’s first see some example

Example 2.1.

Seeing the figure, we can define:

• C1 be the free abelian group with basis the edges a, b, c, d.

• C0 be the free abelian group with basis the vertices x, y.

• Elements of C1 are chains of edges or 1-d chains.

• Elements of C0 are linear combinations of vertices or 0-d chains.

Now, define a homomorphism.

@ : C1 ! C0

8
>>>>>>><

>>>>>>>:

a 7�! y � x

b 7�! y � x

c 7�! y � x

d 7�! y � x

If P 2 C1 ) P = Ka+ lb+mc+ nd where k, l,m, n 2 Z

@(ka+ lb+mc+ nd) = (k + l +m+ n)y � (k + l +m+ n)x

so the kernels of @ is precisely the cycles, the chain which enters y as k+ l+m+n times

& enters x as �(k + l +m + n) times. Cycle enters & leaves a vertex the same number

3



2 Homology

of times. So a� b, b� c, c� d forms a basis for the kernel.

• Let P 2 Ker(@) & if P = ka + lb + mc + nd ) k + l + m + n = 0 then P =

ka + lb +mc + nd = k(a � b) + (k + l)(b � c) + (k + l +m)(c � d). We can write

this as k + l +m+ n = 0.

• now as
@(a� b) = (y � x)� (y � x) = 0

@(b� c) = (y � x)� (y � x) = 0 Homomorphism

@(c� k) = (y � x)� (y � x) = 0

8P 2 h(a� b), (b� c), (c� d)i @(P ) = 0

So Ker(@) = h(a� b), (b� c), (c� d)i

Example 2.2.

After previous example,

• Now we are attaching a cell A along the cycle a� b.

• Now, this cycle is homotopically trivial as it can be contracted to a point.

• We form a quotient of the group of cycles in Example 2.1 by factoring out the

subgroup generated by a� b.

• So a� b and b� c become equivalent.

Let’s define a pair of homomorphism C2
@2�! C1

@1�! C0 where C2 is the infinite cyclic

group generated by A.

@2(A) = a� b

&@1, C1, C0 are same as Example 2.1.

H1 (X2) =
Ker@1
Im@2

=
ha� b, b� c, c� di

ha� bi = hb� c, c� di

4



2 Homology

So H1 (x2) is a free abelian group on two generators. (b � c), (c � d). So it denotes the

fact that by filling in the 2 -cell A we have reduced the number of ’holes’ from three to

two.

Example 2.3.

Now we are allocting another 2-cell B along a� b cycle.

C2 = hA� Bi @(A) = @(B) = a� b C3 = h0i

Lets define three of homomorphism C3
h0i

@3�! C2
@2�! C1

@1�! C0

H1 (X2) =
Ker@1
Im@2

=
ha� b, b� c, c� di

ha� bi = hb� c, c� di

H2 (X3) =
Ker@2
Im@3

=
hA� Bi

h0i = hA� Bi

A� B is a 2-dim cycle (hole).

Example 2.4.

Now we are attaching a 3-cell C along the 2-spheres formed by A&B.

C3 = hCi

@3(C) = A� B

Let’s define three homomorphisms.

C3
@3�! C2

@2�! C1
@1�! C0

5



2 Homology

& C2, @1, @2, @3, C1, C0 is same as Example 2.3. Now

H1 (X2) =
Ker@1
Im@2

=
ha� b, b� c, c� di

ha� bi = hb� c, c� di

H2 (X3) =
Ker@2
Im@3

=
hA� Bi
hCi = h0i

So, from the general pattern of examples, we get that.

• For a cell complex X one has chain groups Cn(X) which are free abelian group with

basis consisting n-cells of X,

• There is a boundary homomorphism @n : Cn(X) ! Cn�1(X).

• Now the homology group Hn(x) = ker @n/ Im @n+1

Now the hurdles are

• Orientation of higher dim

• Arbitrary polyhedra can be subdivided into special polyhedrals called simplex

• For simplices, there is no di�culty in handling orientation & defining boundary

maps.

• Decompose into simplices - consider the collection of all possible continuous maps

of simplices into a given space X. This map generates a large chain group Cn(x).

Singular Homology ⇠= Simplicial Homology.

2.2 � - Complexes

Every surface can be constructed by identifying the edges of some triangles.
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2 Homology

The concept of an n-simplex is foundational in geometry, particularly in the topics of

convex sets within Euclidean spaces Rm. Let’s delve into a detailed explanation of the

properties and characteristics outlined in the following points:

• Definition and Basic Properties:-An n-simplex is defined as the smallest con-

vex set in an m-dimensional Euclidean space Rm that contains n+1 distinct points,

denoted as v0, v1, . . . , vn. It’s essential to note that an n-simplex cannot lie entirely

within a hyperplane of dimension less than n. A hyperplane is defined as the solu-

tion set of a system of linear equations.

• Linear Independence:-A crucial criterion for identifying an n-simplex is the lin-

ear independence of the di↵erence vectors between its vertices. Specifically, the

vectors v1 � v0, v2 � v0, . . . , vi � v0 must be linearly independent.

• Notation and Representation:-Mathematically, an n-simplex is denoted by [v0, v1, . . . , vn],

where each vi represents a vertex of the simplex.

• Standard n-Simplex:-The standard n-simplex, denoted as �n, is defined as the

set of points (t0, t1, . . . , tn) in Rn+1 satisfying two conditions:

1.
P

i
ti  1, ensuring that the points lie within the unit hyperplane.

2. ti > 0 for all i, guaranteeing non-negativity along each coordinate axis.

The vertices of the standard simplex are precisely the unit vectors along the coor-

dinate axes.

• Ordering and Orientation:-Ordering the vertices of an n-simplex determines the

orientation of its edges. By convention, the vertices are ordered such that the

subscript increases with t0. This ordering establishes a canonical homeomorphism

between the standard simplex �n and any n-simplex [v0, v1, . . . , vn], preserving the

7



2 Homology

sequence of vertices. The mapping is defined as:

(t0, . . . , tn) 7!
X

i

tivi

Here, ti represents the barycentric coordinates of the point
P

i
tivi within the sim-

plex [v0, . . . , vn].

• Faces of an n-Simplex:-Removing one of the (n+ 1) vertices from an n-simplex

yields n remaining vertices that span an (n � 1)-simplex. This (n � 1)-simplex is

termed a face of the original n-simplex and is denoted as [v0, . . . , v̂j, . . . , vn], where

v̂j indicates the omission of the vertex vj.

In a geometric structure like a simplex, the vertices of a face, or any subsimplex formed

by a subset of these vertices, are consistently arranged according to their original order

within the larger simplex.

The composite of all faces comprising the simplex �n constitutes its boundary, denoted

as @�n. On the other hand, the open simplex �̊n represents the interior of �n, defined

as the set di↵erence between �n and its boundary @�n.

A �-complex configuration over a space X entails a collection of mappings �↵ : �n ! X,

where the dimension n depends on the index ↵. This structure adheres to the following

conditions:

(i) The mapping �↵ restricted to the interior of the simplex (�̊n) is injective, and each

point in X lies in the image of precisely one such restriction �↵.

(ii) Each restriction of �↵ to a face of �n corresponds to one of the mappings �� : �n�1 !

X. This correlation stems from identifying the face of �n with �n�1 through a linear

homeomorphism that conserves the ordering of the vertices.

(iii) A subset A ⇢ X is deemed open if and only if ��1
↵
(A) is an open set in �n for every

�↵.

The objective now lies in establishing the simplicial homology groups of a �-complex

X. Let �n(X) denote the free abelian group generated by the open n-simplices en
↵

8



2 Homology

of X. Elements within �n(X), referred to as n-chains, are expressed as finite formal

summations
P

↵
n↵en↵, where coe�cients n↵ belong to the integers. Alternatively, one

could represent these chains as
P

↵
n↵�↵, where �↵ : �n ! X represents the characteristic

map of en
↵
, with its image being the closure of en

↵
as described earlier. This summation

P
↵
n↵�↵ essentially represents a finite collection or ”chain” of n-simplices within X, each

with integer multiplicities denoted by the coe�cients n↵.

To establish the boundary of an n-simplex [v0, · · · , vn], it consists of various (n � 1)-

dimensional simplices [v0, · · · , v̂i, · · · , vn], where the hat symbol indicates the exclusion

of the corresponding vertex. While one might initially consider expressing this boundary

as the sum of these (n � 1)-dimensional faces, it’s more e↵ective to introduce certain

signs. Thus, the boundary of [v0, · · · , vn] is represented as
P

i
(�1)i [v0, · · · , v̂i, · · · , vn].

These signs are introduced to maintain coherence in orientations, ensuring all faces of a

simplex possess consistent orientations.

To further clarify, consider the orientations depicted in the accompanying figure. The

orientations of the concealed faces are also counterclockwise when viewed from outside

the 3-simplex.

With this geometric perspective in mind, we define a boundary homomorphism @n :

�n(X) ! �n�1(X) for a general �-complex X. This homomorphism is determined by

its values on basis elements:

9



2 Homology

@n (�↵) =
X

i

(�1)i�↵ | [v0, · · · , v̂i, · · · , vn]

It’s worth noting that the right side of this equation indeed lies within �n�1(X), as each

restriction �↵ | [v0, · · · , v̂i, · · · , vn] represents the characteristic map of an (n�1)-simplex

within X.

Lemma 2.5.

The composition �n(X)
@n�! �n�1(X)

@n�1���! �n�2(X) is zero.

Proof. We have @n(�) =
P

i
(�1)i� | [v0, · · · , v̂i, · · · , vn], and hence

@n�1@n(�) =
X

j<i

(�1)i(�1)j� | [v0, · · · , v̂j, · · · , v̂i, · · · , vn]

+
X

j>i

(�1)i(�1)j�1� | [v0, · · · , v̂i, · · · , v̂j, · · · , vn]

The latter two summations cancel since after switching i and j in the second sum, it

becomes the negative of the first.

Now we have a homomorphism of abelian groups

. . .
@n+2���! Cn+1

@n+1���! Cn

@n�! Cn�1
@n�1���! . . .

@3�! C2
@2�! C1

@1�! C0

Now we can define nth homology group Hn = Ker @n
Im @n+1

as a quotient group.

• Elements of Kernel @n are called cycles.

• Elements of Image @n+1 ore called boundaries.

• Elements of Hn are coset of Im @n+1, called homology classes.

• Two cycles are called homologous if for C1, C2 2 Ker @n C1 � C2 2 Im @n+1

• For Cn = �n(x) the homology group Ker @n
Im @n+1

will be denoted H�
n
(X) and called nth

simplicial homology group of X.

Example 2.6.

LetX = S1 Then �0 (S1) ⇠= Z as it has only 1-vertices.

�1 (S1) ⇠= Z as it has only 1-edge.

10



2 Homology

0
@2�! �1

�
S1
�

@1�! �0

�
S1
�

@0�! 0 @(e) = v � v = 0

So H�
0 (S1) = ker @0

Im @1
= hvi

h0i ⌘ Z

H�
1 (S1) = ker @1

Im @2
= hei

h0i
⇠= Z

H�
n
(S1) = ker @n

Im @n+1
= h0i

h0i
⇠= h0i n > 1

Example 2.7.

K0 = {v0, v1, v2}

K1 = {[v0, v1] , [v1, v2] , [v0, v2]}

d0 [vi, vj] = vi, d1 [vi, vj] = vj,

e�1 (x) ⇠= Z3 generated by [v0, v1] , [v1, v2] , [v0, v2].

e�0 (x) ⇠= Z3 generated by v0, v1, v2.

e�
n
(x) = 0 for n > 2. The chain complex ��(x) is

0
@2�! Z3 @1�! Z3 @0�! 0

@1 ([v0, v1]) = v0 � v1,

@1 ([v1, v2]) = v1 � v2,

@1 ([v0, v2]) = v0 � v2.

11



2 Homology

Hence if ↵ = a [v0, v1] + b [v1, v2] + c [v0, v2] 2 Ker (@1), then

@1↵ = (a+ c)| {z }
n0

v0 + (b� a)| {z }
n1

v1 � (b+ c)| {z }
n2

v2 = 0

) a+ c = 0, b� a = 0, b+ c = 0 ) a = b = �c

) ↵ = a ([v0, v1] + [v1, v2]� [v0, v2]) .

Hence H�
1 (x) ⇠= ker (@1) ⇠= Z,

generated by [v0, v1] + [v1, v2]� [v0, v2] .

Similarly n0v0+n1v1+n2v2 2 Im (@1) , n0+n1+n2 = 0 Hence,H�
0 (x) ⇠= e�0 (x)/ Im (@1) ⇠=

Z, generated by v1 + v2 + v3 for example. Hence we see again that.

H�
n
(x) ⇠=

(
Z n = 0, 1;

0, n > 2.

Example 2.8.

e�0 (x) = Zhvi,

e�1 (x) = Zha, b, ci,

e�2 (x) = Zhu, Li,

e�
n
(x) = 0 for n > 3.

The simplicial chain complex is

0 �! Z2 @2�! Z3 @1�! Z �! 0

Now @2(U) = a� c+ b, @2(L) = b� c+ a, hence

nU +mL 2 Ker (@2) ) (n+m)(a+ b� c) = 0 ) m+ n = 0.

12



2 Homology

Thus H�
2 (X) ⇠= Ker (@2) = ZhU � Li ⇠= Z.

And Im (@2) = Zha+ b� ci ✓ Zha, b, ci. = �1(X).

Now @1(a) = @1(b) = @1(c) = v � v = 0 ) @1 = 0, hence

Ker (@1) = e�1 (x)

Thus H�
1 (X) = Ker(@1)

Im(@2)
= Zha,b,ci

Zha+b�ci
⇠= Zha, bi. Finally since @1 = 0, Im (@1) = 0, hence

H0(X) =
�0(X)

Im (@1)
⇠= Zhvi ⇠= Z.

We have,

H�
n
(X) ⇠=

8
>>><

>>>:

Z, n = 0;

Z� Z, n = 1;

Z, n = 2;

0, n > 3.

Example 2.9.

e�0 (x) = Zhv, wi,

e�1 (x) = Zha, b, ci,

e�2 (x) = ZhU,Li,

e�
n
(x) = 0 for n > 3.

Now, @2(u) = a� b+ c, @2(L) = b� a+ c, hence

@2(mU + nL) = (m� n)(a� b) + (m+ n)c.

@2(mU + nL) = 0 ) m� n = m+ n ) 0 ) m = 0 and n = 0.

13



2 Homology

Thus @2 is injective and Ker (@2) = 0, H�
2 (X) = Ker (@2) = 0.

Now @1(a) = @1(b) = v � ! and @1(c) = v � v = 0.

Thus Ker (@1) = Zha� b, ci ⇠= Z� Z Note that if ↵ 2 Im (@2) then

↵ = (m� n)(a� b) + (m+ n)c| {z }
=

= (m� n)(a� b+ c) + 2nc.

l(a� b+ c) + 2nc

for some integers l, n.

We can take a� b+ c and c as a basis of Ker (@1), then Im (@2) is an index 2 subgroup of

Ker (@1). Thus H�
1 (X) = Ker(@1)

Im(@2)
⇠= Z/2Z. Finally Im (@1) = Zhv � !i, hence

H�
0 (X) =

e�
o
(X)

Im (@1)
=

Zhv,!i
Zhv � !i

⇠= Z.

Hence

H�
n
(X) ⇠=

8
><

>:

Z, n = 0;

Z/2Z, n = 1;

0, n � 2.

Now we will discuss about Chain Complexes.

A chain complex is a sequence of homomorphisms,

. . . �! Cn+1
@n+1�! Cn

@n�! Cn�1
@n�1�! . . . �! C1

@1�! C0
@0�! 0

where Ci are abelian groups such that

@n · @n+1 = 0 8n 2 N [ {0}.

Hence Ker (@n) ◆ Im (@n+1). This chain complex is denoted by C.. Terminology:

Zn(C.) = Ker (@n)� n cycles of C.

Bn(C.) = Im (@n+1)� n boundaries of C.

Definition 2.10.

If C. is a chain complex, then we define the n-th homology group of e to be

Hn (C.) =
Zn (C.)

Bn (C.)
=

Ker (@n)

Im (@n+1)
.
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Definition 2.11.

A morphism of chain complexes

f : C. �! D.

is a sequence of homomorphisms, fn : Cn ! Dn such that

fn�1 � @n = @n � fn.

Cn Cn�1

Dn Dn

@n

fn fn�1

@n

Such morphisms are called Chain maps.

Proposition 2.12.

A chain map f : C. �! D. includes homomorphism f⇤ : Hn (C.) �! Hn(D.)

Proof. If ↵ 2 Zn(C.) , then @n↵ = 0 and fn(↵) 2 Zn(D.) because @n (fn(↵)) = fn�1 (@n↵) =

0. So we have a map

fn : Zn (C.) ! Zn (D.)

If ↵ 2 Bn (C.), then ↵ = @n+1� for some � 2 Cn+1. Then

fn(↵) = fn (@n+1�) = @n+1 (fn+1(�))

) fn(↵) 2 Bn(D.).

Zn(C.) Zn(D.)

Hn(C.) H(D.)

fn

f⇤

Thus we get the induced maps f⇤.

Definition 2.13.

If f, g : C. ! D. are two chain maps, a chain homotopy h from f to g is a sequence of

homomorphisms hn : Cn �! Dn+1 such that

gn � fn = @n+1hn + hn�1@n.

15



2 Homology

Cn Cn�1

Dn+1 Dn

fn gn

@n+1

hn

@n

hn�1

Proposition 2.14.

If f, g : C. �! D. are chain maps and h is a chain homotopy from f to g, then

f⇤ = g⇤ : Hn (C.) ! Hn (D.) .

Proof. If ↵ 2 Zn (C.), then @n↵ = 0.

fn(↵)� gn(↵) = @n+1 (hn(↵)) + hn�1 (@n↵)| {z }
0

= @n+1 (hn(↵)) 2 Bn (D.) .

Hence f⇤ = g⇤ on Hn (C.).

Definition 2.15 (Exact Sequence).

An exact sequence of abelian groups is a sequence of homomorphisms

. . . ! An

↵n+1���! An

↵n�! An�1 �! . . .

such that

Ker (↵n) = Im (↵n+1) .

Definition 2.16 (SES).

A short exact sequence 0 ! C.
i�! D.

j�! E. ! 0 is a sequence of chain maps such that

0 ! Cn

in�! Dn

jn�! En �! 0 is exact for each n.

If 0 ! C.
i�! D.

j�! E. ! 0 is an SES of chain complexes, then we have a connecting

homomorphism � : Hn( E. ) ! Hn�1( C. ).

From this, we get an important result

16
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Theorem 2.17.

If 0 ! A.
i! B.

j̇! C. ! 0 is an SES of chain complexes, then there are connecting

homomorphisms � : Hn(C.) ! Hn�1(A.) such that the sequence

· · · �! Hn(A.)
i⇤�! Hn(B.)

j⇤�! Hn(C.)
��! Hn�1(A.)

i⇤�! Hn�1(B.) �! · · ·

is exact.

Proof. Refer to Algebraic Topology by Allen Hatcher.

Assuming the basic knowledge of Singular Homology, we are stating some important

results here by referring to the proofs from Algebraic Topology by Allen Hatcher.

Proposition 2.18.

If X is path connected, then H0(X) ⇠= Z. If X is not path connected and X↵ are the

path Components of X, then

H0(x) ⇠= �
↵

Z.

Proposition 2.19.

If X is a point, then Hn(X) = 0 for n > 1 and H0(X) ⇠= Z.

2.3 Reduced Homology Groups

Now we will discuss about Reduced Homology Groups

Note that we have the augmentation homomorphism " : C0(x) ! Z gives by

"
⇣X

nixi

⌘
=
X

ni for xi 2 X,ni 2 Z.

Also "0@1 = 0, hence we have an augmented Chain complex C̃i(x)

. . . �! Cn(x)
@n�! Cn�1(x)

@n�1�! . . .
@2�! C1(x)

@1�! C0(x)
"�! Z ! 0

The reduced homology groups of X are defined as

H̃n(x) = Hn(C̃.(x)).

17



2 Homology

Note that H̃n(X) = Hn(X) for n > 0, but

H0(x) = H̃0(x)� Z.

For a point X, H̃n(X) = 0 for all n.

Now let’s discuss some results on Induced homomorphism.

If f : X ! Y is a continuous map, then we get homomorphisms f# : Cn(X) �! Cn(Y )

given by f#(�) = f � �, where � : �n �! X is a singular n-simplex, and f# (
P

ni�i) =
P

nif# (�i) for ni 2 Z and �i : �n ! X singular n-simplices.

Claim 2.20.

f# is a chain map from C0(X) to C0(Y ). We need to show

f# · @ = @ · f#

Then the following diagram commutes

. . . Cn+1(X) Cn(X) Cn�1(X) . . .

. . . Cn+1(Y ) Cn(Y ) Cn�1(Y ) . . .

@ @ @ @

f#

@@ @ @

f# f#

Proof. If � is a singular n-simplex in X, then

@ (f#�) = @(f � �) =
nX

i=0

(�1)if��

�����
di�n

= f#

 
nX

i=0

(�1)i�

�����
di�n

!

= f#(@�).

As a consequence f# induces homomorphisms

f⇤ : Hn(X) ! Hn(Y ).

Proposition 2.21.

(a) If f : X ! Y and g : Y ! Z are continuous maps, then

(f � g)⇤ = f⇤ � g⇤ : Hn(X) ! Hn(Z).
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(b) If IdX : X ! X is the identity map, then

(IdX)⇤ = Id : Hn(X) ! Hn(X).

Proof. Refer to Algebraic Topology by Allen Hatcher.

Here is an important result of the Homotopy invariance discussed below.

Theorem 2.22.

If f, g : X ! Y are homotopic maps, then fx = g⇤ : Hn(X) �! Hn(Y ) are equal.

Proof. Refer to Algebraic Topology by Allen Hatcher.

Corollary 2.23.

If f : X ! Y is a homotopy equivalence, then f⇤ : Hn(x) ! Hn(Y ) is an isomorphism.

Proof. Refer to Algebraic Topology by Allen Hatcher.

2.4 Relative Homology

Let’s Now discuss Relative Homology as it will be a useful tool.

Suppose A ✓ X, then Cn(A) ✓ Cn(X) is a subgroup. Let Cn(X,A) = Cn(X)
Cn(A) , moreover,

@ (Cn(A)) ✓ Cn�1(A). Hence we have a chain complex C ·(X,A)

. . . �! Cn+1(X,A)
@�! Cn(X,A)

@�! Cn�1(X,A)
@! · · ·

because @2 = 0.

Cn+1(X) Cn(X) Cn�1(X)

Cn+1(X,A) Cn(X,A) Cn�1(X,A)

@ @

@ @

Definition 2.24.

Relative homology groups of the pair (X,A) are defined as the homology groups of the
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chain complex C ·(X,A),

Hn(X,A) =
Ker (@ : Cn(X,A) ! Cn�1(X,A))

Im (@ : Cn+1(X,A) ! Cn(X,A))
.

Note that there are exact sequences

0 �! Cn(A)
i�! Cn(X)

q�! Cn(X,A) ! 0

such that i � @ = @ � i and q � @ = @ � q. Hence, we get an SES of chain complexes

0 ! C ·(A) ! C ·(X) ! C ·(X,A) ! 0

Cn+1(A) Cn(A)

Cn+1(X) Cn(X)

Cn+1(X,A) Cn(X,A)

@

q

@

q

@

i i�

Proposition 2.25.

We have a long, exact sequence of relative Homology

! Hn(A)
i⇤�! Hn(X)

q⇤�! Hn(X,A)
��! Hn�1(A) ! . . . ! H0(A)

i⇤! H0(X)
q⇤�! H0(X,A) ! 0

Remark 2.26. • An element ofHn(X,A) is represented by a relative cycle ↵ 2 Cn(X)

such that @↵ 2 Cn�1(A).

• A relative cycle ↵ is trivial isHn(X,A) if it is a relative boundary of form ↵ = @�+�

where � 2 Cn+1(x) and � 2 Cn(A).

• Connecting homomorphism S : Hn(X,A) ! Hn�1(A) is given by

�[↵] = [@↵].
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Now we will discuss some aspects of Reduced Homology.

We have a short, exact sequence of chain complexes

0 ! eC ·(A)
i! eC ·(X)

q! eC ·(X,A) ! 0

where eC ·(A) is the chain complex,

. . .
@! Cn(A)

@! Cn�1(A)
@! . . .

@! C0(A)
"�! Z ! 0

eC ·(X) is the chain complex,

. . .
@! Cn(x)

@! Cn�1(x)
@! . . .

@! C0(X)
"! Z ! 0

eC · (X,A) is the chain complex

. . . ! Cn(X,A) ! Cn�1(X,A) ! . . . ! C0(X,A) ! 0

0 0 0 0

. . . Cn+1(A) Cn(A) . . . C0(A) Z 0

. . . Cn+1(X) Cn(X) . . . C0(X) Z 0

. . . Cn+1(X,A) Cn(X,A) . . . C0(X,A) 0 0

0 0 0 0

i i id

"

"

This SES gives us a LES in reduced homology groups

! H̃n(A) ! H̃n(X) ! Hn(X,A) ! H̃n�1(A) ! · · · ! H̃0(A) ! H̃0(X) ! H0(X,A) ! 0

Corollary 2.27.

If x0 is a point in X, then Hn (X, x0) ⇠= eHn(X) for all n.

Proof. We have a LES

. . . ! H̃n (x0) ! H̃n(X)
⇠=! Hn (X, x0) ! H̃n�1 (x0) ! . . .

which gives the isomorphisms as H̃n (x0) is 0 and H̃n�1 (x0) is also 0 as x0 is just a

point.
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If A ✓ X and B ✓ Y, f : X ! Y continuous, such the f(A) ✓ B, then we wite

f : (X,A) ! (Y,B).

Then, there is an induced homomorphism.

f⇤ : Hn(X,A) ! Hn(Y,B).

The idea of the proof is given in Algebraic Topology by Hatcher.

Proposition 2.28.

If f, g : (X,A) ! (X,B) are homotopic by a homotopy Ht : (X,A) ! (Y,B) then

f⇤ = g⇤ : Hn(X,A) �! Hn(y, B).

Proof. Refer to Algebraic Topology by Hatcher

We can also see the LES of a triple. Suppose B ✓ A ✓ X, then we write (X,A,B) as a

triple, and we have SES

0 ! Cn(A,B)
i�! Cn(X,B)

q�! Cn(X,A) ! 0

This gives us a long, exact sequence.

! Hn(A,B) ! Hn(X,B) ! Hn(X,A) ! Hn�1(A,B) ! . . .

2.5 Excision

:- Now we will discuss some topics on Excision, which is an important tool for cal-

culating Homology. Let X be a space and U = {U↵ | U↵ ✓ X,↵ 2 A} such that X =
S
↵2A Int (U↵). Let Cu

n
(X) ✓ Cn(X) be the subgroup generated by singular n-simplices

� : �n ! X such that � (�n) ✓ U↵ for some ↵. Then we have a chain complex Cu.(x)

. . . ! Cu

n
(x) ! Cu

n�1(x) ! . . . ! Cu

0 (x) ! 0.

Let Hu

n
(X) denote the homology groups of this chain complex. The inclusion maps

i : Cu

n
(x) give us a chain map i : Cu.(x) ! C.(x).
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Theorem 2.29.

There is a chain map ⇢ : C.(x) ! Cu.(x) such that ⇢ � i and i � ⇢ are chain homotopic to

identity. Hence i⇤ : Hu

n
(x) ! Hn(x) are isomorphisms for all n.

Proof. Refer to Algebraic Topology by Hatcher.

Theorem 2.30 (Excision).

Let Z ✓ A ✓ X such that Z̄ ✓ Int(A) then the inclusion (X � Z,A � Z) ,! (X,A)

induces isomorphisms Hn(X,A) ⇠= Hn(X � Z,A� Z) for all n.

Proof. Refer to Algebraic Topology by Hatcher.

2.6 CW-Homology

Definition 2.31.

A CW complex X is a space along with sub-spaces

X0 ✓ X1 ✓ X2 ✓ . . . ✓ Xn ✓ . . .

such that

X =
1[

n=0

Xn.

The subspace Xn is called the n-skeleton of X and these satisfy the following:

(a) X0 is a discrete subspace of X.

(b) Xn is obtained from Xn�1 by attaching n-cell, through attaching maps 'n

↵
: Sn�1 !

Xn�1,↵ 2 An, and

Xn =

 
Xn�1

G
 
G

↵2A

Dn

↵

!!
/ ⇠

where x ⇠ 'n

↵
(x) if x 2 @Dn

↵
. Here Dn

↵
are all homeomorphic to Dn, and An could be

empty. The topology on X is the weak topology that is U ✓ X is open , U \ Xn is

open in Xn for all n.

Remark 2.32. • There might not be any n-cell in X, which means Xn = Xn�1.
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• If X = Xn for some n > 0; then we say X is finite dimensional and

dim(x) = inf {n | X = Xn}

= sup{n | X has an n-cell }.

In this case the topology of Xi the same as topology of Xn.

• If X is a finite dimensioned CW complex and there are only finitely many cells in

each dimension, then we say that X is a finite CW complex, and X is compact.

• For each ↵0 2 An, there is a continuous map Cn

↵0
: Dn

↵0
! X which is the composi-

tion of

Dn

↵0
,�!

 
Xn�1

G
 
G

↵

Dn

!!
⇣ Xn ,�! X.

The subspace En

↵0
= en

↵0

�
Dn

↵0

�
✓ X is celled an n-cell of X, with characteristic

map en
↵0

and attaching map 'n

↵0
. Note that en

↵0
restricted to the interior of Dn

↵0
is

a homeomorphism onto En

↵0
\Xn�1.

• A CW complex is a Hausdor↵ topological space.

Definition 2.33.

If Y is a topological space and X is a CW complex, such that X ⇠= Y, then we say that

X is a CW structure on Y

Now let’s Discuss some Examples.

Example 2.34 (Sphere).

There is a CW structure X on S1 with one 0-cell ⇤ and one 1 -cell E1. X0 = ⇤, X1 =

X = S1, and the attaching map for E1 will be

' : @D1 = S0 = {�1, 1} ! X0 = {⇤} is given by '(±1) = ⇤.

Then X ⇠= [�1, 1]/ ⇠ where �1 ⇠ 1 ) X ⇠= S1. Similarly there is a CW structure X on

Sn, where X has one O-cell ⇤ and one n-cell En,
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X0 = {⇤}, X0 = X1 = X2 = . . . = Xn�1, X = Xn,

the attaching map for En is the constant may 'n : Sn�1 ! ⇤.

Again X ⇠= Dn/@Dn ⇠= Sn.

Example 2.35.

(Sphere) We give a CW structure X on Sn with 2 cells in each dimension k = 0, . . . , n.

Here Xk
⇠= Sk, and X = Xn

⇠= Sn. X0 = {±1}, then we have two 1 -cells E1
� and E1

+

The attaching maps for E1
± are �1

± : {�1, 1} ! {�1, 1}

�1
+(�1) = 1, �1

+(1) = �1
�1
�(�1) = �1, �1

�(1) = 1.

Check that X1
⇠= S1. Now we attach two 2-cells E2

� and E2
+ and the attaching maps �2

±

are homeomorphisms �2
+,�

2
� : S1 ! X1, such that

�2
+(z) = �2

�(z̄).
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Then X2
⇠= S2. Continuing in this way, we get Xn = X ⇠= Sn.

Example 2.36 (Torus).

There is a CW structure X on T with one 0 -cell, ✓ two 1-cells, A and B and one 2-cell,

F.
X0 = {v} v = q(0, 0) = q(0, 1) = q(1, 0) = q(1, 1),
X1 = A [ B A = q({0}⇥ [0, 1]) = q({1}⇥ [0, 1])
X2 = T B = q([0, 1]⇥ {0}) = q([0, 1]⇥ {1}).

F = q([0, 1]⇥ [0, 1]).

The attaching maps for A and B are constant maps. The attaching map for F is � :

S1 ! A [ B, is the Composition

S1 ⇠= @([0, 1]⇥ [0, 1])
q�! A [ B.

Example 2.37 (Subcomplex).

If X is a CW complex, then a subcomplex of X is a subspace A ✓ X such that A is a

union of cells of X. In particular A is also a CW complex, and its n-skeleton

An = A \Xn.
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If X is a CW complex and A ✓ X is a subcomplex, then we say that (X,A) is a CW

pair.

Now we will see some constructions of the new CW-Complex from the old one.

Product:-If X and Y are CW complexes then X ⇥ Y has a natural CW structure on it.

The n-cells of X ⇥ Y are the products Ek

↵
⇥ F n�k

�
where Ek

↵
are the k-cells of X, F n�k

�

are the n� k cells of Y k = 0, . . . , n. We are using the homeomorphism

Dk ⇥Dn�k ⇠= Dn.

We have (X ⇥ Y )n =
S

n

k=0 (Xk ⇥ Yn�k).

Quotient:-If (X,A) is a CW pair, then X/A this has a natural CW structure.This CW

structure has cells corresponding to the cell in X not contained in A, along with an extra

0 -cell corresponding to A. Then (X/A)n = (Xn/An). For example if we take the CW

pair (T,A), then T/A consists of the cells v = A/A,

q(B), and q(F ) where F is the 2 cell of T . If En

↵
is an n-cell of X, st. En

↵
* A, then the

corresponding n-cell in X/A will have attaching map the composition of

Sn�1 '
n
↵�! Xn�1

q�! Xn�1/An�1 = (X/A)n�1

Where 'n

↵
is the attaching map of En

↵
.

Wedge Sum:-A based space (X, x0) is a space X and a point x0 2 X.
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If (X, x0) and (Y, y0) are two based spaces, then their wedge sum is the space X _

Y = (X
F

Y )/ {x0, y0}.If X and Y are CW complexes and x0 2 X0, y0 2 Y0, then

(X
F

Y, {x0, y0}) is a CW pair. Then X _ Y = (X
F
Y )/ {x0, y0} has a natural CW

structure.

Theorem 2.38.

If (X,A) is a CW pair, and A is contractible then X/A ' X.

Proof. Refer to Algebraic Topology by Hatcher

Example 2.39.

.

X = S2 [ {(x, 0, 0) | �1 6 x 6 1}.
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Then X has a CW structure where

X0 = {n = (0, 0, 1), s = (0, 0,�1)}

X1 = A [ B [ C where

A = {(x, 0, 0) | �1 6 x 6 1},

B = {(cos ✓, sin ✓, 0) | 0 6 ✓ 6 ⇡},

C = {(cos ✓, sin ✓, 0) | ⇡  ✓  2⇡}.

X2 = X is obtained by attaching two 2 -cells

E =
�
(x, y, z) 2 S2 | y > 0

 

F =
�
(x, y, z) 2 S2 | y  0

 
.

Then A ✓ X is a contractible sub complex. HenceX/A ' X. Similarly B is a contractible

sub complex ) X/B ' X. Thus X/A ' X/B

Now we will try to see Relative Homology as Reduced Homology of quotient.

Definition 2.40.

Relative Homology as Reduced Homology of quotient. If A ✓ X is closed, (X,A) is called

a good pair if there is V ✓ X open which deformation retracts to A.

Example 2.41.

A CW pair (X,A) is a good pair [Refer to Proposition A5 of Algebraic Topology by

Hatcher]

Proposition 2.42.

If A ✓ V ✓ X such that Y deformation retracts onto A, then the inclusion (X,A) ,!
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(X, V ) induces isomorphism

Hn(X,A) ⇠= Hn(X, V ).

Proof. We have a long exact sequence of the triple (X, V,A)

· · · ! Hn(V,A) ! Hn(X,A)
⇠=�! Hn(X, V ) ! Hn�1(V,A) ! · · ·

There is a homotopy equivalence of pairs (Y,A) and (A,A), hence

Hn(V,A) ⇠= Hn(A,A) = 0 for all n.

Therefore we get isomorphisms Hn(X,A) ! Hn(X, V ).

Theorem 2.43.

For good pairs (X,A), the quotient map q : (X,A) ! (X/A,A/A) induces isomorphisms

Hn(X,A) ⇠= Hn(X/A,A/A) ⇠= eHn(X/A) for all n.

Proof. Let V ✓ X be an open set which deformation retracts to A. Then we have a

commutative diagram

Hn(X,A) Hn(X, V ) Hn(X � A, V � A)

Hn(X/A,A/A) Hn(X/A, V/A) Hn(X/A� A/A, V/A� A/A)

⇠=(Excision)

⇠=(Excision)

q⇤ q⇤⇠=

⇠=

q⇤

⇠=(Proposition 2.42)

Note that X �A
q�! X/A�A/A is a homeomorphism and takes V �A to V/A�A/A.

Hence

q⇤ : Hn(X � A, V � A) ! Hn(X/A� A/A, V/A� A/A)

is an isomorphism. Then all the vertical arrows are isomorphisms.

Corollary 2.44.

eHn (Sn) ⇠= Z and eHk (Sn) = 0 for k 6= n.
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Proof. Note that (Dn, @Dn) is a good pain and @Dn = Sn�1. More over Dn/@Dn ⇠= Sn.

Thew from the long exact sequence of (Dn, @Dn) we get

. . . ! eHk (D
n) ! eHk (S

n) ! eHk�1

�
Sn�1

�
! eHk�1 (D

n) ! . . .

Thus eHk (Sn) ⇠= eHk�1 (Sn�1). Since S0 = {±1},

eH0

�
S0
� ⇠= Z and eHk

�
S0
�
= 0 for k > 0.

The result then follows by induction on n.

Corollary 2.44 and Excision both gives us Rm ⇠= Rn i↵ m = n.From this Excision we also

get a nice result.

Theorem 2.45 (Invariance of Domain).

If U ✓ Rm and V ✓ Rn are open and U ⇠= V , then m = n.

Proof. Refer to Algebraic Topology by Hatcher.

Definition 2.46 (Local Homology Group).

If X is a space and x0 2 X, then Hk (X,X � x0) is cell the local homology group of X

at x0.

If U is a ngbd of x0 then

Hk (U,U � x0) ⇠= Hk (X,X � x0) .

If x0 2 X, y0 2 Y , and U is a ngbd of x0, V is a ngbd of y0, and these is a homeomorphism

f : U ! V st. f (x0) = y0

then

Hk (X,X � x0) ⇠= Hk (U,U � x0)
⇠=�!
f⇤

Hk (V, V � y0) ⇠= Hk (Y, Y � y0) .

Definition 2.47.

If X↵,↵ 2 A, are spaces and x↵ 2 X↵ such that (X↵, x↵) is a good pair for all ↵ 2 A, and

_

↵

X↵ =

 
G

↵

X↵

!
/ {x↵ | ↵ 2 A} .
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Theorem 2.48.

eHk (
W
↵
X↵) ⇠= �↵

eHk (X↵) for all k.

Proof. Refer to Algebraic Topology by Hatcher.

Theorem 2.49 (Mayer-Vietoris Sequence).

X is a space, A,B ✓ X such that

X = IntA [ IntB,

A

A \ B X

B

i

j

k

l

We have long exact sequences

· · · ! Hn(A \ B)
(i⇤,j⇤)���! Hn(A)�Hn(B)

k⇤�l⇤���! Hn(X) ! Hn�1(A \B) ! · · ·

. . . ! eHn(A \ B) �! eHn(A)� eHn(B) �! eHn(X) ! eHn�1(A \ B) ! · · ·

Proof. Refer to Algebraic Topology by Hatcher.

Let’s Calculate some example to see the power of the above result.

Example 2.50 (Sphere).

Let U = Sn � {(0, . . . , 1)} and V = Sn � {(0, . . . ,�1)} Sn = U [ V, U, V are open,

eHn(U) = 0 8n,

eHn(V ) = 0 8n,

U \ V ' Sn�1, eHk(U \ V ) =

(
Z, k = n� 1,

0, k 6= n� 1.

· · · ! eHk(U)� eHk(V ) ! eHk (S
n) ! eHk�1

�
Sn�1

�
!! eHk�1(U)� eH0

k�1(V ) ! · · ·
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So eHk (Sn) ⇠= eHk�1 (Sn�1), and thus we can compute the homology groups of Sn by

induction.

Example 2.51 (Torus).

T = U [ V, U \ V ' S1 t S1

U ' S1, V ' S1

eHn(U \ V ) ⇠= eHn(S1 _ S1) ⇠= eHn(S1)� eHn(S1) ⇠= eHn(U)� eHn(V )

For n > 2,

· · · ! eHn(V )� eHn(U) ! eHn(T ) ! eHn�1(U \ V ) ! · · ·

eHn(T ) = 0 for n > 2. (From Example 2.50 eHn(V ) ⇠= eHn(S
1) ⇠= eHn(U) ⇠= 0)

From Example 2.50 eH2(V ) ⇠= eH2(S1) ⇠= eH2(U) ⇠= 0 ⇠= eH2(U)� eH2(V )

0 ! eH2(T ) ! eH1(U\V ) ! eH1(U)� eH1(V ) ! eH1(T ) ! eH0(U\V ) ! eH0(U)� eH0(X) ! · · ·

Hence we have

0 ! eH2(T ) ! Z� Z ! Z� Z ! eH1(T ) ! Z ! 0.

Now we need to check the maps

· · · �! 0 �! eH2

�
T2
�

@�! Z� Z (i⇤,j.)���! Z� Z �! . . .

Despite the two last groups being isomorphic, it doesn’t mean that the morphism (i⇤, j⇤)

between them in the LES, induced by the inclusions i : U \V �! U and j : U \V �! V ,

is an isomorphism. And actually it is not. (If it was, then eH2 (T2) would be zero.) At this

stage, we need to compute what this (i⇤, j⇤) is. For this, we choose 1-cicles generating the

33



2 Homology

homologies of U, V and U \V as follows: for each cylinder of the intersection U \V , take

an equatorial circumference. Name their homology classes ↵ and �. So, actually, those

Z in the piece of LES depicted above are the free abelian groups generated by ↵ and � :

(i⇤, j⇤) : Zh↵i � Zh�i �! Zh↵i � Zh�i

And now we compute:

(i⇤, j⇤) (↵, 0) = (i⇤, j⇤) (0, �) = (↵, �)

since ↵ = � in eH1(U) and eH1(V ). Hence, in terms of these basis, our morphism (i⇤, j⇤)

can be represented by the matrix

✓
1 1
1 1

◆
: Z� Z �! Z� Z

Hence,

eH2

�
T2
�
= im @ = ker

✓
1 1
1 1

◆
= Zh↵� �i = Z

As for eH1 (T2), let’s focus on the following piece of the LES:

· · · �! eH1(U \ V )
(i⇤,j.)���! eH1(U)� eH1(V )

k⇤�l⇤���! eH1

�
T2
�

@�! eH0(U \ V )
(i⇤,j⇤)���! eH0(U)� eH0(V )

where k⇤ � l⇤ is the morphism induced by the inclusions k : U �! T2 and l : V �! T2.

Again, we know all the groups except eH1 (T2) :

· · · �! Z� Z (i⇤,j⇤)���! Z� Z k⇤�l⇤���! eH1

�
T2
�

@�! Z� Z (i⇤,j⇤)���! Z� Z �! . . .

We claim that, taking as generators for eH0(U) and eH0(V ) two points p, q, one in each

component of U \ V , we have also generators for eH0(U \ V ) and, with these generators

and similar computations, the second morphism (i⇤, j⇤) can also be represented by the

matrix ✓
1 1
1 1

◆
: Z� Z �! Z� Z

Now, we get a SES from that piece of the LES:

0 �! ker @ �! eH1

�
T2
�
�! im @ �! 0
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But, we can see that

im @ = ker (i⇤, j⇤) = ker

✓
1 1
1 1

◆
= Z

Di↵erently,

ker @ = im (k⇤ � l⇤) = (Z� Z)/ ker (k⇤ � l⇤) = (Z� Z)/ im (i⇤, j⇤) = Z

Hence, we have the following short exact sequence:

0 �! Z �! eH1

�
T2
�
�! Z �! 0.

Thus

eH1

�
T2
�
= Z� Z

So,

Hk(T2) =

8
><

>:

Z2 if k = 1,

Z if k = 2,

0 else.

Proposition 2.52.

Hn (�n, @�n) ⇠= Z and is generated by the identity map in : �n ! �n.

Proof. Refer to Elements of Algebraic Topology by Munkres.

Corollary 2.53.

Consider Sn ⇠= (�n

1 t�n

0 ) / ⇠ where di�n

1 is identified with di�n

2 using the identity may

Let �i : �n

i
! Sn be restriction of the quotient map to �n

i
, then eHn (Sn) is generated by

[�1 � �2].

Proof. Refer to Elements of Algebraic Topology by Munkres.

2.7 Degree

Definition 2.54 (degree).

Let f : Sn ! Sn be a continuous map then we have an isomorphism eHn (Sn) ⇠= Z, hence
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f⇤ : eHn (Sn) ! eHn (Sn) is given by f⇤(n) = kn, where k = f⇤(1). We define the degree of

f to be

deg(f) = k.

Properties:

• deg (IdSn) = 1.

• deg(f � g) = deg(f) deg(g).

• If f ' g then deg(f) = deg(g).

• If f : Sn ! Sn is not surjective then deg(f) = 0.

Sn f�! Sn\ {x0}
i�! Sn

f⇤ is the composition

Hn (S
n)

f⇤�! Hn (S
n � {x0})

i⇤�! Hn (S
n) .

as Hn (Sn � {x0}) = 0 because Sn � {x0} ⇠= Rn

• If f is a reflection then deg(f) = �1.

f⇤ ([�1 � �2]) = [�2 � �1] = � [�1 � �2] .

when f (x0, . . . , xn) = f (x0, . . . , xn�1,�xn).

• If f is the antipodal map, then deg(f) = (�1)n+1, f (x0, . . . , xn) = (�x0, . . . ,�xn)

which is the composition of n+ 1 reflections.

• Let V ✓ Rn+1 be a vector subspace of dimension n, and ⇢V : Rn+1 ! Rn+1 is the

reflection with respect to origin then ⇢V maps Sn to Sn fixing Sn�1 ⇠= V \ Sn, and

interchanging the two hemispheres, with boundary V \ Sn. Clearly,

deg (⇢V ) = �1.

To see this we can give a �-structure on Sn, such that the two hemispheres are the

two n-simplices

�n

1 ,�
n

2 and �i : �
n

i
! Sn
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are the inclusions. Then [�1 � �2] generates eHn (Sn) and

(⇢V )⇤ ([�1 � �2]) = [�2 � �1] = �1 ([�1 � �2]) .

Corollary 2.55.

Sn has a non-vanishing continuous vector field i↵ n is odd.

Proof. Refer to Algebraic Topology by Hatcher.

Proposition 2.56.

If f : Sn ! Sn has no fined point, then

deg(f) = (�1)n+1

Proof. Refer to Algebraic Topology by Hatcher.

Corollary 2.57.

If n is even, the only groups that act on Sn freely are Z/2Z and 0 .

Proof. Refer to Algebraic Topology by Hatcher.

Now we will try to compute the degree locally which will help us to get a degree of map

e�ciently.

Let f : Sn ! Sn be continuous and y 2 Sn such that f�1(y) is finite. Let V be ngbd of

y, then 9 U ✓ f�1(v) open such that U \ f�1(y) = {x}, then f(U � x) ✓ V � y, also

Hn(U,U � x) ⇠= Hn (S
n, Sn � x) ⇠= eHn (S

n) ⇠= Z,

similarly

Hn(V, V � y) ⇠= Hn (S
n, Sn � y) ⇠= eHn (S

n) ⇠= Z,

thus f⇤ : Hn(U,U � x) ! Hn(V, V � y) is determined by f⇤(1).In this setting we define

the local degree of f at x as

deg f |
x
= f⇤(1).
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Proposition 2.58.

If f : Sn ! Sn is continuous and

f�1(y) = {x1, . . . , xk} then

deg f =
kX

i=1

deg f |xi .

Proof. Refer to Algebraic Topology by Hatcher.

2.8 CW-Homology Theorem

Proposition 2.59.

Let X be a CW complex, Xn ✓ X be its n-skeleton, then

(a) Xn/Xn�1
⇠= _↵Sn

↵
,↵ ranging over n-cells of X and

Hk (Xn, Xn�1) ⇠=

(
�↵Z hen

↵
i , k = n

0, otherwise.

(b) If k > n, then Hk (Xn) = 0, hence if X is finite dimensional

Hk(X) = 0 when k > dimX.

(c) If k < n, then Hk(x) ⇠= Hk (Xn).

Proof. (a)Xn = ((tDn

↵
) tXn�1) / ⇠

tDn

↵
Xn

_↵Sn

↵
(tDn

↵
) / (t@Dn

↵
) Xn/Xn�1

⇠=

ten↵

⇠=

Hk (Xn, Xn�1) ⇠=

(
�↵Z hen

↵
i , k = n

0, otherwise.

(b) Consider the LES of the pair (Xn, Xn�1).

· · · ! Hk+1 (Xn, Xn�1)
��! Hk (Xn�1)

⇠=�! Hk (Xn) ! Hk (Xn, Xn�1) ! . . .

By part (a) we get the isomorphism from the LES.

Since k > n, Hk (Xn) ⇠= Hk (Xn�1).
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Continuing we get Hk (Xn) ⇠= Hk (Xn�1) ⇠= Hk (Xn�2) ⇠= . . . ⇠= Hk (X0) = 0.

(c) Consider the LES of the pair (Xn+1, Xn),

. . . ! Hk+1 (Xn+1, Xn) ! Hk (Xn) ! Hk (Xn+1) ! Hk (Xn+1, Xn) ! . . .

By part (a) we get the isomorphism from the LES.

Since k < n, Hk (Xn) ⇠= Hk (Xn+1). In this way we get

Hk (Xn) ⇠= Hk (Xm) for any m > n > k.

If X is finite dimensional, then X = Xm for some m and we are done. [For general X

Refer Lemma 2.34 of Hatcher.]

Cellular Chain Complex:-

When X is a CW complex, we have an associated chain complex C.CW (X), where

CCW

n
(X) = Hn (Xn, Xn�1) = �

↵

Z hen
↵
i.

Hn(X) 0

0 Hn(Xn+1)

Hn(Xn)

. . . Hn+1(Xn+1, Xn) Hn(Xn, Xn�1) Hn�1(Xn�1, Xn�2) . . .

Hn�1(Xn�1)

0 Hn�1(Xn)

Hn�1(X) 0

dn+1 dn

�n+1

in

qn

⇠=

�n qn�1

in�1

⇠=

Let dn = qn�1 � �n : Hn (Xn, Xn�1) ! Hn�1 (Xn�1, Xn�2), then

dn � dn+1 = (qn�1 � �n) � (qn � �n�1) = qn�1 � (�n � qn) � �n+1 = 0.

Hence we get a chain complex C.CW (X),

· · · ! �
↵

Z
⌦
en+1
↵

↵ dn+1���! �
�

Z
⌦
en
�

↵
dn�! �

�

Z
⌦
en�1
�

↵
�! · · ·

Define the cellular homology groups HCW

n
(X) = Hn

�
CCW (X)

�
= Ker2(dn)

Im(dn+1)
.

Theorem 2.60.

For any CW complex X,HCW

n
(X) ⇠= Hn(X).
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Proof. Since qn�1 is injective Ker (dn) = Ker (qn�1 � �n) = Ker (�n) = Im (qn).Now qn is

injective, hence qn : Hn (Xn) ! Im (qn) is isomorphism. Also Im (dn+1) = Im (qn · �n+1) =

qn (Im (�n+1)), thus qn takes Im (�n+1) to Im (dn+1) bijectively.

HCW

n
(x) =

Ken (dn)

Im (dn+1)
⇠=

Im (qn)

qn (Im (�n+1))
⇠=

Hn (Xn)

Im (�n+1)
.

Moreover Im (�n+1) = Ker (in) ) HCW

n
(X) ⇠= Hn(Xn)

Ker(in)
.

Now in : Hn (Xn) �! Hn (Xn+1) is surjective hence

HCW

n
(X) ⇠=

Hn (Xn)

Ker(in)
⇠= Hn (Xn+1) ⇠= Hn(X).

2.9 Application

• If X does not have any n-cells then Hn(X) = 0.

• If X has k n-cells then Hn(X) can be generated by at most k-elements.

• If X is a finite CW complex, then Hn(X) is finitely generated for all n.

Let’s discuss some example.

Example 2.61 (CP n).

CP n has CW structure with 1, k-cell for every k even, 0  k  2n. Thus cellular chain

complex is

0 ! Z
2n

! 0
2n�1

! Z
2n�2

! . . . ! Z ! 0

Hence

Hk (CP n) =

(
Z, 0  k  2n, k is even;

0, otherwise.

Example 2.62 (Sphere).

Let n > 1, then Sn has CW structure with one 0 -cell and one n-cell. So Sn ⇥ Sn, has

one 0 -cell, two n-cells and one 2n cell.

Hk (S
n ⇥ Sn) ⇠= CCW

k
(Sn ⇥ Sn) =

8
><

>:

Z k = 0, 2n

Z� Z k = n

0 otherwise.
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Now we will try to find what are these boundary maps.

Theorem 2.63.

The map dn : �
↵

Z hen
↵
i �! �

�

Z
⌦
en�1
�

↵
is given by

dn (e
n

↵
) =

X

�

d↵�e
n�1
�

where d↵� is the degree of �↵� = q� � 'n

↵
, where

@Dn

↵
= Sn�1

↵

'
n
↵�! Xn�1

q��! Xn�1/
�
Xn�1 � e̊n�1

�

� ⇠= Sn�1
�

.

'n

↵
is the attaching map.

Proof. There is a commutative diagram

�↵� : Sn�1
↵

'
n
↵�! Xn�1

q��! Xn�1/
�
Xn�1 � e̊n�1

�

� ⇠= Sn�1
�

�n

↵
[@�n

↵
] d↵�

Hn(Dn

↵
, @Dn

↵
) eHn�1(@Dn

↵
) eHn�1(S

n�1
�

)

Hn(Xn, Xn�1) eHn�1(Xn�1) eHn�1(Xn�1/Xn� 2)

en
↵

dn(en↵) Hn�1(Xn�1, Xn�2) Hn�1(Xn�1/Xn�2, Xn�2/Xn�2)

� �↵�⇤

e
n
↵⇤

dn

'
n
↵⇤

⇠=

�n

qn�1

p�⇤

⇠=

q⇤

'
n
↵⇤ [@�

n
↵] qn�1�'n

↵⇤ [@�
n
↵]

qn�1�'n
↵⇤ [@�

n
↵]

Where p� is given by the following commutative diagram.

Xn�1 Xn�1/Xn�2

Xn�1/(Xn�1 � e̊n
�
)

q

q�
p⌘

Let �n

↵
be a generator of Hn (Dn

↵
, @Dn

↵
) ⇠= Z

en
↵⇤ (�

n

↵
) = en

↵

By commutativity of the diagram,

dn (e
n

↵
) = qn�1'

n

↵⇤ [@�
n

↵
] .
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Suppose dn (en↵) =
P

d↵�e
n�1
�

, we need to compute d↵�.

Finally p⇤
�
: eHn�1 (Xn�1/Xn�2) �! Hn

�
Sn�1
�

�
is given by p⇤

�

�P
d↵�en�1

�

�
= d↵�, in

particular

p⇤
�

�
en�1
�

�
=

(
1 if � = �

0 otherwise.

We have

Sn�1
�

i�
,�! Xn�1/Xn�2

p��! Sn�1
�

If � 6= �, p� � i� is a constant map where as

p� � i� is Id
S
n�1
�

.

If �n�1
�

is a generator for eHn�1

�
Sn�1
�

�
then

i�⇤
�
�n�1
�

�
= en�1

�

p�⇤
�
en�1
�

�
= p�⇤ � i�⇤

�
�n�1
�

�
=

⇢
0 if � 6= �
1 if � = �

p�⇤
�P

d↵�en�1
�

�
= d↵� = �↵�⇤ ([@�

n

↵
]) = deg (�↵�),

Example 2.64 (Torus T2 = S1 ⇥ S1).

.

The chain complex C.CW (T ) is

0 ! Z d2=0���! Z2 d1=0���! Z �! 0

d1 = 0 clearly because there is just 1, 0 -cell.

d1(a) = v � v = 0, d1(b) = v � v = 0.

We claim that d2 is also 0.

d2(F ) = dFaa+ dFbb, where
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dFa is the degree of the map @D2
F
�! a [ b �! a which is homotopic to the constant

map because @D2
F
maps to aba�1b�1, hence dFa = 0. Similarly dFb = 0. Hence,

Hk(T ) ⇠=

8
><

>:

Z, k = 0, 2

Z� Z, k = 1

0, k > 2.

Example 2.65 (Surface of genus g,Mg).

Mg has a CW structure with one 2-cell, 2g, 1-cells and one 0 -cell. So the cellular chain

complex is

0 ! Z d2�! Z2g d1�! Z ! 0.

Similar to the Example 2.64 d1 and d2 are both 0 maps. Hence

Hk (Mg) ⇠=

8
><

>:

Z, k = 0, 2

Z2g, k = 1

0, k > 2.

Example 2.66 (RP n).

Recall that there is a quotient map.

Dn Sn

Dn/{x ⇠ �x|x 2 @D} RP n = Sn/{x ⇠ �x}

'
n

⇠=

Hence RP n is obtained from RP n�1 by attaching an n-cell by the attaching map which

is the quotient map

'n�1 : Sn�1 �! RP n�1.
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Thus RP n has a CW structure with one k-cell for each k 2 {0, . . . , n}. Hence the cellular

chain complex is

0 ! Z dn�! Z ! . . .
d1�! Z ! 0.

q : Sk�1 '
k�1

���! RP k�1 ! RP k�1/RP k�2 ⇠= Sk�1

Let U and V be the two components of Sk�1 � Sk�2 If x0 = RP k�2/RP k�2 2 Sk�1, then

we have homeomorphisms

q : U �! Sk�1 � {x0} and q : V �! Sk�1 � {x0} .

If y 2 Sk�1 � {x0} then q�1(y) = {±x} where x 2 U. �Id takes U to V ,

U Sk�1 � {x0}

V

�Id

q

q
�1

q|
U
= q|

V
� (�Id)

deg q = deg q|
x
+ deg q|�x

= deg(Id) + deg(�Id)

= 1 + (�1)k =

(
2 if k even

0 if k odd.

For even n, the cellular chain complex is

0 ! Z 2�! Z 0�! Z 2�! . . .
2�! Z 0�! Z ! 0

and

Hk (RP n) ⇠=

8
><

>:

Z, k = 0

Z/2, 0 < k < n, k odd

0 otherwise.

For odd n, the chain complex is

0 ! Z 0�! Z 2�! . . .
2�! Z 0�! Z ! 0

Hk (RP n) ⇠=

8
><

>:

Z k = 0, n

Z/2, 0 < k < n, k odd

0, otherwise.

Definition 2.67.

A continuous map f : (X,A) ! (Y,B) between CW -pairs is called cellular if f
�
X(n)

�
✓

Y (n) for all n where X(n) and Y (n) denote the n-skeletons of X and Y respectively.
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Theorem 2.68 (Cellular Approximation Theorem).

Let X and Y be CW complexes, and let A be a subcomplex of X. If f : X ! Y is a

continuous map such that f |
A
is cellular, then f is homotopic rel A to a cellular map

g : X ! Y .

Proof. Refer to Topology and Geometry by Bredon.

Theorem 2.69.

If g : (X,A) ! (Y,B) is a cellular map of CW -pairs, then there is an induced map of

CW -chain complexes

g⇤ : C⇤(X,A) ! C⇤(Y,B)

given by

g⇤(�) =
X

⌧

deg (g⌧,�) ⌧

where g⌧,� : Sn

�
! Sn

⌧
is defined as the composite g⌧,� = p̄⌧ � ḡ � f̄� from the following

commutative diagram.

Dn

�
X(n) Y (n) Sn

⌧

Sn

�
X(n)/X(n�1) Y (n)/Y (n�1) Sn

⌧

=

p⌧f� g

f� g p⌧

Proof. Refer to Topology and Geometry by Bredon.
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Chapter 3

De-Rham Cohomology
3.1 de Rham Cohomology

Let’s delve into the concept of de Rham cohomology in a smooth manifold M , possibly

with boundary. We’ll start by defining some key terms and then explore the construction

of de Rham cohomology groups.

In the realm of di↵erential forms on M , the exterior derivative d : ⌦p(M) ! ⌦p+1(M)

plays a central role. Here, ⌦p(M) represents the set of all p-forms on M . This operator,

being linear, naturally gives rise to two important subspaces: the kernel and the image.

Let’s introduce these subspaces formally:

Zp(M) = Ker
�
d : ⌦p(M) ! ⌦p+1(M)

�
= { closed p-forms on M},

Bp(M) = Im
�
d : ⌦p�1(M) ! ⌦p(M)

�
= { exact p-forms on M}

Here, Zp(M) denotes the space of closed p-forms, those that are annihilated by the

exterior derivative, while Bp(M) represents the space of exact p-forms, those that are in

the image of the exterior derivative.

It’s essential to note that we extend our conventions to account for boundary cases.

We also establish conventions for the cases where p < 0 or p > n = dimM . In these

instances, ⌦p(M) is considered the zero vector space. Consequently, we have B0(M) = 0

and Zn(M) = ⌦n(M).

The inclusion of exact forms within the set of closed forms implies that Bp(M) ✓ Zp(M).

This observation leads us to define the de Rham cohomology group in degree p (or

the pth de Rham group) of M as the quotient vector space:

46



3 De-Rham Cohomology

Hp

dR(M) =
Zp(M)

Bp(M)

This group, formed as the quotient of closed forms modulo exact forms, is a real vector

space and, therefore, a group under vector addition. Although a more precise term

might be ”de Rham cohomology space,” the traditional terminology aligns with other

cohomology theories, which typically yield groups.

It’s worth highlighting that Hp

dR(M) = 0 for p < 0 or p > dimM , as ⌦p(M) = 0 in those

cases. For 0  p  n, Hp

dR(M) = 0 if and only if every closed p-form on M is exact.

This condition reflects a fundamental aspect of the cohomology group’s structure and its

relationship with the underlying manifold M .

Proposition 3.1 (Cohomology of Disjoint Unions).

Let {Mj} be a countable collection of smooth n-manifolds with or without boundary, and

let M =
`

j
Mj. For each p, the inclusion maps ◆j : Mj ,! M induce an isomorphism

from Hp

dR(M) to the direct product space
Q

j
Hp

dR (Mj).

Proof. Refer to Chapter 17 of Introduction to Smooth Manifolds by Lee.

Certainly! Let’s elaborate on the setup for the Mayer-Vietoris Theorem for de Rham

Cohomology.

Consider a smooth manifold M , which may or may not have a boundary. Let U and V

be open subsets of M such that M = U [ V . In this setup, we have four inclusion maps:

U

U \ V M

V

i

j

k

l

These inclusions induce pullback maps on di↵erential forms:
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3 De-Rham Cohomology

⌦p(U)

⌦p(M) ⌦p(U \ V )

⌦p(V )

k
⇤

l
⇤

i
⇤

j
⇤

These pullback maps, essentially restrictions, are denoted as k⇤, l⇤, i⇤, and j⇤. For in-

stance, k⇤! = !|
U
. Now, let’s construct a sequence of maps as follows:

0 ! ⌦p(M)
k
⇤�l

⇤
���! ⌦p(U)� ⌦p(V )

i
⇤�j

⇤
���! ⌦p(U \ V ) ! 0

Here,

(k⇤ � l⇤)! = (k⇤!, l⇤!)

(i⇤ � j⇤)(!, ⌘) = i⇤! � j⇤⌘

Since pullbacks commute with the exterior derivative d, these maps extend to linear maps

on the corresponding de Rham cohomology groups.

Now, in the statement of the Mayer-Vietoris theorem, we will adopt standard algebraic

terminology. Suppose we have a sequence of vector spaces and linear maps:

· · · ! V p�1 Fp�1���! V p
Fp�! V p+1 Fp+1���! V p+2 ! · · ·

This sequence is exact if the image of each map is equal to the kernel of the next. In

other words, for each p,

ImFp�1 = KerFp

This exactness condition is crucial for the Mayer-Vietoris theorem.

Theorem 3.2 (Mayer-Vietoris for de Rham Cohomology).

Let M be a smooth manifold with or without boundary, and let U, V be open subsets
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3 De-Rham Cohomology

of M whose union is M . For each p, there is a linear map � : Hp

dR(U \ V ) ! Hp+1
dR (M)

such that the following sequence, called the Mayer-Vietoris sequence for the open cover

{U, V }, is exact:

· · · ��! Hp

dR(M)
k
⇤�l

⇤
���! Hp

dR(U)�Hp

dR(V )
i
⇤�j

⇤
���! Hp

dR(U \ V )
��! Hp+1

dR (M)
k
⇤�l

⇤
���! · · · .

Proof. Refer to Chapter 17 of Introduction to Smooth Manifolds by Lee.

Corollary 3.3.

The connecting homomorphism in the Mayer-Vietoris sequence, � : Hp

dR(U \ V ) !

Hp+1
dR (M), is defined as follows. For each ! 2 Zp(U\V ), there are p-forms ⌘ 2 ⌦p(U) and

⌘0 2 ⌦p(V ) such that ! = ⌘|
U\V � ⌘0|

U\V ; and then �[!] = [�], where � is the (p+1)-form

on M that is equal to d⌘ on U and to d⌘0 on V . If {', } is a smooth partition of unity

subordinate to {U, V }, we can take ⌘ =  ! and ⌘0 = �'!, both extended by zero outside

the supports of  and '.

Proof. Refer to Chapter 17 of Introduction to Smooth Manifolds by Lee.

Certainly! Let’s delve into the concepts of Singular Cohomology and its properties in a

more elaborate manner.

3.2 Singular Cohomology

Before diving into Singular Cohomology, it’s imperative to refresh our understanding of

Singular Homology. Here are some key points to recall:

• For a one-point space {q}, the singular homology group H0({q}) is the infinite cyclic

group generated by the homology class of the unique singular 0-simplex mapping

�0 to q. Additionally, Hp({q}) = 0 for all p 6= 0.

• Given a collection of topological spaces {Mj} and their disjoint union M =
F

j
Mj,

the inclusion maps ◆j : Mj ,! M induce an isomorphism
L

j
Hp (Mj) ⇠= Hp(M).

• Homotopy equivalent spaces exhibit isomorphic singular homology groups.
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Definition of Singular Cohomology:- Now, let’s introduce Singular Cohomology. In

addition to singular homology groups, which are based on the study of cycles and bound-

aries, Singular Cohomology introduces a sequence of groups Hp(M ;G) for any topological

space M and abelian group G.

We’ll focus on the case where G = R. In this scenario, Hp(M ;R) is shown to be a real

vector space naturally isomorphic to Hom (Hp(M),R). This means that each element of

Hp(M ;R) corresponds to a homomorphism from the singular homology group Hp(M) to

R.

Functorial Properties and Universal Coe�cient Theorem:- Any continuous map

F : M ! N induces a linear map F ⇤ : Hp(N ;R) ! Hp(M ;R). This map is defined by

applying � (F⇤[c]) for each � 2 Hp(N ;R) and each singular p-chain c in M .

These properties are functorial, meaning they preserve the structure under mappings. For

example, (G�F )⇤ = F ⇤ �G⇤ and (IdM)⇤ = IdHp(M ;R). Consequently, singular cohomology

with coe�cients in R defines a contravariant functor from the topological category to the

category of real vector spaces and linear maps.

The Universal Coe�cient Theorem demonstrates how singular cohomology groups with

coe�cients in any group can be obtained from the singular homology groups. This

implies that cohomology groups don’t o↵er new information beyond what’s encoded in the

homology groups, but they present it in a more convenient manner for certain purposes.

Now, let’s explore some properties of singular cohomology, building upon its foundational

concepts and functorial properties.

Proposition 3.4 (Properties of Singular Cohomology).

(a) For any one-point space {q}, Hp({q};R) is trivial except when p = 0, in which case

it is 1-dimensional.

(b) If {Mj} is any collection of topological spaces and M =
`

j
Mj, then the inclusion

maps ◆j : Mj ,! M induce an isomorphism from Hp(M ;R) to
Q

j
Hp (Mj;R).

(c) Homotopy equivalent spaces have isomorphic singular cohomology groups.
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Proof. From the above mentioned properties of Singular Homology and from the defini-

tion the proof will follow.

Theorem 3.5 (Mayer-Vietoris for Singular Cohomology).

Suppose M,U , and V satisfy the hypotheses of Theorem 2.49 where U, V ✓̊M (M) is a

smooth manifold. The following sequence is exact:

· · · @
⇤

�! Hp(M ;R) k
⇤�l

⇤
���! Hp(U ;R)�Hp(V ;R) i

⇤�j
⇤

���! Hp(U \ V ;R) @
⇤

�! Hp+1(M ;R) k
⇤�l

⇤
���! · · · ,

where the maps k⇤ � l⇤ and i⇤ � j⇤ are defined as in Theorem 3.2, and @⇤ is defined by

@⇤(�) = � � @⇤, with @⇤ as in Theorem 3.2.

Let’s now define Smooth Singular Cohomology.

To bridge the gap between singular and de Rham cohomology groups, we will utilize the

concept of integrating di↵erential forms over singular chains. Specifically, given a singular

p-simplex � in a manifold M and a p-form ! on M , our aim is to pull ! back via � and

integrate the resulting form over �p. However, there is an immediate hurdle with this

approach: forms can only be pulled back by smooth maps, whereas singular simplices are

generally only continuous. (In fact, since the formula for the pullback only involves first

derivatives of the map, considering C1 maps would su�ce, but purely continuous maps

will not su�ce at all.) Now, we will attempt to overcome this obstacle by demonstrating

that singular homology can be just as e↵ectively computed using smooth simplices.

Let M be a smooth manifold. A cornerstone of manifold theory is the concept of a

smooth p-simplex in M . Formally, a smooth p-simplex is a smooth map � : �p ! M ,

where �p denotes the standard p-simplex in Rp+1, such that this map extends smoothly

to a neighborhood of each point in �p. In simpler terms, it’s a smooth way of mapping

the standard geometric shape of a simplex into our manifold M .

Now, considering the collection of all such smooth simplices, we form a subgroup of the

singular chain group Cp(M), denoted by C1
p
(M), representing smooth chains in degree p.
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These smooth chains are essentially finite formal linear combinations of smooth simplices,

akin to how we’d sum up vectors with coe�cients.

Since the boundary of a smooth simplex is itself a smooth chain, we can naturally define

the boundary operator @ on C1
p
(M), which maps a smooth p-simplex to its boundary

(p� 1)-chains in a smooth manner. Consequently, we arrive at the definition of the pth

smooth singular homology group H1
p
(M) of M as the quotient group:

H1
p
(M) =

Ker(@ : C1
p
(M) ! C1

p�1(M))

Im(@ : C1
p+1(M) ! C1

p
(M))

Here, the kernel of @ represents smooth chains that form cycles, meaning they have no

boundary, while the image of @ represents boundaries of smooth chains, indicating the

closure of higher-dimensional chains. The quotient group captures the equivalence classes

of smooth chains modulo the boundaries, providing insight into the topological structure

of the manifold M at the p-dimensional level, but with the added smoothness condition.

The inclusion map ◆ : C1
p
(M) ,! Cp(M) commutes with the boundary operator, thus

inducing a map on homology: ◆⇤ : H1
p
(M) ! Hp(M), given by ◆⇤[c] = [◆(c)].

Theorem 3.6 (Smooth Singular vs. Singular Homology).

For any smooth manifold M , the map ◆⇤ : H1
p
(M) ! Hp(M) induced by inclusion is an

isomorphism.

Proof. Refer to Chapter 18 of Introduction to Smooth Manifolds by Lee.

Lemma 3.7 (The Five Lemma).
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Consider the following commutative diagram of modules and linear maps:

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

f4

↵3

f3f2f1

↵1 ↵2

�1 �2 �3

↵4

�4

f5

If the horizontal rows are exact and f1, f2, f4, and f5 are isomorphisms, then f3 is also an

isomorphism.

Proof. Refer to Algebraic Topology by Hatcher.

3.3 Stokes’s Theorem & de Rham Theorem

Let M be a smooth manifold, ! a closed p-form on M , and � a smooth p-simplex in M .

The notion of integrating ! over � is introduced as follows:

Z

�

! =

Z

�p

�⇤!

Here, �p represents a smooth p-submanifold with corners embedded in Rp, inheriting the

orientation of Rp. Alternatively, we can view �p as a domain of integration within Rp.

This integral concept aligns neatly with the notion of line integrals when p = 1, where it

corresponds to integrating ! along a smooth curve segment � : [0, 1] ! M .

Now, extending this notion to a smooth p-chain c =
P

k

i=1 ci�i, we define the integral of

! over c as: Z

c

! =
kX

i=1

ci

Z

�i

!

Moving forward, assuming familiarity with the proof of Stokes’s Theorem, we aim to

establish the de Rham Theorem by stating its essence.

Theorem 3.8 (Stokes’s Theorem for Chains).

If c is a smooth p-chain in a smooth manifold M , and ! is a smooth ( p � 1 )-form on

M , then Z

@c

! =

Z

c

d!
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Proof. Refer to Chapter 18 of Introduction to Smooth Manifolds by Lee.

Utilizing this theorem, we establish a significant linear mapping denoted as ` : Hp

dR(M) !

Hp(M ;R), often termed the de Rham homomorphism. Its operation is delineated as

follows: Given any [!] 2 Hp

dR(M) and [c] 2 Hp(M) ⇠= H1
p
(M), we define

`[!][c] =

Z

c̃

!

where c̃ represents any smooth p-cycle that embodies the homology class [c]. The coher-

ence of this definition stems from the theorem’s assurance that if c̃ and c̃0 are smooth

cycles representing identical homology classes, then ec � ec0 = @eb holds true for a smooth

(p+ 1)-chain b̃. Consequently,
Z

c̃

! �
Z

c̃0
! =

Z

@b̃

! =

Z

b̃

d! = 0

Moreover, if ! = d⌘ is exact, then
Z

c̃

! =

Z

c̃

d⌘ =

Z

@c̃

⌘ = 0

(It’s worth noting that @ec = 0 since c̃ denotes a homology class, and d! = 0 as !

signifies a cohomology class.) Evidently, `[!] [c+ c0] = `[!][c]+ `[!] [c0], and the resultant

homomorphism `[!] : Hp(M) ! R exhibits linearity with respect to !. Hence, `[!]

emerges as a well-defined member of Hom (Hp(M),R) ⇠= Hp(M ;R).

Theorem 3.9 (Naturality of the de Rham homomorphism).

For a smooth manifold M and nonnegative integer p, let ` : Hp

dR(M) ! Hp(M ;R) denote

the de Rham homomorphism.

(a) If F : M ! N is a smooth map, then the following diagram commutes:

Hp

dR(N) Hp

dR(M)

Hp(N ;R) Hp(M ;R)

`

F
⇤

`

F
⇤

(b) If M is a smooth manifold and U, V are open subsets of M whose union is M , then

the following diagram commutes:

Hp�1
dR (U \ V ) Hp

dR(M)

Hp�1(U \ V ;R) Hp(M ;R)

`

�

`

@
⇤
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where � and @⇤ are the connecting homomorphisms of the Mayer-Vietoris sequences for

de Rham and singular cohomology, respectively.

Proof. Starting with the given definitions, let’s consider a smooth p-simplex � in M and

a smooth p-form ! on N . We have the integral equation:

Z

�

F ⇤! =

Z

�p

�⇤F ⇤! =

Z

�p

(F � �)⇤! =

Z

F��
!.

This equation suggests that:

1. Integrating the pullback of ! along � is equivalent to integrating the pullback of !

along the composition of F and �.

2. The integral of ! over F � � yields the same result.

This leads to the conclusion:

`(F ⇤[!])[�] = `[!][F � �] = `[!](F⇤[�]) = F ⇤(`[!])[�],

which establishes property (a).

Now, let’s focus on property (b). For the diagram to commute, we need:

`(�[!])[e] = (@⇤`[!])[e]

for any [!] 2 Hp�1
dR (U \ V ) and any [e] 2 Hp(M). With the identification of Hp(M ;R) as

Hom (Hp(M),R), we rewrite this as:
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`(�[!])[e] = `([!])(@⇤[e]).

Expanding further, if � represents �[!] and c represents @⇤[e], we aim to show
R
e
� =

R
c
!.

According to Theorem 2.49, we can express c as @f , where f and f 0 are smooth p-chains

in U and V respectively, representing the same homology class as e.

Similarly, by Corollary 3.3, we can select ⌘ 2 ⌦p�1(U) and ⌘0 2 ⌦p�1(V ) such that

! = ⌘|
U\V � ⌘0|

U\V . Then, � can be defined as the p-form equal to d⌘ on U and d⌘0 on

V .

Considering @f + @f 0 = @e = 0 and d⌘|
U\V � d⌘0|

U\V = d! = 0, we arrive at:

Z

c

! =

Z

@f

! =

Z

@f

⌘ �
Z

@f

⌘0

=

Z

@f

⌘ +

Z

@f 0
⌘0 =

Z

f

d⌘ +

Z

f 0
d⌘0

=

Z

f

� +

Z

f 0
� =

Z

e

�.

Thus, the diagram commutes as required.

To establish the de Rham theorem, an additional definition and property of a manifold

are indispensable.

Firstly, we introduce the concept of an exhaustion function for a topological space M .

An exhaustion function, denoted by f : M ! R, is a continuous function possessing the

crucial property that the preimage of each closed interval (�1, c] under f , denoted as

f�1((�1, c]), is compact for every c 2 R. This property is fundamental as it ensures that

the subsets f�1((�1, n]), where n varies over the positive integers, serve as an exhaustion

of M by compact sets. Consequently, an exhaustion function provides a continuous

analogue of an exhaustion by compact sets. For instance, consider the functions f :

Rn ! R and g : Bn ! R defined as:

f(x) = |x|2, g(x) =
1

1� |x|2
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These functions exemplify smooth exhaustion functions. Notably, for compact manifolds,

any continuous real-valued function su�ces as an exhaustion function, rendering the

notion particularly relevant for noncompact manifolds.

Proposition 3.10 (Existence of Smooth Exhaustion Functions).

Every smooth manifold with or without boundary admits a smooth positive exhaustion

function.

Proof. Consider a smooth manifold M , which may or may not have a boundary. Let’s

denote {Vj}1j=1 as any countable open cover of M by precompact open subsets, and { j}

as a smooth partition of unity subordinate to this cover.

Now, we define a function f belonging to the set of smooth functions on M as follows:

f(p) =
1X

j=1

j j(p)

Firstly, to establish the smoothness of f , note that for any point p in M , only finitely

many terms in the summation are non-zero in any given neighborhood around p. Hence,

f is indeed smooth.

Furthermore, f is positive. This is evident since f(p) is greater than or equal to
P

j
 j(p) =

1, as each  j(p) is non-negative, ensuring the positivity of f .

Now, let’s examine why f is an exhaustion function. Take any arbitrary real number c,

and select a positive integer N greater than c. If a point p does not belong to the closure

of the union of the first N sets in the cover, i.e., p /2
S

N

j=1 V̄j, then for each j from 1 to

N ,  j(p) = 0. Consequently,

f(p) =
1X

j=N+1

j j(p) �
1X

j=N+1

N j(p) = N
1X

j=1

 j(p) = N > c

This inequality holds as  j(p) is non-negative, and each term in the summation is mul-

tiplied by j, which is always greater than or equal to N .
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Conversely, if f(p)  c, then p must belong to the closure of the union of the first N sets

in the cover, i.e., p 2
S

N

j=1 V̄j. Hence, f�1((�1, c]) is a closed subset of the compact set
S

N

j=1 V̄j and is therefore compact. This completes the demonstration that f is indeed an

exhaustion function on M .

Theorem 3.11 (de Rham Theorem).

For every smooth manifold M and nonnegative integer p, the de Rham homomorphism

` : Hp

dR(M) ! Hp(M ;R) is an isomorphism.

Sketch. We will prove this in six steps. Before that we need to define some terminology.

de Rham Manifold:-A smooth manifold M is a de Rham manifold if the homomor-

phism ` : Hp

dR(M) ! Hp(M ;R) is an isomorphism for each p.

de Rham Cover:-If M is any smooth manifold, an open cover {Ui} of M is a de Rham

cover if each subset Ui is a de Rham manifold, and every finite intersection Ui1 \ · · ·\Uik

is also de Rham.

de Rham Basis:-A de Rham cover that is also a basis for the topology of M is called a

de Rham basis for M .

Now as ` commutes with the cohomology maps induced by smooth maps so any manifold

di↵eomorphic to a de Rham Manifold is also de Rham [Using 3.9 (a)].

Step 1:- By Proposition 3.1 and Proposition 3.4 (b) both de Rham and Singular Coho-

mology the inclusions ◆j : Mj ,!
`

j
Mj induce isomorphisms between the cohomology

groups of the disjoint union and the direct product of the cohomology groups of the man-

ifolds Mj. By Theorem 3.9, ` commutes with these isomorphisms.

Step 2:- We will try to prove every convex subset of Rn is de Rham. Now if U✓̊Rn then

it is homotopy equivalent to a one-point space.

So by poincare lemma Hp

dR
(U) ⇠= 0 when p 6= 0 & also Hp(U) ⇠= 0 when p 6= 0 [we

know this by properties of singular homology]

Now for p = 0 case H0
dR
(U) is 1-dim sphere consisting of constant functions & H0(U ;R) =

Hm (H0(U),R) is also 1-dim because. H0(U) is generated by any 0 -simplex.

Now if � : �0 ! M is a singular 0� simplex, � is smooth as 0-manifold is smooth and f
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is the constant function equal to 1 , then

`[f ][�] =

Z

�0

�⇤f = (f � �)(0) = 1

so ` : H0
dR
(U) �! H0(U,R) is not the zero map so ` is an isomorphism.

Step 3:-Now our goal is to prove If M has a finite de Rham Cover then M is de Rham.

Suppose M = [k

i=1Ui and Ui, \
i2A✓[k]

Ui is de Rham. We will use induction on k to prove

this now for two sets we will try to show this first this way induction will follow.

Now we will write the Mayer- Vietoris LES of de Rham Cohomology and Singular Co-

homology sequentially in two lines and then we will get the commutative diagram by

Theorem 3.9.

Assuming that the claim holds true for smooth manifolds that admit a de Rham cover

with at least k � 2 sets. Now, consider a de Rham cover {U1, . . . , Uk+1} of the manifold

M . We define two sets: U = U1 [ · · · [ Uk and V = Uk+1. The hypothesis assures us

that both U and V are de Rham sets. Additionally, the intersection U \ V inherits this

property since it can be covered by k sets, namely {U1 \ Uk+1, . . . , Uk \ Uk+1}, each of

which is de Rham.

With these considerations, we conclude that M can be expressed as the union of U and

V , i.e., M = U [ V . By the argument presented above, M is also de Rham. Step 4:-

This step aims to establish the assertion that if a manifold M has a de Rham basis, then

M itself is de Rham.

Let’s delve into the argument:

Firstly, consider {U↵} as a de Rham basis for M . An ”exhaustion function” f : M ! R

is introduced, satisfying the conditions specified in Proposition 3.10.

Now, for every integer m, we define subsets Am and A0
m
of M as follows:
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Am = {q 2 M : m  f(q)  m+ 1},

A0
m
=

⇢
q 2 M : m� 1

2
< f(q) < m+

3

2

�
.

Next, it’s observed that {Uj|q 2 Uj, Uj ✓ A0
m
} forms an open cover of Am. Since Am is

compact and f is an exhaustion function, this cover admits a finite subcover. Denote the

union of these finite sets as Bm = [k

i=1Ui.

Utilizing the argument from Step 3, it’s noted that Bm is de Rham, and moreover,

Bm ✓ A0
m
.

Here’s a visual representation of the setup:

We can infer that Bm can only intersect non-trivially with Bm̃ when m̃ = m � 1,m, or

m+ 1.

With this insight, we define:

U =
[

m odd

Bm, V =
[

m even

Bm

Both U and V are disjoint unions of de Rham manifolds, hence they are themselves de

Rham by Step 1. Furthermore, U \ V is de Rham since it’s the disjoint union of sets

Bm \ Bm+1 for m 2 Z. Each of these sets has a finite de Rham cover, as illustrated,

establishing that M = U [ V is de Rham by the reasoning provided in Step 3.

Step 5:- This step asserts that every open subset of Rn is de Rham.

Consider an open subset U ✓ Rn. Such a subset possesses a basis comprising Euclidean

balls. Since each ball is convex, it is de Rham. Moreover, any finite intersection of balls
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3 De-Rham Cohomology

remains convex, ensuring that these intersections are also de Rham. Consequently, U has

a de Rham basis, making it de Rham by the argument presented in Step 4.

Step 6:- This step concludes that every smooth manifold is de Rham.

Any smooth manifold can be endowed with a basis consisting of smooth coordinate do-

mains. Given that each smooth coordinate domain is di↵eomorphic to an open subset

of Rn, and considering their finite intersections, this constitutes a de Rham basis. Thus,

the claim follows from Step 4.
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Chapter 4

Basic Morse Theory
4.1 Morse functions

Let’s consider M to be a smooth manifold of dimension m. If �(x) = (x1, ..., xm) is a

local coordinate system near critical point p, then @

@x1
|p,..., @

@xm
|p is a basis for TpM .

Definition 4.1 (Critical point).

A critical point of a smooth function f : M �! R is a point p at which the di↵erential

dfp : TpM �! Tf(p)R ⇡ R

vanishes, i.e., all the partial derivatives. @(f���1)
@x1

|p,...,@(f��
�1)

@xm
|p vanishes.

***dfp doesn’t depend on the basis, so this is well defined.

Definition 4.2 (Hessian).

The Hessian of f at p is the bilinear map:

Hp(f) =: TpM ⇥ TpM �! Hp(f)(V,W ) = Vp(W̃ (f))

W̃ is a vector field extension of W 2 TpM locally

The matrix of Hp(f) with respect to this basis is expressed by the m⇥m matrix of second

partial derivatives:

Hp(f) =

✓
@2(f � ��1)

@xi@xj

�(p)

◆

*** Using a suitable bump function defined inside a local chart of p 2 M , we can show

that 9 a vector field W̃ for W 2 TpM such that W̃ (p) = W .
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Proposition 4.3.

Hessian is a well-defined, bilinear, and symmetric map

Proof. First, we will try to show that it is symmetric.

Hp(f)(V,W )�Hp(f)(W,V ) = Vp(W̃ (f))�Wp(Ṽ (f)) = [Ṽ , W̃ ]p = dfp [̇Ṽ , W̃ ] = 0

The last term is 0 because p is a critical point of f .So, it is symmetric. Looking again at

the Definition 4.2,

Hp(f)(V,W ) = Vp(W̃ (f))

it is obvious that this does not depend on the extension Ṽ that we choose for V , as the

expression only depends on W̃ (p) = W regardless of the extension. As we just proved,

Hp(f)(V,W ) = Hp(f)(W,V ), so, applying a similar argument, the Hessian does not

depend on the chosen extension for W . This shows that the Hessian is well-defined.

Finally, the Hessian is bilinear because

Hp(f)(↵V + �U,W ) = (↵V + �U)p(W̃ (f)) = ↵Vp(W̃ (f)) + �Up(W̃ (f))

So, Hp(f)(↵V + �U,W ) = ↵Hp(f)(V,W ) + �Hp(f)(U,W )

Definition 4.4.

Let p be a critical point of a smooth function f : M �! R

1. The number of negative eigenvalues of Hp(f) is called the index denoted by �p.

2. The critical point p is said to be non-degenerate if and only if the determinant

of Hp(f) is non-zero.

3. AMorse function on a smooth manifold is a smooth function whose critical points

are all non-degenerate.

***The nondegeneracy and the index of a function f at a critical point p does not depend

on the choice of local coordinates. We can see this by applying Sylvester’s law, which
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4 Basic Morse Theory

says that the number of negative eigenvalues of the Hessian is independent of how it is

diagonalized. Since diagonalization of a matrix corresponds to changing the basis of the

given vector space so that the basis vectors are the eigenvectors of the matrix, this means

that. The number of negative eigenvalues of the Hessian is invariant under coordinate

transformation. If we change the basis then Hessian H 

p
with respect to new basis will

be J tH�

p
J where J is a symmetric matrix, i.e. Jacobian of  � ��1

We can see this in a di↵erent way than above.

Proposition 4.5.

When p is a critical point for f : M �! R, the Hessian at p is independent of the

coordinate chart.

Proof. Now suppose we had a di↵erent coordinate chart around p, (V, : V �! Rn), with

 (p) = 0. Write  as (y1, . . . , yn). Then Q =  � ��1: Rn �! Rn is a di↵eomorphism,

and dQ (ei) =
P

n

j=1
@xi
@yj

ej (where e1, . . . , en is the standard basis in Rn ), then the Hessian

defined for this new coordinate chart is

Hp(f)(v, w) =
nX

i,j=1

@

@yi

✓
@

@yj
(f)

◆
viwj

=
nX

i,j=1

@xk

@yi

@

@xk

✓
@xm

@yj

@

@xm

(f)

◆
viwj

=
nX

i,j=1

@xk

@yi

@

@xk

✓
@xm

@yj

◆
@

@xm

(f)viwj +
nX

i,j=1

@xk

@yi

@xm

@yj

@2

@xk@xm

(f)viwj

=
nX

i,j=1

@xk

@yi

@

@xk

✓
@xm

@yj

◆
@

@xm

(f)viwj +
nX

i,j=1

@2

@xk@xm

(f)dQ(v)kdQ(w)m

Now note that the first term is zero when p is a critical point, so the Hessian is well-defined

as a bilinear form on TpM .

4.2 Morse Lemma

Now we will try to see the Morse Lemma, which is a gateway theorem of Morse Theory

and allows us to directly analyze the neighborhood of a non-degenerate critical point

on a manifold in a valuable and intuitive manner, akin to the slopes around a hole in
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m-dimensional space.

Proposition 4.6.

Let f : U ! R be a C1 function on a convex neighborhood U of 0 2 Rm such that

f(0) = 0. Then there exist functions gi with gi(0) = @f

@xi
(0) and f (x1, . . . , xm) =

P
m

i=1 xigi (x1, . . . , xm).

Proof. We have,
d

dt
f(tx) =

mX

i=1

xi

@f

@xi

(txi)

Hence, setting

gi (x1, . . . , xm) =

Z 1

0

@f

@xi

(tx)dt

we get

f(x) = f(x)� f(0) =

Z 1

0

d

dt
f(tx)dt

=

Z 1

0

mX

i=1

xi

@f

@xi

(tx)dt

=
mX

i=1

xigi (x1, . . . , xm)

and gi(0) =
R 1

0
@f

@xi
(0)dt = @f

@xi
(0).

Remark 4.7.

If gi(0) = 0 then we can apply the Proposition 4.6 to gi, and we have

gi (x1, . . . , xm) =
mX

j=1

xjhij (x1, . . . , xm)

where the hij are C1 functions with hij(0) =
@gi

@xj
(0) = @

2
f

@xi@xj
(0). We have

f (x1, . . . , xm) =
mX

i=1

xi

 
mX

j=1

xjhij (x1, . . . , xm)

!

=
X

i,j

xixjhij (x1, . . . , xm)

= txSxx

where x =

0

B@
x1
...
xm

1

CA and Sx = (sij(x)) is the symmetric matrix with entries

sij(x) =
1

2
(hij(x) + hji(x)) .
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4 Basic Morse Theory

The expression f(x) = txSxx is a Taylor formula of order 2 for the function f : U ! R.

Proposition 4.8.

Let A = diag (a1, a2, . . . , am) be a diagonal matrix with diagonal entries aj = ±1 for all

j = 1, . . . ,m. Then there is a neighborhood U of A in the vector space of symmetric

matrices
�
⇡ Rm(m+1)/2

�
and a C1 map P : U ! GLm(R) that satisfies

1. P (A) = Im⇥m

2. If P (S) = Q, then QtSQ = A.

Proof. We embark on a proof by induction concerning the dimensionality denoted by m.

Initially, let’s consider the base case when m = 1, and we have A = (a) with a = ±1.

If S = (s) is any 1 ⇥ 1 matrix su�ciently close to A, it necessarily follows that s will

be non-zero with the same sign as a. To proceed, we define a transformation P (S) as

follows:

P (S) = Q =

 
1p
|s|

!

Now, let’s extend our consideration to the case where A is a diagonal matrix represented as

diag (a1, a2, . . . , am), with each aj being ±1 for j = 1, . . . ,m. For the induction step, let’s

assume the existence of a neighborhood U1 of A1 = diag (a2, . . . , am) in the vector space

of (m�1)⇥(m�1) symmetric matrices. Within this neighborhood, for every S1 2 U1, we

assert the existence of a smooth mapping P1 : U1 ! GLm�1(R). This mapping satisfies

P1 (A1) = I(m�1)⇥(m�1) and Qt

1S1Q1 = A1, where Q1 = P1 (S1) 2 GLm�1(R).

Now, let S = (sij) be a symmetricm⇥mmatrix su�ciently close toA = diag (a1, a2, . . . , am)

such that s11 is non-zero and has the same sign as a1. This matrix S defines a symmetric

bilinear form B : Rm ⇥ Rm ! R given by B(x, y) = xtSy for all x, y 2 Rm.

Following the initial step in the Gram-Schmidt orthogonalization process, we transition

from the standard basis e1, . . . , em of Rm to a new basis v1, . . . , vm defined as:
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v1 =
e1p
|s11|

and

vj = ej � B (v1, v1)B (v1, ej) v1 = ej �
s1j
s11

e1

for all j = 2, . . . ,m. The corresponding change of basis matrix C 2 GLm(R) is given by:

C =

0

BBB@

1p
|s11|

� s12
s11

· · · � s1m
s11

0
... I
0

1

CCCA

where I denotes the (m�1)⇥(m�1) identity matrix. This new basis satisfies B (v1, vj) =

0 for all j = 2, . . . ,m. Consequently, it can be observed that:

CtSC =

0

BBB@

a1 0 · · · 0
0
... S1

0

1

CCCA

where S1 is an (m � 1) ⇥ (m � 1) symmetric matrix that varies smoothly with S. If

S is su�ciently close to A, then S1 2 U1, enabling the application of the induction

hypothesis. This implies the existence of Q1 2 GLm�1(R), dependent smoothly on S1,

such that Qt

1S1Q1 = A1 = diag (a2, . . . , am).

Finally, define P (S) = Q = CR where:

R =

0

BBB@

1 0 · · · 0
0
... Q1

0

1

CCCA

This yields QtSQ = A, where P (S) = Q 2 GLm(R), depending smoothly on S, and

P (A) = Im⇥m.
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We will now use this proposition to prove the Morse lemma.

Theorem 4.9 (Morse Lemma).

Let p 2 M be a non-degenerate critical point of a smooth function f : M �! R of index

k. There exists a smooth chart � : U �! Rm, where U is an open neighborhood of p,

with �(p) = 0 such that if �(x) = (x1, ..., xm) for x 2 U , then

(f � ��1)(x1, ..., xm) = f(p)� x2
1 � x2

2 � ...� x2
k
+ x2

k+1 + x2
k+2 + ...+ x2

m

Proof. As this is a local property let the function f is defined on a convex neighborhood

of the origin 0 in Rm, with certain properties: p = 0, f(0) = 0, df(0) = 0, and the second

partial derivatives of f at 0 form a diagonal matrix A with entries ±1 on the diagonal.

Remark 4.7 provides an important insight: it expresses f(x) in terms of a symmetric

matrix Sx which varies smoothly with x, leading to f(x) = txSxx. This matrix Sx

satisfies S0 =
⇣

@
2
f

@xi@xj
(0)

⌘
= A.

This implies the existence of a neighborhood U0 of 0 such that for x in U0, Sx also lies in

a neighborhood U (as per Proposition 4.8). If we denote the mapping in Proposition 4.8

as P , then P (Sx) = Qx satisfies tQxSxQx = A, and Q0 = Im⇥m.

Now, consider the mapping � : U ! Rm defined by �(x) = Q�1
x
x. It’s evident that

�(0) = Q�1
0 (0) = 0, and for any v 2 Rm, we can analyze its derivative:

(d�0)(v) = lim
t!0

�(tv)� �(0)

t

= lim
t!0

�(tv)

v

= lim
t!0

Q�1
(tv)(tv)

t

= lim
t!0

tQ�1
(tv)(v)

t

= lim
t!0

Q�1
(tv)(v)

= Q�1
0 (v)

= v.

Thus, d�0 is the identity map, and by the Inverse Function Theorem, we conclude that

�, when restricted to a smaller neighborhood, serves as a coordinate system near 0.
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Now, let y = �(x) = Q�1
x
(x). We can manipulate f(x) using y:

mX

i=1

aiy
2
i
= tyAy

= t(Q�1
x
x)A(Q�1

x
x)

= txtQ�1
x
[tQxSxQx]Q

�1
x
x

= txSxx

= f(x).

Corollary 4.10.

The non-degenerate critical points of a Morse function f are isolated.

Proof. In some neighborhood around p, we have f(x) = f(p)�x2
1�· · ·�x2

�
+x2

�+1+· · ·+x2
n
,

Thus @f

@xi
= 2xi, and so @f

@xi
= 0 i↵ x1 = x2 = · · · = xn = 0.

Corollary 4.11.

On a closed (compact) manifold M , a Morse function has only finitely many critical

points.

Proof. Let there be an infinite number of critical points. Then, by Corollary 4.10, they

are all isolated so we can get {Ui}i2⇤. xi 2 Ui is critical point & Ui ⇢ M so from this

are can get {Ui}i2⇤[ {M\ [i2⇤ Ui} an infinite cover of M but M is compact so 9 a finite

cover {Ui}ni=1 of M so 9j 2 ⇤ such that i 6= j but xj 2 Ui but that is a contradiction.

4.3 Existence of Morse functions

Showing that there exist Morse functions on all manifolds is more challenging, but it is

true. We will try to show that on a compact manifold, there exist many (in a precise

sense) Morse functions (in fact, we will show this for any manifold that embeds as a

submanifold into Rn for some n).
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Proposition 4.12.

Let V ⇢ Rn be a submanifold. For almost every point p of Rn, the function

fp : V �! R

x 7�! kx� pk2

is a Morse function.

Proof. Firstly, consider a smooth function fp defined on a smooth manifold V and a point

p in this manifold. The di↵erential of fp at a point x in V is given by Txfp(⇠) = 2(x�p)·⇠,

where ⇠ is a tangent vector at x.

We establish that x is a critical point of fp if and only if the vector (x� p) is orthogonal

to the tangent space TxV at x.

To analyze this further, let’s introduce local coordinates (u1, . . . , ud) for the manifold V ,

such that x can be parametrized as x(u1, . . . , ud).

In these local coordinates, the partial derivatives of fp with respect to ui are given by

@fp

@ui
= 2(x� p) · @x

@ui
.

Similarly, the second partial derivatives of fp with respect to ui and uj are expressed as

@
2
fp

@ui@uj
= 2

⇣
@x

@uj
· @x

@ui
+ (x� p) · @

2
x

@ui@uj

⌘
.

Thus, we conclude that x is a non-degenerate critical point if and only if the vector x� p

is orthogonal to TxV , and the matrix formed by the second partial derivatives has full

rank d.

To establish that fp is a Morse function for almost all p, it is su�cient to demonstrate

that the p values not satisfying the aforementioned condition are the critical values of a

smooth map, and then invoke Sard’s theorem.

We then focus on the ”normal fiber bundle” of V in Rn, denoted by N , defined as the

set {(x, v) 2 V ⇥Rn | v ? TxV }. Additionally, consider the map E : N ! Rn defined

by E(x, v) = x+ v.

The proposition mentioned is a consequence of the following lemma
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Lemma 4.13.

The normal vector bundle N is a submanifold of V ⇥Rn. The point p = x+ v 2 Rn is a

critical value of E if and only if the matrix

@2f

@ui@uj

= 2

✓
@x

@uj

· @x
@ui

� v · @2x

@ui@uj

◆

is not invertible.

Proof. Since V is a submanifold of Rn, there is a (local) chart that sends Rn onto an

open subset of Rn, and Rd onto an open subset of V . The tangent map of the chart

sends the canonical basis of Rn onto a basis of vectors tangent to V followed by vectors

generating a complement. It then su�ces to make this basis orthonormal in order to

obtain n � d vectors v1, . . . , vn�d that at every point of V form an orthonormal basis of

(TxV )?. The map

(u1, . . . , ud, t1, . . . , tn�d) 7�!
 
x (u1, . . . , ud) ,

n�dX

i=1

tivi (u1, . . . , un�d)

!

is then a local parametrization of N , which is therefore a submanifold of V ⇥ Rn. In

these coordinates, the partial derivatives of E are

(
@E

@ui
= @x

@ui
+
P

n�d

k=1 tk
@vk
@ui

@E

@tj
= vj

Computing the inner products of these n vectors with the n independent vectors

@x

@u1
, . . . ,

@x

@ud

, v1, . . . , vn�d

gives a matrix that has the same rank as the Jacobian of E and that is of the form
 ⇣

@x

@ui
· @x

@uj
+
P

k
tk
@vk
@ui

· @x

@uj

⌘⇣P
k

@vk
@ui

· v`
⌘

0 Id

!

Now vk is orthogonal to @x/@uj, so

@

@ui

✓
vk ·

@x

@uj

◆
=
@vk
@ui

· @x
@uj

+ vk ·
@2x

@ui@uj

= 0.

This completes the proof of the lemma

71



4 Basic Morse Theory

4.4 Examples

Example 4.14 (The height function on n-Sphere).

Let the n-Sphere be

Sn =
�
(x1, . . . , xn+1) 2 Rn+1 | x2

1 + . . .+ x2
n+1 = 1

 
. The chart is only the projection

onto the first n coordinates. We are taking only two charts of two hemispheres as we

will only get all our critical points in these two charts. Now define f : sn ! R by

f (x1, . . . , xn+1) = xn+1 This function is a smooth Morse function on Sn with only two

critical points, the northpole N = (0, . . . , 0,+1) (the maximum) and the south pole

S = (0, . . . ,�1) (the minimum)

✓
@

@x1
f(x),

@

@x2
f(x), . . . ,

@

@xn

f(x)

◆
= 0

)
✓
1

2

�2x1

xn+1
,
1

2

�2x2

xn+1
, . . . ,

1

2

�2xn

xn+1

◆
= 0

) xi = 0 8i 2 [n]

f(x) = xn+1 =
q

1� (x2
1 + x2

2 + . . .+ x2
n
)

So xn+1 = ±1 so it has two critical points. now

Mp(f) =

0

BBBBBBBBB@

� 1
xn+1

+ x
2
1

x
1/2
n+1

x1x2

x
1/2
n+1

· · · x1xn

x
3/2
n+1

... � 1
xn+1

+ x
2
1

x
3/2
n+1

...

...
. . .

...
...

. . .
...

x1xn

x
1/2
n+1

· · · · · · � �1
xn+1

+ x
2
n

x
1/2
n+1

1

CCCCCCCCCA

n⇥n
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MN(f) =

0

BBBBBB@

�1 0 · · · 0
... �1

...
...

. . .
...

...
. . .

...
0 0 · · · �1

1

CCCCCCA

n⇥n

So, the index is n.

MS(f) =

0

BBBBBB@

1 0 · · · 0
... 1

...
...

. . .
...

...
. . .

...
0 0 · · · 1

1

CCCCCCA

n⇥n

So, the index is 0.

Example 4.15 (A function with non-degenerate critical points).

The function g = f 2 : S3 ! [0, 1] is not Morse function because it has infinitely many

critical points by polar coordinate we get p = (sin' cos ✓, sin' sin ✓, cos')

✓ 2 (�⇡, ⇡),' 2 (0, 2⇡)

Now f 2(p) = r2 cos2 '.
⇣
@

@@
r2 cos2 ', @

@'
r2 cos2 '

⌘
= 0 ) (0,�2r2 cos' sin') = 0 so ' = ⇡/2,�⇡/2 or ' = 0

so for ' = 0, the whole equator is a critical point, so it is not a Morse function by

Corollary 4.10. & ' = ⇡/2,�⇡/2 it is maxima these are the points we get from the

2-dimensional version of the Example 4.14.
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Example 4.16 (The height function on T2).

If we parameterize Torus, we get (choosing 1 > ✏ > 0):

�(✓,�) = (sin(✓ � ✏), (2 + cos(✓ � ✏))sin(�� ✏), (2 + cos(✓ � ✏))cos(�� ✏)) ; ✓ 2 (0, 2⇡),� 2 (0, 2⇡)

(f � �)(✓,�) = (2 + cos(✓ � ✏))cos(�� ✏)

@

@✓
(f � �)(✓,�) = �sin(✓ � ✏)cos(�� ✏)

@

@�
(f � �)(✓,�) = �(2 + cos(✓ � ✏))sin(�� ✏)

So the critical points we get by taking both the partial derivatives 0 are (✏, ✏), (⇡ +

✏, ✏), (⇡ + ✏, ⇡ + ✏), (✏, ⇡ + ✏)

Hp(f) =

 
�cos(✓ � ✏)cos(�� ✏) sin(✓ � ✏)sin(�� ✏)
sin(✓ � ✏)sin(�� ✏) �(2 + cos(✓ � ✏))cos(�� ✏)

!
|(✏,✏) =

 
�1 0
0 �3

!

So index of p is 2.

Hq(f) =

 
�cos(✓ � ✏)cos(�� ✏) sin(✓ � ✏)sin(�� ✏)
sin(✓ � ✏)sin(�� ✏) �(2 + cos(✓ � ✏))cos(�� ✏)

!
|(⇡+✏,✏) =

 
1 0
0 �1

!

So index of q is 1.

Hr(f) =

 
�cos(✓ � ✏)cos(�� ✏) sin(✓ � ✏)sin(�� ✏)
sin(✓ � ✏)sin(�� ✏) �(2 + cos(✓ � ✏))cos(�� ✏)

!
|(⇡+✏,⇡+✏) =

 
�1 0
0 1

!

So index of r is 1.

Hs(f) =

 
�cos(✓ � ✏)cos(�� ✏) sin(✓ � ✏)sin(�� ✏)
sin(✓ � ✏)sin(�� ✏) �(2 + cos(✓ � ✏))cos(�� ✏)

!
|(✏,⇡+✏) =

 
1 0
0 3

!

So, the index of s is 0.

Example 4.17 (Bott’s perfect Morse functions).
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Consider

S2n+1 =

8
<

:(z0, . . . , zn) 2 Cn+1

�����

nX

k=0

����� zk

�����

2

= 1

9
=

;

and define f : S2n+1 ! R by

f(z) =
nX

k=1

k |zk|2

where z = (z0, . . . , zn). This function is invariant under the natural action of S1 on S2n+1

given by s · z = (sz0, sz1, . . . , szn). Hence, it descends to the quotient S2n+1/S1 = CP n.

We will still denote by f the induced function f : CP n ! R. The projective space CP n

is covered by the n+ 1 open sets

Uj = {[z0, . . . , zn] | zj 6= 0}

which are the domains of the charts �j : Uj ! R2n given by

�j ([z0, . . . , zn]) = (x0, . . . , bxj, . . . , xn, y0, . . . , byj, . . . , yn)

where |zj| zk
zj

= xk + iyk and bxj and byj denote deleted coordinates. Clearly we have

|zk|2 = x2
k
+ y2

k
for k 6= j and

|zj|2 = 1�
 
X

k 6=j

|zk|2
!

= 1�
 
X

k 6=j

x2
k
+ y2

k

!

Example 4.18 (Morse function on RP 2 and generalization).

Charts of RP2 are the equivalence class of charts of Example 4.14 as the northern hemi-

sphere is in the same equivalence class as the southern hemisphere and so on, so it has

n+ 1 charts

RP2 = S2/{±1} x2
1 + x2

2 + x2
2 = 1

f : RP2 ! R f([x1, x2, x3]) = a1x2
1 + a2x2

2 + a3x2
3 a1 < a2 < a3

⇡ : S3 ! RP2 ⇡(x1, x2, x3) = [x1, x2, x3] Now, we can use the charts from Example 4.14

to calculate this. Case U1 :
h
@f

@x2
, @f

@x3

i
= 0

)

@

@x2

�
a1
�
1� x2

2 � x2
3

�
+ a2x

2
2 + a3x

2
3

 
,
@

@x3

�
a1
�
1� x2

2 � x2
3

�
+ a2x

2 + a3x
2
3

 �
= 0

) [2x2 (a2 � a1) , 2x3 (a3 � a1)] = 0
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So x2 = 0 & x3 = 0.

So critical point is [1, 0, 0].

Index:- as a1 < a2 < a3

Mpf = 2

✓
a2 � a1

a3 � a1

◆

so the index is 0.

Case U2 :
h
@f

@x1
, @f

@x3

i
= 0

)

@

@x1

�
a2
�
1� x2

1 � x2
3

�
+ a1x

2
1 + a3x

2
3

 
,
@

@x3

�
a2
�
1� x2

1 � x2
3

�
+ a1x

2
1 + a3x

2
3

 �
= 0.

) [2x1 (a1 � a2) , 2x3 (a3 � a2)] = 0

so x1 = 0 & x3 = 0.

so critical point is [0, 1, 0].

Index:- as a1 < a2 < a3

Mpf = 2

✓
a1 � a2

a3 � a2

◆

so index is 1.

Case U3 :
h
@f

@x1
, @f

@x2

i
= 0

)

@

@x1

�
a3
�
1� x2

1 � x2
2

�
+ a1x

2
1 + a2x

2
2

 
,
@

@x2

�
a3
�
1� x2

1 � x2
2

�
+ a1x

2
1 + a2x

2
2

 �
= 0

) [2x1 (a1 � a3) , 2x2 (a2 � a3)] = 0

so x1 = 0 & x2 = 0 So critical point is [0, 0, 1].

Index:- as a1 < a2 < a3

Mpf = 2

✓
a1 � a3

a2 � a3

◆

so index is 2.

For RPn Critical points are [1, . . . , 0], [0, 1, . . . 0], . . . , [0, . . . 0, 1] with indices 0,1,2,3,...,n+1

for Uj

Mpf = 2

0

@
a1 � aj

ai � aj
an+1 � aj

1

A

(n)⇥(n)

i 6= j i 2 [n]
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Example 4.19 (Morse function on SL(2,R)).

SL(2,R) =
⇢✓

x11 x12

x21 x22

◆
| x11x22 � x12x21 = 1

�
Ui,j =

⇢✓
x11 x12

x21 x22

◆
| xij 6= 0

�

�i,j

✓✓
x11 x12

x21 x22

◆◆
= (x11, · · · , x̂ij, · · · , x22)

So the basis of TpU1 is
n

@

@x11
, · · · , @̂

@x12
, · · · @

@x22

o

Now our function is cx11 + dx22 0 < c < d

CaseU1,2 : �
✓

@

@x11
(cx11 + dx22) ,

@

@x21
(cx11 + dx22) ,

@

@x22
(cx11 + dx22)

◆
= 0 ) (c, 0, d) = 0

as 0 < c < d so there is no critical point in U1,2.

Case U2,1 : � Similar to Case U1,2.

Case U1,1 : �


@

@x12
c

✓
1 + x12x21

x22
+ dx22

◆
@

@x21
c

✓
1 + x12x21

x22

◆
+ dx22,

@

@x22
c

✓
1 + x12x22

x22

◆
+ dx22

�
= 0

)

c
x21

x22
, c
x12

x22
, d� c (1 + x12x21)

x2
22

�
= 0

So x21 = 0, x12 = 0 &
dx2

22 � c (1 + x12x21) = 0

) dx2
22 � c = 0

) x22 = ±
r

c

d

so critical points are p1 =

 q
d

c
0

0
p

c

d

!
, p2 =

 
�
q

d

c
0

0 �
p

c

d

!
Index

Mp1f =

0

B@
0 c

x22
� cx11

x
2
22

c

x22
0 � cx12

x
2
22

� cx21
x22

� cx12

x
2
22

c(1+x12x22).
x
3
22

1

CA =

0

BB@

0
q

d

c
0q

d

c
0 0

0 0 2d
p
dp
c

1

CCA

Now, we need to find the eigenvalues.
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Eigenvalues

��������

��
q

d

c
0q

d

c
�� 0

0 0 2d
p
dp
c

� �

��������
= 0

)� �

"
��

 
2d
p
dp
c

� �

!#
�
r

d

c

"r
d

c

✓
2d
p
↵p
c

� �

◆#
= 0

)� �3 +
2d
p
dp
c
�2 +

d

c
�� 2d

c

r
d

c
= 0

)� �2
"
�� 2d

p
dp
c

#
+

d

c


�� 2d

p
↵p
c

�
= 0

)

��2 + d

c

� "
�� 2�

p
dp
c

#
= 0

so � = ±
r

d

c
,
2d
p
dp
c

= 0

So index is 1.

Similarly we can show Mp2f =

0

BB@

0 �
q

d

c
0

�
p
d/2 0 0

0 0 �2d
p
dp
c

1

CCA

has eigenvalues

� = ⌥
r

d

c
So index is 2.

Similarly critical points on U2,2 is p3 =

 q
d

c
0

0
p

c

d

!
, p4 =

 
�
q

d

c
0

0 �
p

c

d

!

This two are in fact p1&p2

So f on SL(2, R) has two critical points.

Example 4.20 (Morse function on Klein’s Bottle).

' is the coordinate chart on Torus and P is the covering map (double cover) of Klein’s

bottle, and f([z, w]) = Im(z)2 + Im(w)2 is the Morse function on Klein’s bottle. As

Torus can be covered using four charts, Klein’s bottle can be covered using two charts.

Now for x 2
⇥
0, 12

⇤

f
�
P
�
'�1(x, y)

��
= sin2(4⇡x) + sin2(2⇡y)


@

@x
,
@

@y

�
f
�
P
�
'�1(x, y)

��
= 0

)[8⇡ sin(4⇡x)(cos 4⇡x), 4⇡(sin 2⇡y) cos(2⇡y)] = 0

)[8⇡ sin(8⇡x), 4⇡ sin(4⇡y)] = 0
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So 8⇡x = 0, ⇡ ) x = 0, 18

4⇡y = 0, ⇡ ) y = 0, 14

for x 2
⇥
1
2 , 1

⇤

f
�
P
�
'�1(x, y)

��
= sin2(2⇡(2x� 1)) + sin2(2⇡(1� y))

Similarly

[8⇡ sin(4⇡(2x� 1)),�4⇡ sin(4⇡(1� y))] = 0

So

4⇡(2x� 1) = 0, ⇡ ) x =
1

2
,
5

8

4⇡(1� y) = 0, ⇡ ) y = 1,
3

4

So critical points are
�
1
2 , 1

�
,
�
1
2 ,

3
4

�
,
�
5
8 , 1

�
,
�
5
8 ,

3
4

�
, (0, 0),

�
0, 14

�
,
�
1
8 , 0

�
,
�
1
8 ,

1
4

�
So actually

the points are (1, 1), (1, i), (i, 1), (i, i)

Index:-

Hp(f) =

✓
64⇡2(cos 8⇡x) 0

0 16⇡2 cos(4⇡y)

◆

H(1,1)f =

✓
64⇡2 0
0 16⇡2

◆
Index � 0

H(1,i)f

✓
64⇡2 0
0 �16⇡2

◆
Index � 1

H(i,1)f =

✓
�64⇡2 0

0 16⇡2

◆
Index � 1

H(i,i)f =

✓
�64⇡2 0

0 �16⇡2

◆
Index � 2

Example 4.21 (Morse function on S1 ⇥ S2).

We are taking the function to be f : S1 ⇥ S2 ! R f(x, y, z, u, v) = z + v we take the

charts to be the Cartesian product of the charts of S1 and the charts of S2. So we need

only to look up the charts (Northern hemisphere ⇥ Southern hemisphere of S2, Northern

hemisphere ⇥ Northern hemisphere of S2, Southern hemisphere ⇥ Southern hemisphere

of S2, Southern hemisphere ⇥ Northern hemisphere of S2).
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Charts which contain critical points are

U1 = {(x, y, z, u, v) | z > 0, v > 0},'�1
1 (x, y, u) =

⇣
x, y,

p
1� x2 � y2, u,

p
1� u2

⌘

U2 = {(x, y, z, u, v) | z > 0, v < 0},'�1
2 (x, y, u) =

⇣
x, y,

p
1� x2 � y2, u,

p
1� u2

⌘

U3 = {(x, y, z, u, v) | z < 0, v > 0},'�1
3 (x, y, u) =

⇣
x, y,

p
1� x2 � y2, u,

p
1� u2

⌘

U4 = {(x, y, z, u, v) | z < 0, v < 0},'�1
4 (x, y, u) =

⇣
x, y,

p
1� x2 � y2, u,

p
1� u2

⌘

So f � '�1
i
(x, y, u) =

p
1� x2 � y2 +

p
1� u2 i 2 [4].

Now
h
@

@x
, @

@y
, @

@u

i ⇣p
1� x2 � y2 +

p
1� u2

⌘
= 0

)
 

�xp
1� x2 � y2

,
�yp

1� x2 � y2
,

�up
1� u2

!
= 0

) x = 0 &y = 0 &u = 0

so critical points are (0, 0, 1, 0, 1), (0, 0,�1, 0, 1), (0, 0, 1, 0,�1), (0, 0,�1, 0,�1)

Mpf =

0

BBB@

� 1p
1�x2�y2

� x
2

(1�x2�y2)
3
2

�xy

(1�x2�y2)
3
2

0

�xy

(1�x2�y2)
3
2

�1p
1�x2�y2

� �y
2

(1�x2�y2)
3
2

0

0 0 �1p
1�u2 � u

2

(1�u2)
3
2

1

CCCA

M(0,0,1,0,1)f =

0

@
�1 0 0
0 �1 0
0 0 �1

1

A

so the index is 3

M(0,0,�1,0,�1)f =

0

@
1 0 0
0 1 0
0 0 1

1

A

So the index is 0

M(0,0,�1,0,1)f =

0

@
1 0 0
0 1 0
0 0 �1

1

A

So the index is 1

M(0,0,1,0,�1)f =

0

@
�1 0 0
0 �1 0
0 0 1

1

A

So the index is 2 This way, we can get a generalized version of this product space of Sn,

which we have mentioned below.

So the summary of the calculated examples are:-
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Manifolds Morse Function Critical Pointsindex
Sn f(x0, ..., xn) = xn (0, ..,�1n+1)0, (0, .., 1n+1)n
CP n f(z0, ..., zn) =

Pn
k=1 k|zk|2Pn
k=1 |zk|2

[0, ..., 1j, .., 0n+1]2(j�1)

j 2 [n+ 1]

RP n f(x1, ..., xn+1) =
Pn

k=1 k(xk)2Pn
k=1(xk)2

[0, ..., 1j, .., 0n+1]j�1

j 2 [n+ 1]
Sn ⇥ Sm f(x0, ..., xn+m+1) =

xn + xn+m+1

(0, ...1n, ..,�1n+m+1)m,
(0, ..., 1n, .., 1n+m+1)m+n,
(0, ...� 1n, ..,�1n+m+1)0,
(0, ...,�1n, .., 1n+m+1)m

K2(Klein’s Bottle) f(z, w) = Im(z)2+Im(w)2 (1, 1)0, (1, i)1, (i, 1)1, (i, i)2
T2(vertical Torus) f(x, y, z) = z (0, 0, 3)2,(0, 0, 1)1,

(0, 0,�1)1,(0, 0,�3)0

SL(2,R) f

✓✓
x11 x12

x21 x22

◆◆
=

cx11 + dx22

 q
d

c
0

0
p

c

d

!

1

,

 
�
q

d

c
0

0 �
p

c

d

!

2

4.5 Gradient Flow

Let’s delve into key points regarding Riemannian Metric:

1. Symmetric Bilinear Inner Product:- The Riemannian Metric, denoted as h·, ·i :

V ⇥ V ! R, is characterized by being a symmetric bilinear function, meaning hv, wi =

hw, vi for all vectors v, w 2 V .

2. Positive Definiteness:- If the inner product hv, vi is strictly greater than zero for

all nonzero vectors v 2 V , the metric is termed positive definite.

3. Non-Degeneracy:- A metric is considered non-degenerate if for every nonzero vector

v, there exists another nonzero vector ! such that their inner product hv,!i is nonzero.

4. Tangent Bundle:- The tangent bundle TM over a smooth manifold M is a smooth

vector bundle. Its fiber at each point x 2 M is the tangent space TxM .

5. Vector Bundle Structure:- A vector bundle of rank k is a tuple (M,V, ⇡, ·,+)

where:

• M and V are smooth manifolds,
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• ⇡ : V ! M is a smooth map,

• · : R ⇥ V ! V and + : V ⇥M V �! V are maps satisfying certain conditions,

ensuring compatibility with the manifold structure.

• Locally, the bundle resembles the product manifold U ⇥ Rk via di↵eomorphisms.

1. ⇡1 � h = ⇡ on V |u &

2. The map h|Vx : Vx ! x⇥Rk is an isomorphism of vector spaces for all x 2 U .

Vu U ⇥ Rk

x 2 U✓̊M

⇡

h

⇡1
{Ui, hi} is a local Trivialization.

6. Riemannian Metric Function:- A Riemannian metric g on TxM is a smooth func-

tion assigning to each point x 2 M a positive definite inner product h·, ix on the tangent

space TxM .

7. Isomorphism with Cotangent Bundle:- A non-degenerate inner product on a

vector space induces an isomorphism between the vector space and its dual. Similarly, a

Riemannian metric g on a smooth manifold M establishes an isomorphism g̃ : T⇤M !

T ⇤M between the tangent and cotangent bundles.

8. Action on Vector Fields:- For any vector field w, g̃(w) is a unique 1-form defined

such that for any vector field V ,

g̃(w)(v) = g(w, v).

Definition 4.22.

If f : M ! R is a smooth function on a Riemannian manifold (M, g), then the gradient

vector field of f with respect to the metric g is the unique smooth vector field rf such

that

g(rf, V ) = df(V ) = V · f

for all smooth vector fields V on M , i.e. rf = g̃�1(df). In particular,

(rf) · f = g(rf,rf) = krfk2
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Let 't : M ! M be the local 1-parameter group of di↵eomorphisms generated by �rf

(the negative gradient), i.e.

d

dt
't(x) = �(rf) ('t(x))

'0(x) = x.

The integral curve �x : (a, b) ! M given by

�x(t) = 't(x)

is called a gradient flow line.

Now, we will see some important results from this definition.

Proposition 4.23.

Every smooth function f : M ! R on a finite-dimensional smooth Riemannian manifold

(M, g) decreases along its gradient flow lines.

Proof.

d

dt
f (�x(t)) =

d

dt
(f � 't(x))

= df't(x) �
d

dt
't(x)

= df't(x) (�(rf) ('t(x)))

= �k(rf) ('t(x))k2  0

Proposition 4.24.

Let f : M ! R be a Morse function on a finite-dimensional compact smooth Riemannian

manifold (M, g). Then every gradient flow line of f begins and ends at a critical point,

i.e., for any x 2 M, limt!+1 �x(t) and limt!�1 �x(t) exist, and they are both critical

points of f .

Proof. We start by considering a smooth manifold M and a smooth function f : M ! R

on M . Given x 2 M , we define �x(t) as the gradient flow line through x, governed by
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the equation:
d

dt
�x(t) = �rf(�x(t)),

where rf denotes the gradient vector field of f .

Now, due to the compactness of M , by Proposition 4.23, the gradient flow line �x(t) is

well-defined for all t 2 R. Furthermore, since f is continuous and M is compact, the

image of f � �x, denoted as (f � �x)(R), is bounded in R.

Thus, according to Proposition 4.23, we have:

lim
t!±1

d

dt
f(�x(t)) = lim

t!±1
�krf('t(x))k2 = 0.

Consider a sequence tn 2 R such that limn!1 tn = �1. Then, {�x(tn)} forms an infinite

set of points in the compact manifold M , implying it has an accumulation point, denoted

as q.

Since krf(�x(tn))k ! 0 as n ! 1, point q is a critical point of f . By Corollary 4.10,

we can select a closed neighborhood U of q, where q is the only critical point in U .

If limt!�1 �x(t) 6= q, then there exists an open neighborhood V ⇢ U of q, and a sequence

t̃n 2 R such that limn!1 t̃n = �1 and �x(t̃n) 2 U � V . Consequently, the sequence

{�x(t̃n)} has an accumulation point in the compact set U � V , which, by the argument

above, must be a critical point of f . This contradicts the choice of U .

Therefore, we conclude that limt!�1 �x(t) = q. Similarly, a similar argument shows that

limt!+1 �x(t) = p 2 M for some critical point p.

4.6 First Fundamental Theorem of Classical Morse
Theory and Reeb’s theorem

Theorem 4.25 (First Fundamental Theorem of Classical Morse Theory).

Let f : M �! R be a smooth function on a finite-dimensional smooth manifold with

boundaries. For all a 2 R, let

Ma = f�1((�1, a]) = {x 2 M |f(x)  a}
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Let a < b and assume that f�1([a, b]) is compact and contains no critical points of f .

Then Ma is di↵eomorphic to M b, and Ma is a deformation retract of M b.Moreover, there

is a smooth di↵eomorphism F : f�1(a)⇥ [a, b] �! f�1([a, b]) such that the diagram

f�1(a)⇥ [a, b] F //

⇡2
((

f�1([a, b])

f

✏✏

[a, b]

commutes. In particular, all the level surfaces of f between a and b are di↵eomorphic.

Proof. We start with W ⇢ M , the open set comprising non-critical points of the function

f , and we assume a Riemannian metric g on M . Our objective is to utilize this metric to

construct a vector field, enabling the formulation of a suitable flow crucial for our desired

di↵eomorphism.

We define X = 1
krfk2rf , a vector field on W , and let � : I ! M be a maximal integral

curve of X. From the definitions, it follows that:

d

dt
f(�(t)) = df(�(t)) · �0(t)

= df(�(t)) ·X(�(t))

= g(rf(�(t)), X(�(t)))

=
1

krf(�(t))k2 g(rf(�(t)),rf(�(t)))

= 1.

Thus, assuming 0 2 I, we deduce that f(�(t)) = f(�(0)) + t. Now, let K = f�1([a, b]) ⇢

W , which, by hypothesis, is compact. We initiate the integral curve at �(0) 2 f�1(a).

Two scenarios emerge:

1. If �(t) 2 K for all t > 0, then the solution remains confined within a compact set,

ensuring its definition for all positive time, i.e., [0,+1) ⇢ I. Specifically, the solution

exists within [0, b� a].

2. If there exists s 2 I, s > 0, such that �(s) /2 K, then b < f(�(s)) = f(�(0))+s = a+s,

implying s > b� a. Consequently, [0, b� a] ⇢ I.
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Moreover, we extend X to the entire manifold without sacrificing the established prop-

erties. Utilizing a bump function  : M ! R with certain properties:

1.  |K = 1.

2. Its support is contained in W .

We construct the vector field Y on the entire manifold as follows:

Y =

(
 (x)X(x) if x 2 W

0 otherwise
.

This extension retains the characteristics of X within K. Let 't represent the flow of Y .

If necessary, we adjust the support of  to ensure the flow is defined up to b � a time,

thus 'b�a serves as a well-defined di↵eomorphism on M mapping Ma onto Mb.

Moving on to the proof thatMa is a deformation retract ofMb, we introduce the collection

of maps:

r : Mb ⇥ [0, 1] ! Mb

defined by:

r(x, t) =

(
x if f(x)  a

't(a�f(x))(x) if a  f(x)  b
.

This definition yields the desired retraction.

For the second part of the theorem, we define F : f�1(a) ⇥ [a, b] ! f�1([a, b]) by

F (x, t) = 't�a(x). It’s observed that for any x 2 f�1([a, b]), 'a�f(x)(x) 2 f�1(a). Thus,

F ('a�f(x)(x), f(x)) = x, and F is surjective. Since f increases along its gradient flow

lines, F also increases along the flow lines of X. Hence, F is injective. Moreover, F is

an immersion since gradient lines are transverse to level sets. Thus, F is a di↵eomor-

phism.

Corollary 4.26.

Let M be a compact, smooth manifold with boundary @M = A t B, i.e., A \ B = �.

Suppose there exists a C1 function f : M �! [0, 1] with no critical points such that

f(A) = 0 and f(B) = 1. Then M is di↵eomorphic to A⇥ [0, 1] ⇡ B ⇥ [0, 1].
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Proof. This follows from the second part of the First Fundamental Theorem of Morse

Theory since f�1([0, 1]) = M

Remark 4.27. • f�1([a, b]) is compact and contains no critical point. So from the

figure, we can easily verify that Ma is the region colored with black and M b is the

region colored blue.

• Ma ✓ M b

• Now the First Fundamental Theorem of Morse Theory says thatM b is di↵eomorphic

to Ma and Ma is the deformation retract of M b.

• Also it says that all the level surfaces of f between a and b are di↵eomorphic.

Here f�1(a) is a disjoint union of two circles. In this case, now, we can easily see that

f�1(a) ⇥ [a, b] is a disjoint union of two cylinders and f�1([a, b]) is also a disjoint union

of two cylinders. So, we can vaguely see that there is a di↵eomorphism for which the

diagram commutes. So, the final statement is also true.

Theorem 4.28 (Reeb’s Theorem).

If M is a compact smooth manifold without boundary of dimension m admitting a Morse

function f : M �! R with only two critical points, then M is homeomorphic to the

m-sphere Sm.
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Proof. M has only two critical points and is compact so that it will attain maximum and

minimumminimum at some pointpoint.

Let n be maximum and s be minimum, and the critical values be f(n) = p and f(s) = q.

Now byMorse Lemma There exists an open neighbourhood U and coordinates (u1, ..., um)

around n on which f(u) = p � u2
1 � u2

2 � ... � u2
m

and an open neighbourhood V and

coordinates (v1, ...vm) around s on which f(v) = q + v21 + v22 + ...+ v2
m
.

We can get a disk Dn around n inside U such that f(@Dn) = b and we can write

Dn = {(u1, u2, ..., um)|u2
1 + u2

2 + ...+ u2
m
 p� b} similarly we get Ds around s such that

f(@Ds) = a. They both are di↵eomorphic to Dm.

Now by Corollary 4.26 f�1([a, b]) is di↵eomorphic to Sm�1 ⇥ [0, 1].

Let B± be a disjoint neighborhood of q±, i.e., north and south poles of Sm. So Sm =

B+ [ B� [ C, Where C = Sm � (B� [B+)� ⇡ Sm�1 ⇥ [0, 1].

We can first consider the di↵eomorphism from Dn to B+ from Morse Lemma. Then, after

restricting it to the boundary, if we extend that to the cylinder we, we, wecylinder, we

get an extension of the previous map again again. Again, after restricting the new map

on the boundary, if we take an extension radially g(x) =

(
0 x = 0

||x||ḣr( x

||x||) x 6= 0
Where hr

is a restriction of homeomorphism h : Dn [ f�1([a, b]) �! B+ [ C onto @Ds.Then, our

map extends to a homeomorphism from M to Sm. We can see this using another figure.
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4.7 Second Fundamental Theorem of Morse Theory

Theorem 4.29 (Second Fundamental Theorem of Morse Theory).

Let f : M �! R be a smooth function. Suppose that for a < b, f�1([a, b]) is compact

and inside f�1([a, b]) there is exactly one critical point. Assume that this critical point

is non-degenerate and of index k. Then M b has the homotopy type of Ma with one

k-cell attached. In fact, there exists a set ek ✓ M b di↵eomorphic to the closed k-disk

Dk = {x 2 Rk| ||x|| < 1} such that Ma [ ek ✓ M b is a deformation retract of M b.

Proof. Let p 2 (f�1([a, b]))� be the unique critical point of index k and let c = f(p). So

from Morse Lemma we get a smooth chart � : U �! Rm around p where �(p) = 0 and

if �(x) = (x1, x2, ..., xm), then (f � ��1)(x1, x2, ..., xm) = c � x2
1 � x2

2 � ... � x2
k
+ x2

k+1 +

x2
k+2 + ...+ x2

m
.

Choose 0 < ✏ < 1 small enough so that f([c� ✏, c+ ✏]) is compact and �(U) contains the

closed ball of radius 2✏, i.e.

{(x1, ..., xm) 2 �(U)|x2
1 + x2

2 + ...+ x2
m
 2✏}

By First Fundamental Theorem of Classical Morse Theory, Ma and M c�✏ have
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the same homotopy type, and the same is true for M b and M c+✏. Thus, to prove the

theorem, we need only show that M c+✏ has the same homotopy type as M c�✏ [ ek. We

may do this working inside f�1([c� ✏, c+ ✏]) \ U since First Fundamental Theorem

of Classical Morse Theory implies that the homotopy type of M t �U is the same for

all a  t  b.

Denoting local coordinates of x 2 U by �(x) = (x1, x2, ..., xm) and denoting ⇠2 = x2
1 +

x2
2 + ...+ x2

k
, ⌘2 = x2

k+1 + x2
k+2 + ...+ x2

m
, We get
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f(x1, x2, ..., xm) = c� ⇠2 + ⌘2

M c�✏ \ U = {x 2 U |⌘2 � ⇠2  ✏}

M c+✏ \ U = {x 2 U |⇠2 � ⌘2 � ✏}

ek = {x 2 U |⇠2  ✏ and ⌘2 = 0}

Now let µ : R �! R be a smooth function such that µ(0) � ✏, µ(r) = 0 for r � 2✏, and

�1 < µ0(r)  0. Define a new function F : M �! R by: F (x) =

(
f(x) x /2 U

f(x)� µ(⇠2 + 2⌘2) x 2 U
We can observe some points here:-

(1) F (p) = f(p)� µ(0) = c� µ(0) < c� ✏.

(2) Notice that F and f coincide outside of the region E := {⇠2 + ⌘2  2✏} so it su�cies

to show that F�1(�1, c+ ✏) \ E = M c+✏ \ E. But notice that if q 2 E,

F (q)  f(q) = c� ⇠2 + ⌘2  c+
1

2
⇠2 + ⌘2 = c+

1

2
(⇠2 + 2⌘2)  c+ ✏

so E ✓ F�1(�1, c + ✏) and F�1(�1, c + ✏) ✓ M c+✏ the other side is trivial so we can

say that F�1(�1, c+ ✏) = M c+✏.

(3) F and f has same critical points as DF = 0 if d⇠2 = d⌘2 = 0 because DF =

@F

@⇠2
d⇠2 + @F

@⌘2
d⌘2 and from the properties of µ we can say that @F

@⇠2
= �1� µ

0
(⇠2 + 2⌘2) <

0, @F
@⌘2

= 1� 2µ
0
(⇠2 + 2⌘2) � 1.

(4) F�1([c� ✏, c+ ✏]) = F�1((�1, c+ ✏])� F�1((�1, c� ✏])

✓ M c+✏ � F�1((�1, c� ✏])[by (1)] ✓ M c+✏ � f�1((�1, c� ✏]) ✓ f�1([c� ✏, c+ ✏]).

So from this we can say that F�1([c � ✏, c + ✏]) has no critical point so by using First

Fundamental Theorem of Classical Morse Theory we can say that F�1(�1, c� ✏)

is a deformation retract of F�1(�1, c+ ✏) = M c+✏ and we can define:

H = F�1(�1, c� ✏)�M c�✏ In the variables (⇠2, ⌘2) the disk ek in M can be expressed

as ek = {q 2 U | ⇠(q)  " and ⌘(q) = 0}. We claim that ek ⇢ H. First of all,

ek ⇢ F�1((�1, c� "]). This can be seen because if q 2 ek,

F (q) = c� ⇠2(q)� µ(⇠2(q))  c� µ(0)  c� ".

In the first inequality, we used the fact that ⇠ � 0 and that µ is a decreasing function.

We used that µ(0) � " in the second inequality.
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On the other hand, f(q) = c� ⇠2 � c� ", with an equality only when ⇠2 = ", this means,

at @ek. Therefore, as we claimed, ek ⇢ H.

Now we can construct a retraction of Mc�" [H onto Mc�" [ ek. Let us call it rt. Let rt

be the identity outside of U for all t, and separate U \ (Mc�" [H) in three regions:

C1 = {q | ⇠2(q)  "},

C2 = {q | "  ⇠2(q)  ⌘2(q) + "},

C3 = {q | ⌘2(q) + "  ⇠2(q) , f(q)  c� "}.

We will construct rt separately on these three regions and prove that it is the desired

retraction.

• rt on C1. We define

rt (u1, . . . , uk, uk+1, . . . , un) = (u1, . . . , uk, tuk+1, . . . , tun) ,

or, equivalently, rt(⇠2, ⌘2) = (⇠2, t2⌘2). It is clear that r1 is the identity and r0 is a

projection onto ek. Moreover, F (rt(q))  c� ", because @F

@⌘2
> 0.

• rt on C2. We define

rt (u1, . . . , un) = (u1, . . . , uk, stuk+1, . . . , stun) ,

or, as before, rt(⇠2, ⌘2) = (⇠2, s2
t
⌘2). We define

st = t+ (1� t)

s
⇠2 � "

⌘2
.

It is clear that r1 is the identity. On the other hand, notice that

f (r0(q)) = f
�
⇠2, s20⌘

2
�
c� ⇠2 + s20⌘

2 = c� ⇠2 + ⇠2 � " = c� ",

so r0 maps all of C2 onto the boundary of Mc�".

• On C3, we let rt = Id for all t. When ⇠2�" = ⌘2, it coincides with the last definition.

We need to check that rt is continuous. In particular, we need to check it when ⇠!" and

⌘2 ! 0. First of all, notice that

• when ⇠2 = ", st = t,
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• when ⇠2 � " = ⌘2, st = 1.

Thus, the only points where it is unclear if rt is continuous are those such that ⇠2 = "

and ⌘2 = 0. In particular, we are to check the continuity in the region C2. In this case,

however, we have that.

⇠2 � "  ⌘2 ) 0  ⇠2 � "

⌘2
 1,

so st stays bounded in the whole C2. Moreover, for each i > k, the coordinate ui is

mapped as ui 7! stui. In addition, |ui|  ⌘2. Taking all of this into account, we deduce

that

0  |stui|  st⌘
2 �!������!
⌘2!0,⇠2!"

0,

so, in particular, stui

�!������!
⌘2!0,⇠2!"

0, as we wanted to see. Thus, rt is continuous, so it is a

retraction from Mc�" [H onto Mc�" [ ek. This concludes the proof

***We have taken an example of µ, which nearly follows the conditions to check how the

proof works using desmos.

Remark 4.30.

If there are j critical points, p1, ..., pj in the level set f�1(c) with indices �1, ...,�j re-

spectively, then a similar proof like the proof of Second Fundamental Theorem of

Classical Morse Theory shows that for some collection of attaching maps f1, ..., fj.

M c+✏ ' M c�✏ [f1 D
�1 [f2 ... [fj D

�j
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Remark 4.31.

An easy modification of the above proof shows that M c is a deformation retract of M c+".

Indeed, F�1((�1, c]) is a deformation retract of F�1((�1, c + "]) = M c+" by First

Fundamental Theorem of Morse Theory , and M c is a deformation retract of

F�1((�1, c]). The following diagram illustrates a deformation retraction of F�1((�1, c])

to M c.

Now, we will see the proof of two results, which will help us to reach our final and most

important outcome of this chapter.

Lemma 4.32 (J.H.C. Whitehead).

Let X be a topological space, and suppose that f0 : Sk�1 ! X and f1 : Sk�1 ! X are

homotopic. Then, the identity map of X extends to a homotopy equivalence

h : X [f0 D
k ! X [f1 D

k.

Proof. Denote the characteristic maps by f0 : Dk ! X [f0 D
k and f1 : Dk ! X [f1 D

k,

and let ft : [0, 1] ⇥ Sk�1 ! X be a homotopy from f0 : Sk�1 ! X to f1 : Sk�1 ! X.

Define h0 : X [f0 D
k ! X [f1 D

k by h0(x) = x if x 2 X and for all u 2 Sk�1

h0 (f0(ru)) =

(
f1(2ru) if 0  2r  1

f2�2r(u) if 1  2r  2,

and define h1 : X [f1 D
k ! X [f0 D

k by h1(x) = x if x 2 X and for all u 2 Sk⇠1

h1 (f1(ru)) =

(
f0(2ru) if 0  2r  1

f2r�1(u) if 1  2r  2.
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It is easy to verify that h0 and h1 are single-valued and hence continuous. We have for

all u 2 Sk�1

(h0 � h1) (f0(ru)) =

(
h1 (f1(2ru)) if 0  2r  1

h1 (f2�2r(u)) if 1  2r  2.

Since h1(x) = x for all x 2 X it follows that for all u 2 Sk�1

(h0 � h1) (f0(ru)) =

8
><

>:

f0(4ru) if 0  4r  1

f4r�1(u) if 1  4r  2

f2�2r(u) if 1  2r  2.

Let ⇠t : X [f0 D
k ! X [f1 D

k be the homotopy which is defined by ⇠t(x) = x for all

x 2 X and for all u 2 Sk�1

⇠t (f0(ru)) =

8
><

>:

f0((4� 3t)ru) if 0  r  1
4�3t

f(4�3t)r�1(u) if 1
4�3t  r  2�t

4�3t

f 1
2 (4�3t)(1�r)(u) if 2�t

4�3t  r  1.

It is easy to verify that ⇠t is single-valued and hence continuous, ⇠0 = h1 �h0, and ⇠1 = 1.

A homotopy ⌘t : X [f1 D
k ! X [f0 D

k such that ⌘0 = h0 � h1 and ⌘1 = 1 is defined by

replacing f0 with f1 and g� with g1�� in the above expression for ⇠t where � = (4�3t)r�1

or (4� 3t)(1� r)/2.

Lemma 4.33 (P. Hilton).

Let X be a topological space, and let

f : Sk�1 ! X

be an attached map. Any homotopy equivalence h : X ! Y extends to a homotopy

equivalence

H : X [f D
k ! Y [h�f D

k.

Proof. Define H : X [f Dk ! Y [h�f Dk by

H(x) =

(
h(x) if x 2 X

x if x 2 Dk.

Let g : Y ! X be a homotopy inverse of h and define

G : Y [h�f D
k ! X [g�h�f D

k
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by

G(y) =

(
g(y) if x 2 Y

y if x 2 Dk.

Since g � h � f is homotopic to f , it follows from Lemma 4.32 that there is a homotopy

equivalence.

F : X [g�h�f D
k ! X [f D

k.

We will first prove that the composition.

F �G �H : X [f D
k ! X [f D

k

is homotopic to the identity. Let ht be a homotopy between g �h and the identity. Using

the specific definitions of F,G, and H, we see that

(F �G �H)(x) = (g � h)(x) for x 2 X,

(F �G �H)(tu) = 2tu for 0  t  1

2
, u 2 @Dk

(F �G �H)(tu) = (h2�2t � f) (u) for
1

2
 t  1, u 2 @Dk.

The required homotopy q⌧ : X [f Dk ! X [f Dk is now defined by the formula

q⌧ (x) = h⌧ (x) for x 2 X

q⌧ (tu) =
2

1 + ⌧
tu for 0  t  1 + ⌧

2
, u 2 @Dk

q⌧ (tu) = (h2�2t+⌧ � f) (u) for
1 + ⌧

2
 t  1, u 2 @Dk.

Therefore, H has a left homotopy inverse, namely F �G : Y [h�f Dk ! X [f Dk, and a

similar proof shows that G also has a left homotopy inverse.

We can now complete the proof of the lemma as follows. Since

F � (G �H) ' identity ,

And F is known to have a left homotopy inverse (by Lemma 4.32), it follows that.

(G �H) � F ' identity.

Similarly,

G � (H � F ) ' identity
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The fact that G has a left homotopy inverse implies that.

(H � F ) �G ' identity.

Thus, H � (F �G) ' identity and F �G is also a right homotopy inverse for H. Therefore,

H is a homotopy equivalence.

Theorem 4.34 (Handle Decomposition Theorem).

Let f : M �! R be a Morse function on a smooth manifold M . Suppose that M t is

compact for all t 2 R Then M has the homotopy type of a CW-complex X with one cell

of dimension k for each critical point of index k.

Proof. We will prove this by induction.

Let c0 < c1 < c2 < . . . be the critical values of f : M �! R. Sequence {ci} has no

accumulation point since M t is compact for all t.For the base case M t is vacuous for

all t < c0 , and M t0 is homotopic to a discrete set of points for all c0 < t0 < c1, i.e

X0 = {p 2 Cr(f)|f(p) = co}.

Let’s assume that ci�l < ti�l < ci for some i 2 N and there is a homotopy equivalence

hi�1 : M ti�1 �! Xi�1 where Xi�1 is some CW-complex.

Now by Remark 4.30 and 4.31 9✏ > 0 such that

M ci+✏ ' M ci�✏ [f1 D
�1 [f2 ... [fj D

�j

where p1, ..., pj are the critical points with indices �1, ...,�j in f�1(ci) and f1, ..., fj are

attaching maps.

By First Fundamental Theorem of Classical Morse Theory we get a homotopy

equivalence gi : M ci�✏ �! M ti�1 .Now by Theorem 2.68 the map hi�1�gi�1�fk : S�k�1 �!

Xi�1 homotopic to a map  : S�k�1 �! X�K�1
i�1 Where X�K�1

i�1 is a �K � 1 skeleton of

Xi�1.

Using Lemma 4.33 we can say that M c+✏ ' Xi

def
= Xi�1[ 1 D

�1 [ 2 ...[ j D
�j By Remark

4.30, it follows that M t has the homotopy type of a CW-complex for all t 2 R.

If M is compact, this completes the proof. If M is not compact, but all the critical points
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lie in Mt for some t 2 R then a proof similar to that of First Fundamental Theorem

of Classical Morse Theory shows that Mt is a deformation retract of M, so the proof

is again complete.

Example 4.35.

Example 4.36.

Di↵erent Morse functions give rise to di↵erent CW-complex structures of the same Man-

ifoldManifoldManifold, but the following example gives us the intuition that they are

always homeomorphic[M ' S2]. This says about an aspect of topological invariant prop-

erty of Morse Theory.
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Chapter 5

Morse Inequality
Let’s delve into the interplay between Morse theory and algebraic topology. Consider

a compact smooth manifold M and a field F . The homology group Hk(M ;F ) over F

is finite-dimensional, defining the k-th Betti number of M , denoted as bk(F ), which is

simply the dimension of Hk(M ;F ). When F = Z, Hk(M ;Z) modulo its torsion subgroup

forms a finitely generated free Z-module. In this case, bk(Z) represents the rank of this

module. For simplicity, we often denote bk instead of bk(F ) when the context implies F .

Now, let’s introduce a Morse function f : M ! R on M . The quantity ⌫k denotes the

count of critical points of f with index k, where k = 0, . . . ,m, withm being the dimension

of M . Thanks to the CW-Homology Theorem and Theorem 4.34, we obtain the ”weak

Morse inequalities”:

⌫k � bk(F )

These inequalities arise from the fact that ⌫k equals the rank of the chain module

C
k
(M ;F ), and Hk(M ;F ) is a quotient of this module. Notably, these relations hold

regardless of the choice of field F .

In particular, the weak Morse inequalities imply a compelling observation: the total count

of critical points of f is at least as large as the sum of the Betti numbers:

mX

k=0

⌫k �
mX

k=0

bk(F )

This observation serves as the foundational motivation behind the Arnold Conjecture.

It’s worth noting that while ⌫k depends on the specific Morse function f (without reliance

on F ), bk(F ) is contingent upon the topology of M and the field F (with no reliance on
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the choice of Morse function). Now, let’s explore the ”strong Morse inequalities”, which

provide further insights into the relationships between ⌫k and bk(F ).

Theorem 5.1 (Euler-Poincare Theorem).

Let (C⇤, @⇤) be a finitely generated chain complex, and assume that C
k
= 0 for all k > m.

Let ck = rankC
k
and bk = rankHk (C⇤) for all k = 0, . . . ,m. Then,

mX

k=0

(�1)kck =
mX

k=0

(�1)kbk

Proof. The exact sequence

0 ! ker @
k
! C

k
(X;F )

@k�! im @
k
! 0

shows that ck = rank ker @
k
+ rank im @

k
for all k = 0, . . . ,m. Similarly,

0 ! im @
k+1 ! ker @

k
! Hk(X;F ) ! 0

shows that rank ker @
k
= rank im @

k+1 + bk, and hence

rank ker @
k
= ck � rank im @

k
= rank im @

k+1 + bk

for all k = 0, . . . ,m. Thus,

mX

k=0

(�1)k (ck � rank im @
k
) =

mX

k=0

(�1)k
�
rank im @

k+1 + bk
�

which implies that
mX

k=0

(�1)kck =
mX

k=0

(�1)kbk

Theorem 5.2 (Morse Inequalities).

For any Morse function f : M ! R on a compact smooth manifold M of dimension m

we have the following.

(a)
P

n

k=0(�1)k+n⌫k �
P

n

k=0(�1)k+nbk(F ) for every n = 0, . . . ,m.

(b)
P

m

k=0(�1)k⌫k =
P

m

k=0(�1)kbk(F ).
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Proof. Part (b) of Theorem is The Euler-Poincaré Theorem (Theorem 5.1) applied to the

chain complex (C⇤(X;F ), @⇤). To prove part (a) let n  m and consider the truncated

chain complex
⇣
C(n)

⇤ (X;F ), @⇤

⌘
given by

C(n)
k

(X;F ) =

(
C

k
(X;F ) if k  n

0 if k > n.

By The Euler-Poincaré Theorem we have

(�1)n
nX

k=0

(�1)k rankC(n)
k

(X;F ) = (�1)n
nX

k=0

(�1)k rankHk

⇣
C(n)

⇤ (X;F )
⌘

Since ⌫k = rankC(n)
k

(X;F ) for all k = 0, . . . , n, bk = rankHk

⇣
C(n)

⇤ (X;F )
⌘
for all k =

0, . . . , n� 1 and Hn (C⇤(X;F )) is a quotient of Hn

⇣
C(n)(X;F )

⌘
, we have

⌫n � ⌫n�1 + · · ·+ (�1)n⌫0 � bn � bn�1 + · · ·+ (�1)nb0

Remark 5.3.

Part (b) of the preceeding theorem shows that the Euler characteristic, X (M) =
P

m

k=0(�1)kbk(F ),

is independent of the field F . If F is a field of characteristic zero or F = Z, then the same

is true for the Betti numbers. This can be seen as a corollary to the Universal Coe�cient

Theorem for Homology.

Definition 5.4.

The Poincaré polynomial of M is defined to be

Pt(M) =
mX

k=0

bk(F )tk

and the Morse polynomial of f is defined to be

Mt(f) =
mX

k=0

⌫kt
k

Theorem 5.5 (Polynomial Morse Inequalities).

For any Morse function f : M ! R on a smooth manifold M we have

Mt(f) = Pt(M) + (1 + t)R(t)
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5 Morse Inequality

where R(t) is a polynomial with non-negative integer coe�cients. That is, R(t) =
P

m�1
k=0 rktk where rk 2 Z satisfies rk � 0 for all k = 0, . . . ,m� 1.

Proof. Let zk = rank ker @
k
for all k = 0, . . . ,m. As in the proof of Theorem 5.1 , the

exact sequence

0 ! ker @
k
! C

k
(X;F )

@k�! im @
k
! 0

implies that ⌫k = zk + rank im @
k
for all k = 0, . . . ,m, and

0 ! im @
k+1 ! ker @

k
! Hk(X;F ) ! 0

implies that bk = zk � rank im @
k+1 for all k = 0, . . . ,m. Hence,

Mt(f)� Pt(M) =
mX

k=0

⌫kt
k �

mX

k=0

bkt
k

=
mX

k=0

(zk + rank im @
k
) tk �

mX

k=0

�
zk � rank im @

k+1

�
tk

=
mX

k=0

�
rank im @

k
+ rank im @

k+1

�
tk

=
mX

k=0

(⌫k � zk + ⌫k+1 � zk+1) t
k

=
mX

k=0

(⌫k � zk) t
k +

mX

k=0

(⌫k+1 � zk+1) t
k

= t
mX

k=1

(⌫k � zk) t
k�1 +

mX

k=1

(⌫k � zk) t
k�1 ( since ⌫0 = z0)

= (t+ 1)
mX

k=1

(⌫k � zk) t
k�1.

Therefore, Mt(f) = Pt(M) + (1 + t)R(t) where R(t) =
P

m�1
k=0 (⌫k+1� zk+1) tk. Note

that ⌫k+1 � zk+1 � 0 for all k = 0, . . . ,m � 1 because zk+1 is the rank of a subgroup of

C
k+1(X;F ) and ⌫k+1 = rankC

k+1(X;F ).

Remark 5.6.

Theorem 5.5 occasionally su↵ers from misinterpretations in the literature. Two common

errors include asserting that the polynomial R(t) is invariably positive and claiming that

the Morse polynomial consistently surpasses the Poincaré polynomial for all t 2 R. While
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5 Morse Inequality

these assertions hold true for t � 0, they do not universally apply when t < 0. Below,

we present an illustrative example that serves as a counterexample to both of these

misconceptions.

Example 5.7 (Wiener-Dog Counterexample).

Consider the function f defined by projection onto the z axis in the following picture.

The critical points p, q, r, and s have indices 0, 1, 2, and 2 respectively. Hence, Mt(f) =

2t2 + t+ 1, and since Pt (S2) = t2 + 1, we see that

Mt(f) = 2t2 + t+ 1 = t2 + 1 + (1 + t)t = Pt(M) + (1 + t)R(t)

Thus, R(t) = t, and we see that R(t) < 0 for all t < 0. Moreover, it is easy to check that

Mt(f) < Pt(f) for �1 < t < 0.

Lemma 5.8.

Theorem 5.2 is equivalent to Theorem 5.5

Proof. By utilizing part (b) of Theorem 5.2, we can express M�1(f) as follows:

M�1(f) =
mX

k=0

(�1)k⌫k =
mX

k=0

(�1)kbk(F ) = P�1(M)

Consequently, Mt(f)�Pt(M) is divisible by 1+t, and we can represent Mt(f) as Pt(M)+

(1 + t)R(t), where R(t) =
P

m�1
n=0 rntn. It’s evident that rn 2 Z for all n = 0, . . . ,m � 1,

as both Mt(f) and Pt(M) possess integer coe�cients. Our task is to demonstrate that

rn � 0 for all n = 0, . . . ,m � 1. We will establish the equivalence of these inequalities

with those stated in part (a) of Theorem 5.2.
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5 Morse Inequality

To illustrate, let’s start with Mt(f) = Pt(M) + (1 + t)R(t), which implies:

⌫0 = b0(F ) + r0

Additionally, ⌫1 = b1(F ) + r1 + r0, yielding ⌫1 = b1(F ) + r1 + ⌫0 � b0(F ), thus:

⌫1 � ⌫0 = b1(F )� b0(F ) + r1

Continuing in this manner, we observe that:

⌫n � ⌫n�1 + · · ·+ (�1)n⌫0 = bn(F )� bn�1(F ) + · · ·+ (�1)nb0(F ) + rn

for all n = 0, . . . ,m�1. Consequently, the inequalities articulated in part (a) of Theorem

5.2 imply rn � 0 for all n = 0, . . . ,m�1. Furthermore, by setting t = �1 in the equation

Mt(f) = Pt(M)+(1+t)R(t), we readily recover part (b) of Theorem 5.2. Hence, Theorem

5.5 e↵ectively implies Theorem 5.2.

Definition 5.9.

If f : M ! R is a Morse function such that Mt(f) = Pt(M), then f is called a perfect

Morse function.

Note that if a manifold admits a perfect Morse function, then its homology doesn’t have

any torsion.

Theorem 5.10 (Morse’s Lacunary Principle).

If Mt(f) has no consecutive powers of t, then

Mt(f) = Pt(M)

In fact, ⌫k = bk and R(t) is identically zero.

Proof. This is a direct consequence of Theorem 5.5

Example 5.11 (Bott’s perfect Morse function).

Using the result from Example 4.17 and considering f : CP n ! R as the same Morse
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5 Morse Inequality

function defined in Exaple 4.17 we have

Mt(f) = 1 + t2 + · · ·+ t2n

and the preceeding theorem implies that

Pt (CP n) = 1 + t2 + · · ·+ t2n.

Now we will try to see an easy approach to an important result by previous results.

Theorem 5.12.

Let M be a compact manifold of odd dimension, then the Euler characteristic is zero, i.e.

X (M) = 0.

Proof. Let f : M ! R be a Morse function, and assume that the dimension m of the

manifold M is odd. Since ⌫k(f) = ⌫m�k(�f) we have the following.

X (M) =
mX

k=0

(�1)k⌫k(f)

=
mX

k=0

(�1)k⌫m�k(�f)

= (�1)m
mX

k=0

(�1)m�k⌫m�k(�f)

= (�1)m
mX

k=0

⌫k(�f)

= (�1)mX (M)

Hence, X (M) = 0 if m is odd.
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Chapter 6

Stable/Unstable Manifold Theorem
Let f : M ! R be a smooth function on a finite dimensional compact smooth Riemannian

manifold (M, g). Recall from Definition 4.22 that the gradient vector field of f with

respect to the metric g is the unique smooth vector field rf such that

g(rf, V ) = df(V ) = V · f

for all smooth vector fields V on M . The gradient vector field determines a smooth flow

' : R⇥M ! M by 't(x) = �x(t) where
d

dt
�x(t) = � rf |

�x(t)
and �x(0) = x. Since M is

compact, the flow 't satisfies the following.

1. 't : M ! M is a di↵eomorphism for all t 2 R.

2. 't1 � 't2 = 't1+t2 for any t1, t2 2 R.

That is, 't is a 1-parameter group of di↵eomorphisms defined on R⇥M

Definition 6.1.

Let p 2 M be a non-degenerate critical point of f .

1. The stable manifold of p is defined to be

W s(p) =
n
x 2 M | lim

t!1
't(x) = p

o
.

2. The unstable manifold of p is defined to be

W u(p) =

⇢
x 2 M | lim

t!�1
't(x) = p

�

Now we will try to understand an important theorem as we can refer the proof details

from Morse Homology by Audin.

Theorem 6.2 (Stable/Unstable Manifold Theorem for a Morse Function).

Let f : M ! R be a Morse function on a compact smooth Riemannian manifold (M, g)
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6 Stable/Unstable Manifold Theorem

of dimension m < 1. If p 2 M is a critical point of f , then the tangent space at p splits

as

TpM = T s

p
M � T u

p
M

where the Hessian is positive definite on T s

p
M and negative definite on T u

p
M . Moreover,

the stable and unstable manifolds are surjective images of smooth embeddings

Es : T s

p
M ! W s(p) ✓ M

Eu : T u

p
M ! W u(p) ✓ M

Hence, W s(p) is a smoothly embedded open disk of dimension m � �p, and W u(p) is a

smoothly embedded open disk of dimension �p, where �p is the index of the critical point

p.

Now we will try to calculate the Stable/Unstable Manifold for some Morse function.

Example 6.3.

Let’s consider a function on D ✓ R2 where D is a closed disc around origin

f : D ! R

f(x, y) = x2 � y2

Now rf = (2x,�2y) So critical points is only origin (0, 0) & M(0,0)f is non-degenerate

so it is a Morse function

M(0,0)f =

✓
1 0
0 �1

◆

Now index at (0, 0) is 1.

for (a, b) 2 D ' : (�1,1) ! D,'(t) = ('1(t),'2(t)) where '(0) = (a, b)[D is com-

pact]

Now the negative gradient flow is

� rf |
'(t) =

d

dt
'(t)

)[�2'1(t), 2'2(t)] = ['0
1(t),'

0
2(t)]
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6 Stable/Unstable Manifold Theorem

so '0
1(t) = �2'1(t)

)
Z

t

0

'0
1(t)

'1(t)
dt =

Z
t

0

�2

) ln |'1(t)|]t0 = �2t

) |'1(t)| = |a|e�2t

) '1(t) = ae�2t or ) '1(t) = �ae�2t

Putting 000 in place of t we get second one is not valid

so '1(t) = ae�2t.

Similarly '2(t) = be2t

So flow lines are (ae�2t, be2t)

W s((0, 0)) =
n
x 2 D | lim

t!1
't(x) = (0, 0)

o

for lim
t!1

be2t 6= 0

So if we take points from x-axis then

lim
t!1

�
ae�2t, 0

�
= (0, 0)

So

W s((0, 0)) = {(x, 0) 2 D | x 2 R}

Similarly we can say that

W u((0, 0)) = {(0, y) 2 D | y 2 R}
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6 Stable/Unstable Manifold Theorem

Example 6.4 (Sphere).

Let’s define f̂ : R3 ! R f̂(x, y, z) = z

rf̂ = (0, 0, 1)

Now let’s Consider f : S2 ! R f(x, y, z) = z

From the calculation in Example 4.14 we can see that it is a Morse function with critical

points (0, 0, 1)&(0, 0,�1) with index 2,0 respectively

Now S2 ✓ R3 is an embedded submanifold. so rf̂(x) projects orthogonally onto rf(x)

as we are looking the orthogonal projection of TmRn onto TmS2 Where m 2 S2

So now

rf = rf̂ � rf̂ · (x, y, z)
k(x, y, z)k (x, y, z)

= (0, 0, 1)�
�
zx, zy, z2

�

=
�
�zx,�zy, 1� z2

�

(x, y, z) 2 S2 ) k(x, y, z)k = 1

For (a, b, c) 2 S2 define flow ' : (�1,1) ! S2[S2 is Compact]

', (t) = ('1(t),'2(t),'3(t))

'(0) = (a, b, c)

So now

� (rf)|
'(t) =

d

dt
'(t)

)
⇥
'1(t)'3(t),'2(t)'3(t),'

2
3(t)� 1

⇤
= ['0

1(t),'
0
2(t),'

0
3(t)]

So
'0
3(t) = '2

3(t)� 1

)
Z

t

0

'0
3(t)

'2
3(t)� 1

dt =

Z
t

0

dt

) 1

2
ln

����
'3(t)� 1

'3(t) + 1

����

����
t

0

= t

)
����
'3(t)� 1

'3(t) + 1

���� =
����
c� 1

c+ 1

���� e
2t
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6 Stable/Unstable Manifold Theorem

putting t = 0 and checking the sign we get

) 1� '3(t)

'3(t) + 1
=

✓
1� c

c+ 1

◆
e2t

) 2

'(t) + 1
� 1 =

✓
1� c

c+ 1

◆
e2t

) '3(t) + 1 =
2�

1�c

c+1

�
e2t + 1

) '3(t) = �
�
1�c

c+1

�
e2t � 1

�
1�c

c+1

�
e2t + 1

Now '1(t)'3(t) = '0
1(t)

'1(t)'3(t) = '0
1(t)

)
Z

t

0

�
�
1�c

c+1

�
e2t � 1

�
1�c

c+1

�
e2t + 1

dt =

Z
t

0

'0
1(t)

'1(t)
dt

) �

ln

����

✓
1� c

c+ 1

◆
e2t + 1

����+ t

�����
t

0

= ln |'1(t)|� ln |a|

Using similar argument we get

) � ln

✓
1� c

c+ 1

◆
e2t + 1

�
+ t+ ln

✓
2

c+ 1

◆
= ln'1(t)� ln a

) ln

"�
1�c

c+1e
2t + 1

�
'1(t)

a
�

2
c+1

�
#
= t

) '1(t) =
2a
c+1e

t

�
1�c

c+1

�
e2t + 1

Similarly we get

'2(t) =
2b
c+1e

t

�
1�c

c+1

�
e2t + 1

So flow lines are

✓
( 2a
c+1)et

( 1�c
c+1)e2t+1

,
( 2b
c+1)et

( 1�c
c+1)e2t+1

,�( 1�c
c+1)et�1

( 1�c
c+1)et+1

◆
for any (a, b, c) 2 S2

lim
t!1

'(t) = (0, 0,�1) & lim
t!�1

'(t) = (0, 0, 1)

So

W u((0, 0, 1)) = S2\{(0, 0,�1)} W s((0, 0, 1)) = {(0, 0, 1)}

W u((0, 0,�1)) = {(0, 0,�1)} W s((0, 0,�1)) = S2\{(0, 0, 1)}

We have tried to plot it using Matlab.
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6 Stable/Unstable Manifold Theorem

Example 6.5.

' : R2 ! T2

'(t, s) = (sin t, (2 + cos t) sin s, (2 + cos t) cos s)

f : T2 ! R

f(x, y, z) = z

From Example 4.16 we can see that f � ' is a Morse function

So �r(f � ') = (sin t cos s, (2 + cos t) sin s) [using flat metric]

for (a, b) 2 R2 � : (�1,1) ! T2 [T2is compact.]

�(c) = (t(c), s(c))

�(0) = (a, b)

So

� rf · '|
�(c) =

d

dt
�(c)

)[sin(t(c)) cos(s(c)), (2 + cos(t(c))) sin(s(c))] = [t0(c), s0(c)]

So s0(c) = (2 + cos t(c)) sin(s(c))

Solving this ODE we get tan
⇣

s(c)
2

⌘
= ec(2+cos(t(c))) tan

�
a

2

�

c ! 1 s(c) ! ⇡
c ! �1 s(c) ! 0

�
· · · (1)

So t0(c) = sin(t(c)) cos(s(c))

Solving this ODE we get tan
⇣

t(c)
2

⌘
= ec cos(s(c)) tan

�
b

2

�
and using (1) we get the following
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6 Stable/Unstable Manifold Theorem

result.

c ! 1 t(c) ! 0
c ! �1 t(c) ! 0

�
· · · (2)

All of these happens when t 6= 0, ⇡ & s 6= 0, ⇡

We know critical points are from Example 4.16 (0, 0, 3), (0, 0,�3), (0, 0, 2), (0, 0,�2) for (s, t) =

(0, 0); (0, ⇡), (⇡, 0), (⇡, ⇡)

for t = 0 our flow line will be
�
0, 2 tan�1

�
e2c tan

�
a

2

��
= k

�

c ! 1 this will go to (0, ⇡)

c ! �1 this will go to (0, 0)

for s = 0 our flow line will be
�
2 tan�1

�
e�c tan

�
b

2

��
= k, 0

�

c ! 1 this will go to (⇡, 0)

c ! �1 this will go to (0, 0)

W s((0, 0, 2)) = {(sin t(k), 0, (2 + cos t(k))}\{(0, 0, 1)}

for t = ⇡ our flow line will be
�
⇡, 2 tan�1

�
e2c tan

�
a

2

��
= k

�

c ! 1 this will go to (⇡, ⇡)

c ! �1 this will go to (⇡, 0)

W u((0, 0, 2)) = {(0, sin s(k), cos s(k))}\{(0, 0,�2)}

W s((0, 0,�2)) = {(0, sin s(k), cos s(k))}\{(0, 0, 2)}

for s = ⇡ our flow line will be
�
2 tan�1

�
e�c tan

�
b

2

��
= k, ⇡

�

c ! 1 this will go to (0, ⇡)

c ! �1 this will go to (⇡, ⇡)

W u((0, 0,�2)) = {(sin t(k), 0,�(2 + cos t(k))}\{(0, 0,�3)}

By taking cases we get stable and unstable manifold for r&s
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From (1) & (2)

W s((0, 0,�3)) = T2\ (W s((0, 0,�2)) [W s((0, 0, 2)) [ {(0, 0, 3)})

W s((0, 0, 3)) = {(0, 0, 3)}

W u((0, 0,�3)) = {(0, 0,�3)}

W u((0, 0, 3)) = T 2\ (W u((0, 0,�2)) [W u((0, 0, 2)) [ {(0, 0,�3)})

So we have calculated all the stable unstable manifold of T 2
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Chapter 7

Intersection Number
First We will discuss some results and definition to define the intersection number prop-

erly.

Definition 7.1 (Transversality).

Let f : M ! N and g : Z ! N be smooth maps where M , N , and Z are smooth

manifolds. We say that f is transverse to g, f t g, if and only if whenever f(x) = g(z) = y

we have

dfx (TxM) + dgz (TzZ) = TyN

If Z ✓ N and g : Z ! N is the inclusion map, then we will denote f t g by f t Z.

We will try to realize this via some example.

• Firstly we will give an example where dimTxX + dimTxZ = dimTxY but X and

Z do not meet transversally. Let X = Z be the x-axis, Y = R2. Both X and Z are

1-dimensional, but the span of TxX and TxZ is also 1-dimensional.

• Secondly we will give an example where X and Z do not meet transversally and

X \ Z is not a submanifold of Y . Let Y = R2, Z be the x-axis, and let X be a

curve that intersects Z over both an interval and a point outside of the interval.

The (disjoint) union of the interval and the point is not a manifold.

• Thirdly we will try to give an example of X,Z, Y, Y 0 where X is transverse to Z as

submanifolds in Y but not as submanifolds in Y 0. Let Y = R2, Y 0 = R3, X be the

x-axis, Z be the y-axis. The span of TxX and TxZ is equal to TxY , a 2-dimensional

subspace of TxY 0.
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7 Intersection Number

• Consider a hyperboloid X and a sphere of radius a 6 1 given by

X =
�
(x, y, z) 2 R3 | x2 + y2 � z2 = 1

 

Za =
�
(x, y, z) 2 R3 | x2 + y2 + z2 = a

 

Now we will try to find out for what values of a 6 1 do X and Za meet transversally

in Y = R3.

Let f : R3 ! R, (x, y, z) 7! x2+y2�z2, and let g : R3 ! R, (x, y, z) 7! x2+y2+z2.

ThenX = f�1(1), Za = g�1(a). We need to check whether 1 and a are regular values

of f and g respectively. By calculating the Jacobian, df(x,y,z) =
�
2x 2y �2z

�
and

dg(x,y,z) =
�
2x 2y 2z

�
. Both of these are surjective as long as (x, y, z) 6= (0, 0, 0).

Since T(x,y,z)X = ker df(x,y,z) and T(x,y,z)Za = ker dg(x,y,z), the intersection is trans-

verse if ker df(x,y,z) + ker dg(x,y,z) = R3 for every (x, y, z) 2 X \ Za. If a < 1, then

X \ Za is empty. Hence X meets Za transversally by definition. If a = 1, then

X \ Za is all points where x2 + y2 � z2 = x2 + y2 + z2, that is, when z = 0.

Therefore df(x,y,0) =
�
2x 2y 0

�
= dg(x,y,0). Both kernels are the z-axis, hence

the intersection is not transverse.

Theorem 7.2 (Inverse Image Theorem).

Let Z ✓ N be an immersed submanifold and f : M ! N a smooth map. If f t Z, then

f�1(Z) is a submanifold of M whose codimension in M is the same as the codimension

of Z in N , i.e.

dimM � dim f�1(Z) = dimN � dimZ
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Moreover, the normal bundle of Z in N pulls back to the normal bundle of f�1(Z) in M ,

i.e. ⌫f�1(Z) = f ⇤(⌫Z).

Proof. See Introduction to Smooth Manifold by Lee.

Corollary 7.3.

If M and Z are immersed submanifolds of N of dimension m, z, and n respectively and

M t Z, then M \ Z is an immersed submanifold of N of dimension m+ z � n

Proof. Applying previous theorem to the inclusion i : M ! N we get m�dim(M \Z) =

n� z.

Definition 7.4 (smooth homotopy).

Let f0, f1 : M ! N be smooth maps between smooth manifolds M and N . The maps

f0 and f1 are said to be smoothly homotopic if and only if there exists a smooth map

H : M ⇥ [0, 1] ! N such that
H(x, 0) = f0(x)

H(x, 1) = f1(x)

for all x 2 X. The map H is called a smooth homotopy from f0 to f1.

Definition 7.5.

We will call a property of a class of smooth maps f : M ! N locally stable provided that

for every x 2 M there is a neighborhood U ✓ M of x such that whenever f |
U
: U ! N

possesses the property and H : U ⇥ [0, 1] ! N is a smooth homotopy of f |
U
, then for

some " > 0 each ft = H(·, t) : U ! N with t < " also possesses the property. We will

call the property globally stable if the above condition holds for U = M .

Theorem 7.6 (stability theorem).

If M and N are smooth manifolds, then following classes of smooth maps f : M ! N

are locally stable:
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1. immersions

2. submersions

3. local di↵eomorphisms

4. maps transverse to a specified closed submanifold Z ✓ N . If M is compact, then

the preceeding classes are globally stable.

Proof. See Lectures on Morse Homology by Banyaga and Hurtubise.

Theorem 7.7 (Homotopy Transversality Theorem for Smooth Maps).

Let f : M ! N and g : Z ! N be smooth maps where M,N , and Z are smooth

manifolds. Then there is an arbitrarily small smooth homotopy gt of g such that g0 = g

and g1 t f .

Theorem 7.8.

(Homotopy Transversality Theorem for Embeddings) Let M,N , and Z be smooth man-

ifolds, and assume that Z is compact. Let f : M ! N be smooth and let g : Z ! N

be a smooth embedding. Then there is an arbitrarily small smooth homotopy gt of g to

a smooth embedding g1 : Z ! N such that g0 = g and g1 t f . Moreover, the smooth

homotopy can be chosen such that gt : Z ! N an embedding for all t, i.e. g0 is isotopic

to g1.

As the proof require some extra tools the proof can be referred from Topology and Ge-

ometry by Bredon.
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7.1 Orientation

Let V be a real vector space of finite dimension m > 0. On the set of ordered bases of V

define a relation R by

vRw

if and only if the change of basis matrix C = (cij) from v = (v1, . . . , vm) to w =

(w1, . . . , wm), i.e. wi =
P

m

j=1 cijvj, has positive determinant. The relation R is an

equivalence relation, and there are exactly two equivalence classes.

Definition 7.9.

An orientation of a real vector space V is a choice of one of the equivalence classes ✓

of the relation R, which we call the positive orientation. The couple (V, ✓) is called an

oriented vector space. If dim V = 0, then an orientation is an assignment of +1 or -1

to the point V = {0}. If (V, ✓) and (V 0, ✓0) are two oriented vector spaces of the same

positive dimension and L : V ! V 0 a linear isomorphism, then L is said to be orientation

preserving if and only i↵or all v = (v1, . . . , vm) 2 ✓ we have (L (v1) , . . . , L (vm)) 2 ✓0.A

linear isomorphism that is not orientation preserving is said to be orientation reversing.

Definition 7.10.

An orientation of a di↵erentiable manifold with boundary M of dimension m is a choice

of orientation ✓x for each tangent space TxM that satisfies the following compatability

requirement: Around every point in M there is a coordinate chart � : U ! Rm (or

� : U ! Rm

+ ) which is orientation preserving, i.e. for every point x 2 U the linear

isomorphism

d�x : TxM ! Rm

is orientation preserving where Rm is given its standard orientation. A di↵erentiable

manifold M that possesses an orientation is called orientable.

Theorem 7.11.
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Let M be a di↵erentiable manifold with boundary of dimension m. Then the following

are equivalent.

1. M is orientable.

2. There is a collection � = {(U,�)} of coordinate systems on M such that

M =
[

(U,�)2�

U and det
�
dy
�
�j � ��1

i

��
> 0 on �i (Ui) \ �j (Uj)

whenever (Ui,�i) and (Uj,�j) belong to �.

3. There is a no-where vanishing m-form on M .

Proof. Refer to Introduction to Smooth Manifold by Lee.

Remark 7.12.

If V = W � W 0, where W and W 0 are oriented vector spaces with orientations ✓W

and ✓0
W

respectively, then a unique orientation ✓ can be determined on V as follows: If

(w1, . . . , wl) 2 ✓W and w0 =
�
w0

1, . . . , w
0
m�l

�
2 ✓0

W
, then the vector v =

�
w1, . . . , wl, w0

1, . . . , w
0
m�l

�

belongs to the orientation ✓.

Similarly, if (V, ✓) is an oriented vector space and (W, ✓W ) is an oriented subspace, then

any complementary subspace W 0, satisfying V = W � W 0, can be endowed with an

orientation ✓0
W

such that for w = (w1, . . . , wl) 2 ✓W and w0 =
�
w0

1, . . . , w
0
m�l

�
2 ✓0

W
, the

vector v =
�
w1, . . . , wl, w0

1, . . . , w
0
m�l

�
lies in the orientation ✓.

Moreover, if M is an oriented di↵erentiable manifold with boundary and N is an oriented

di↵erentiable manifold, then an induced orientation exists on the manifold with boundary

M ⇥N .

In the case whereM is a finite-dimensional smooth manifold with boundary, the Collaring

Theorem asserts the existence of an embedding f : [0, 1)⇥@M ! M onto a neighborhood

of @M in M , satisfying f(x) = x for all x 2 @M . This embedding is termed a ”collar”

on @M , and @M is said to be ”collared” in M”.
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7.2 Intersection Number

When considering two immersed submanifolds M and Z within a smooth manifold N

that intersect transversally, denoted as M t Z, their intersection M \ Z forms another

immersed submanifold of N . The dimension of this intersection is given by the formula:

dim(M \ Z) = dim(M) + dim(Z)� dim(N)

by Corollary 7.3 this intersection is non-empty only if its dimension is non-negative,

implying:

dim(M) + dim(Z) � dim(N)

If dim(M) + dim(Z) < dim(N) and M \ Z is still non-empty, it means M and Z do not

intersect transversally. However, by the Homotopy Transversality Theorem, it’s possible

to smoothly perturb M such that it becomes transverse to Z. This means there exists

a smooth homotopy gt : M ! N from the inclusion i : M ! N to a map g1 : M ! N

that intersects Z transversally. But, if dim(M) + dim(Z) < dim(N), the dimension of

g�1
1 (Z) becomes negative, implying it’s empty. Consequently, g1(M) \ Z is also empty,

indicating that by perturbing M , it can be made disjoint from Z. Thus, there’s no

meaningful ”intersection theory” for such M and Z.

Now, when dim(M) + dim(Z) = dim(N), the intersection M \ Z consists of points. If

both M and Z are closed submanifolds of N , and at least one of them is compact, then

M \Z is a finite collection of points. Similarly, if f : M ! N is a smooth map transverse

to Z, and dim(M)+dim(Z) = dim(N), then f�1(Z) is a submanifold of M of dimension

zero, implying it’s also a finite collection of points provided Z is closed and M is compact.

Assuming M , N , and Z are oriented, with Z being closed and M compact, and dim(M)+

dim(Z) = dim(N), and considering a smooth map f : M ! N transverse to Z, we can

assign signs to the points x 2 f�1(Z) based on the orientation of the bases of the involved

vector spaces. If the transition matrix between the bases has a positive determinant, we

assign a positive sign to the point, denoted as sign(x) = +1. Otherwise, if the determinant

120



7 Intersection Number

is negative, we assign a negative sign, denoted as sign(x) = �1. This sign assignment

helps capture the orientation information of the intersection points.

Definition 7.13 (Intersection Number).

The oriented intersection number, I(f, Z) 2 Z, is defined to be

I(f, Z) =
X

x2f�1(Z)

sign(x)

Remark 7.14.

The summation in question is guaranteed to be finite due to the compactness of f�1(Z),

which is a consequence of it being a closed subset of a compact space, as per Theorem

3.5.2 from the book Topology by Munkres. It’s worth noting that when Z reduces to

a point, the condition f t Z indicates that this point serves as a regular value of the

function f .

If the point Z possesses an orientation of +1, then upon transformation to the new basis

v0
y
= dfx(vx), the sign assigned to x is determined by whether the linear transformation

dfx preserves orientation or not. Consequently, the sign of x is either +1 or �1.

Furthermore, it’s important to observe that if the preimage of Z, denoted as f�1(Z), is

empty, the contribution of Z to the intersection index, denoted as I(f, Z), is zero.

Theorem 7.15.

Let f, g : M ! N be two smooth maps which are both transverse to Z ⇢ N . If f is

homotopic to g, then, then I(f, Z) = I(g, Z).

Proof. Given that f and g are smooth maps homotopic as continuous maps, they are

also smoothly homotopic, as per Corollary III.2.6 from Di↵erential Manifold by Kosinski.

Let F : [0, 1] ⇥ M ! N be a smooth homotopy from f to g. Since both f t Z and

g t Z, we can select F such that F t Z, a consequence of a slightly stronger version of

Homotopy Transversality Theorem for Smooth maps (This is in details in the book by
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Di↵erential Topology by Guillemin, Pollack). Considering F t Z and @F t Z, it follows

that F�1(Z) is an immersed submanifold of [0, 1] ⇥ M . By a version of Inverse Image

theorem applicable to manifolds with boundary, we have:

1 + dim(M)� dim(F�1(Z)) = dim(N)� dim(Z)

This results in dim(F�1(Z)) = 1, as dim(M) + dim(Z) = dim(N). Furthermore, any

compact 1-dimensional manifold is orientable, with the sum of orientation numbers at the

boundary points equating to zero, as established in in details in the book by Di↵erential

Topology by Guillemin, Pollack. We have:

X

x2@F�1(Z)

sign(x) = 0

Given that @F�1(Z) = f�1(Z) [ �g�1(Z), with the orientation on @F�1(Z) chosen

appropriately and the negative sign indicating the reversal of orientation on g�1(Z), we

can deduce:
X

x2f�1(Z)

sign(x) =
X

x2g�1(Z)

sign(x)

Remark 7.16.

Remark 7.12 suggests that if Z is an oriented immersed submanifold within an oriented

smooth manifold N , it induces an orientation on the normal bundle of Z in N . Conse-

quently, when f : M ! N is transverse to Z, Inverse Image Theorem ensures an induced

orientation on the normal bundle of f�1(Z). Moreover, if M is oriented, Remark 7.12

implies an induced orientation on f�1(Z). These principles extend to cases where M

is an oriented manifold with boundary. In the context of these induced orientations,

@F�1(Z) = f�1(Z) [ �g�1(Z), as established in the proof of the preceding theorem.

With these considerations, we can define an intersection number I(f, Z) for any smooth

map f : M ! N and any closed submanifold Z. This definition does not assume Z to

be transverse to f , but it still requires all the other previously stated assumptions.
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7 Intersection Number

Definition 7.17.

Assume that M,N , and Z are oriented smooth manifolds, Z is a closed submanifold of

N,M is compact, and dim(M) + dim(Z) = dim(N). For any smooth map f : M ! N ,

the Homotopy Transversality Theorem (Theorem 7.7) implies that there is a smooth map

f1 transverse to Z and homotopic to f , and we define the oriented intersection number

I(f, Z) to be I (f1, Z). This number is well define because I (f1, Z) is independent of the

choice of f1 by Theorem 7.15.

Remark 7.18.

Every continuous map f : M ! N between smooth manifolds M and N is homotopic

to a smooth map. Hence, the preceeding definition of the oriented intersection number

I(f, Z) also applies to a continuous map f : M ! N .

Example 7.19.

f : S1 �! S2 f(x, y) = (x, y, 0)
g : S1 �! S2 g(x, y) = (x, 0, y)

f(1, 0) = (1, 0, 0) = g(1, 0)
f(�1, 0) = (�1, 0, 0) = g(�1, 0)
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So it has only 2 intersection point (1, 0, 0), (�1, 0, 0)

T(1,0)S
1 = h(0, 1)i

df(1,0)
�
T(1,0)S

1
�
= h(0, 1, 0)i = hvi

dg(1,0)
�
T(1,0)S

1
�
= h(0, 0, 1)i = hwi

det (v, w, n2) =

������

0 1 0
0 0 1
1 0 0

������
= 1

So sign((1, 0)) = 1

T(�1,0)S
1 = h(0,�1)i

df(�1,0)

�
T(�1,0)S

1
�
= h(0,�1, 0)i

dg(1,0)
�
T(�1,0)S

1
�
= h(0, 0,�1)i

det (v,!, n1) =

������

0 �1 0
0 0 �1
�1 0 0

������
= �1

So sign((�1, 0)) = �1

If g
�
S1
�
= Z then I(f, Z) =

X

x2f�1(Z)

sign(x) = sign((1, 0)) + sing((�1, 0))

= 1� 1

= 0
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Chapter 8

Morse-Smale function
Definition 8.1.

A Morse function f : M ! R on a finite dimensional smooth Riemannian manifold (M, g)

is said to satisfy the Morse-Smale transversality condition if and only if the stable and

unstable manifolds of f intersect transversally, i.e.

W u(q) t W s(p)

for all p, q 2 Cr(f). A Morse function that satisfies the Morse-Smale transversality

condition is called a Morse-Smale function.

The Morse-Smale transversality condition yields the following immediate consequence.

Proposition 8.2.

Let f : M ! R be a Morse-Smale function on a finite dimensional compact smooth

Riemannian manifold (M, g). If p and q are critical points of f such thatW u(q)\W s(p) 6=

;, then W u(q) \W s(p) is an embedded submanifold of M of dimension �q � �p.

Proof. According to Theorem 6.2, W u(q) and W s(p) emerge as smooth embedded sub-

manifolds of M , with dimensions �q and m � �p respectively. Utilizing Theorem 6.2

and Corollary 7.3, we determine that W u(q) \ W s(p) constitutes a smooth embedded

submanifold whose dimension is calculated as:

dimW u(q) + dimW s(p)�m = �q + (m� �p)�m = �q � �p

Corollary 8.3.

If f : M ! R is a Morse-Smale function on a finite dimensional compact smooth Rie-
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8 Morse-Smale function

mannian manifold (M, g), then the index of the critical points is strictly decreasing along

gradient flow lines. That is, if p and q are critical points of f with W (q, p) 6= ;, then

�q > �p.

Proof. When W (q, p) 6= ;, it implies that there is at least one flow line from q to p

contained within W (q, p). Since a gradient flow line is one-dimensional, we conclude that

dimW (q, p) � 1.

Example 8.4 (Tilted Torus).

The torus T 2 positioned vertically on the plane z = 0 within R3, with the standard height

function f : T 2 ! R as discussed in Example 4.16 and Example 6.5, does not qualify as

a Morse-Smale function. This conclusion arises from Corollary 8.3, as the gradient flow

lines of the standard height function f : T 2 ! R originate at the critical point r of index

1 and terminate at the critical point q of the same index. Nevertheless, Kupka-Smale

Theorem (Theorem 8.5) suggests that, there exists an infinitesimally small perturbation

of the standard height function on T 2 that does satisfy the Morse-Smale condition. One

plausible approach to conceptualize such a perturbation involves tilting the torus slightly

and observing the resultant gradient flow lines. So if we take the function f : T2 ! R as

f(x, y, z) = x + z instead of f(x, y, z) = z then we can see that this is an example of a

Morse-Smale function. Here d1, c2 are flow lines from index 2 critical points to index 1

and d2, c1 are flow lines from index 1 critical points to index 0
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Theorem 8.5 (Kupka-Smale Theorem).

If (M, g) is a finite dimensional compact smooth Riemannian manifold, then the set of

Morse-Smale gradient vector fields of class Cr is a generic subset of the set of all gradient

vector fields on M of class Cr for all 1  r  1.

Proof. Refer to Lectures on Morse Homology by Banyaga & Hurtubise.

Now we will discuss about some corollaries of �-Lemma. To get more details on the proof

of the �-Lemma and the corollaries refer to Lectures on Morse Homology by Banyaga &

Hurtubise.

Corollary 8.6 (Transitivity for Gradient Flows).

Let p, q, and r be critical points of a Morse-Smale function f : M ! R. If W (r, q) 6= ;

and W (q, p) 6= ;, then W (r, p) 6= ;. Moreover,

W (r, p) ◆ W (r, q) [W (q, p) [ {p, q, r}.

The preceeding corollary allows us to define a partial ordering on the critical points of a

Morse-Smale function f : M ! R on a finite dimensional compact smooth Riemannian

manifold (M, g) as follows.

Definition 8.7.

Let p and q be critical points of f : M ! R. We say that q is succeeded by p, q ⌫ p, if

and only if W (q, p) = W u(q) \W s(p) 6= ;,i.e. there exists a gradient flow line from q to

p. The set of critical points of f , Cr(f), together with the partial ordering ⌫ is called

the phase diagram of f .

Corollary 8.8.

If p and q are critical points of relative index one, i.e. if �q� �p = 1, then

W (q, p) = W (q, p) [ {p, q}
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Moreover, W (q, p) has finitely many components, i.e. the number of gradient flow lines

from q to p is finite.

Proof. W (q, p)[ {p, q} is closed due to Corollary 8.3, which indicates the absence of any

intermediate critical points between q and p in the phase diagram of f . Consequently,

W (q, p) [ {p, q} ✓ M is compact, being a closed subset of a compact space.

The gradient flow lines originating from q and terminating at p constitute an open cover

of W (q, p). This cover can be expanded to cover W (q, p) [ {p, q} by incorporating small

open sets in W (q, p) [ {p, q} surrounding p and q along with each gradient flow line.

As every open cover of a compact space possesses a finite subcover, it follows that the

number of gradient flow lines from q to p must be finite.
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Chapter 9

Morse Homology Theorem
Let (M, g) denote a finite-dimensional compact smooth oriented Riemannian manifold,

and let f : M ! R be a Morse-Smale function. In this context, ”Morse-Smale” implies

that for all critical points p and q of f , the unstable manifold W u(q) and the stable

manifold W s(p) intersect transversally. We denote the intersection as W (q, p) = W u(q)\

W s(p). This intersection is either empty or a smooth manifold of dimension �q � �p by

Proposition 8.2, where �q represents the index of q and �p denotes the index of p. In cases

where W (q, p) is not empty, we write q ⌫ p. We define Cr(f) as the set of all critical

points of f , and Crk(f) represents those critical points q with �q = k.

9.1 Orientation Conventions

For each p 2 Cr(f), we select a basis Bu

p
of T u

p
M = TpW u(p) to establish the orientation

of TpW u(p). This orientation of T u

p
M subsequently determines an orientation of T s

p
M =

TpW s(p), as TpM = T s

p
M �T u

p
M . Consequently, the embedded submanifolds W u(p) and

W s(p) possess orientations that align with the orientation of M at p. These orientations

extend to determine orientations of TvT u

p
M ⇡ T u

p
M for all v 2 T u

p
M , and TvT s

p
M ⇡ T s

p
M

for all v 2 T s

p
M . Thus, an orientation is established on TxW u(p) for all x 2 W u(p)

through the embedding Eu : T u

p
M ! W u(p) as defined by the Stable/Unstable Manifold

Theorem (Theorem 6.2). Similarly, an orientation is determined on TxW s(p) for all

x 2 W s(p) through the embedding Es : T s

p
M ! W s(p).

9.2 Counting Flow Lines with Sign - The two Defi-
nitions of n(q, p)

Consider two critical points p, q of indices �p = k�1 and �q = k respectively, with q ⌫ p.

Let � : R ! M denote a gradient flow line from q to p:
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d

dt
�(t) = �(rf)(�(t)), lim

t!�1
�(t) = q, lim

t!1
�(t) = p

At any point x 2 �(R) ⇢ W (q, p), we can complete �(rf)(x) to form a positive basis
⇣
�(rf)(x), B̂u

x

⌘
of TxW u(q), thereby establishing the orientation of W u(q) at x. If

we select any positive basis Bs

x
of TxW s(p), it determines the orientation of W s(p) at

x. Consequently,
⇣
Bs

x
, B̂u

x

⌘
forms a basis for TxM . Assigning +1 or -1 to the flow �

depends on whether
⇣
Bs

x
, B̂u

x

⌘
forms a positive orientation for TxM . As the orientations

on W u(q) and W s(p) are defined to ensure that Es and Eu are orientation preserving,

this assignment remains consistent across x 2 �(R).

If �q � �p = 1, then W (q, p) [ {q, p} constitutes a compact 1-dimensional manifold

(Corollary 8.8), where the flow is directed for time t 2 R. Consequently, M(q, p) =

W (q, p)/R forms a compact zero-dimensional manifold, i.e., it comprises a finite number

of elements, and the count of elements in M(q, p) equals the number of flows � from q to

p. To each flow � from q to p, we assign a number +1 or -1 using the orientations. The

integer n(q, p) 2 Z is defined as the sum of these numbers.

Remark 9.1.

Assigning +1 or -1 to a gradient flow line involves several choices. For example, we could

complete �(rf)(x) to form a positive basis
⇣
B̂u

x
,�(rf)(x)

⌘
instead of

⇣
�(rf)(x), B̂u

x

⌘
.

Similarly, we could use
⇣
Bu

q
, B̂s

p

⌘
instead of

⇣
Bs

p
, B̂u

q

⌘
as the basis for TxM . It is evident

that altering one of these conventions merely changes the sign of n(q, p), thereby a↵ecting

only the sign of the Morse-Smale-Witten boundary operator.

An Alternate Definition of n(q, p) Using Intersection Numbers:-

Let c be a regular value in the open interval (a, b) where f(p) = a and f(q) = b. We

consider the unstable sphere of q:

Su(q) = W u(q) \ f�1(c)
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and the stable sphere of p:

Ss(p) = W s(p) \ f�1(c)

inside the level set f�1(c). By the preimage theorem, f�1(c) is an (m � 1)-dimensional

manifold oriented such that for any x 2 f�1(c), a basis v1, . . . , vm�1 of Txf�1(c) is posi-

tive if and only if �(rf)(x), v1, . . . , vm�1 forms a positive basis for TxM . Additionally,

Corollary 7.3 asserts that Su(q) is a (k�1)-dimensional manifold and Ss(p) is an (m�k)-

dimensional manifold, with orientations following the same convention as f�1(c).

Since the manifolds Su(q) and Ss(p) intersect transversally in the submanifold f�1(c),

Corollary 7.13 implies that Su(q) \ Ss(p) is a 0-dimensional manifold, where each point

corresponds to a connecting orbit in W (q, p), i.e., Su(q) \ Ss(p) ⇡ M(q, p). As this set

is finite (Corollary 8.8), the integer n(q, p) 2 Z can also be defined as the intersection

number of the oriented manifolds Su(q) and Ss(p) inside the oriented manifold f�1(c).

Definition 9.2 (Morse-Smale-Witten Chain Complex).

Let f : M ! R be a Morse-Smale function on a compact smooth oriented Riemannian

manifoldM of dimensionm < 1, and assume that orientations for the unstable manifolds

of f have been chosen. Let Ck(f) be the free abelian group generated by the critical points

of index k, and let

C⇤(f) =
mM

k=0

Ck(f)

The homomorphism @k : Ck(f) ! Ck�1(f) defined by

@k(q) =
X

p2Crk�1(f)

n(q, p)p

is called the Morse-Smale-Witten boundary operator, and the pair (C⇤(f), @⇤) is called

the Morse-Smale-Witten chain complex of f .

Remark 9.3.

The integer n(q, p) 2 Z in the preceeding definition is well defined by Corollary 8.8 of the

�-Lemma.

131



9 Morse Homology Theorem

9.3 Morse Homology Calculation

Theorem 9.4 (Morse Homology Theorem).

The pair (C⇤(f), @⇤) is a chain complex, and its homology is isomorphic to the singular

homology H⇤(M ;Z).

Proof. Refer to Lectures on Morse Homology by Banyaga & Hurtubise. [Also we can say

that this theorem proves the well-definedness of the Morse Homology]

This can be also shown using the de-Rham Cohomology. But here they have used the

concept of the filtered Conley index pair; then we can use the similar proof technique

as CW-Homology theorem to get the desired result. Now we will try to calculate some

examples using the concepts of n(p, q).

Example 9.5 (S1).

f is the height function on this M = S1.

Here we have choosen the orientation from left to right for the manifold and for all

the unstable manifold. So TqM , Tq(W u(q)), has the same orientation. Now from the

orientation of the manifold the orientation of stable manifolds induced as Tp(W s(p)) from

right to left. Now if x is in the left flow line from q to p �r(f)(x) can’t be completed as

a positive basis of TxM so n(q, p) = �1.

Now if x is in the right flow line from q to p �r(f)(x) can be completed as a positive

basis of TxM and B̂u(x) is null and Bs(x) = �r(f)(x) so (Bs(x), B̂u(x)) = (�r(f)(x))

and it matches with the orientation of TxM So n(q, p) = 1.
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C1(f) =< q >, C0(f) =< p >, @1(q) = p� p = 0. So all the boundary operators will be

0. So we have

Hk ((C⇤(f), @⇤)) =

(
Z if k = 0, 1

0 otherwise

Example 9.6 (Deformed S1).

f is the height function on this manifold.

Here we have choosen the orientation from left to right for the manifold and for all

the unstable manifold. So Tp1M , Tp2M , Tp3M , Tp1(W
u(p1)), Tp2(W

u(p2)), Tp3(W
u(p3))

has the same orientation. Now from the orientation of the manifold the orientation of

stable manifolds induced as Tp4(W
s(p4)) from left to right, Tp5(W

s(p5)), right to left,

Tp6(W
s(p6)) right to left. Now if x is in the flow line from p1 to p5 �r(f)(x) can’t be

completed as a positive basis of TxM so n(p1, p5) = �1 similarly we can say n(p2, p4) =

�1,n(p3, p6) = �1.

Now if x is in the flow line from p2 to p6 �r(f)(x) can be completed as a positive basis

of TxM and B̂u(x) is null and Bs(x) = �r(f)(x) so (Bs(x), B̂u(x)) = (�r(f)(x)) and

it matches with the orientation of TxM So n(p2, p6) = 1 similarly we can say n(p1, p4) =

1,n(p3, p5) = 1.

C1(f) =< p1, p2, p3 >, C0(f) =< p4, p5, p6 >, @1(p1) = p4 � p5, @1(p2) = p6 � p4,

@1(p3) = p5 � p6. It is easy to see that H1 ((C⇤(f), @⇤)) = ker @1 =< p1 + p2 + p3 >⇡ Z

since

@1 (p1 + p2 + p3) = (p4 � p5) + (p6 � p4) + (p5 � p6) = 0

and ker @0 =< p4, p5, p6 >⇡ Z�Z�Z. The image of @1 is the free abelian group generated
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9 Morse Homology Theorem

by @1 (p1) = p4 � p5, @1 (p2) = p6 � p4, and @1 (p3) = p5 � p6. Hence,

H0 ((C⇤(f), @⇤)) = ker @0/ im @1

⇡< p4, p5, p6 > / < p4 � p5, p6 � p4, p5 � p6 >

⇡< p4, p5, p6; p4 = p5 = p6 >

⇡ Z

and we have

Hk ((C⇤(f), @⇤)) =

(
Z if k = 0, 1

0 otherwise

as expected.

Example 9.7 (Sn n > 1).

Here we will get two critical point of index [Refer Example 4.14] 0, n so all the boundary

operators are all 0 so Hj(Sn) = Z if j = 0, n otherwise it will be 0.

Example 9.8 (Deformed S2).

f is the height function on this manifold.

Here we have taken the same orientation fixing outward normal for the manifold. So

TqM , TpM , TrM and TqW u(q), TpW u(p), Tr(W u(r) have the same orientation. This

implies TwW u(q), TuW u(p) has also the same orientation. We get the orientation of

stable manifold around r from the orientation of the manifold that is from right to left.
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9 Morse Homology Theorem

So Bs(w) = r(f)(w),Bs(u) = �r(f)(u)

Now to complete �r(f)(u) to a positively oriented basis of TpW u(p) we need to take

B̂u(u) which is inward facing similarly we need to take B̂u(w) which is outward facing.

Now we can see that (Bs(u), B̂u(u)) is a positively oriented basis of TuM So n(p, r) = 1

and (Bs(w), B̂u(w)) is a negatively oriented basis of TwM So n(q, r) = �1. Now If

we get orientation of Ts(W s(s)) from front to back induced by orientation on TsM .

Then �r(f)(b) can be completed to a positive basis of Tb(W u(r)) where B̂u(b)) is from

left to right. (Bs(b), B̂u(b)) is a negatively oriented basis of TbM as Bs(b) = r(f)(b).

n(r, s) = �1. Now�r(f)(b) can be completed to a positive basis of Ta(W u(r)) where

B̂u(b)) is from right to left. (Bs(a), B̂u(a)) is a positively oriented basis of TaM as

Bs(a) = �r(f)(a). So the sign is negative. So n(r, s) = +1

So we get C1(f) = hri;C2(f) = hp, qi, C0(f) = hsi now @1(r) = 0; @2(p) = r, @2(q) = �r.

0�! C2(f)
@2�! C1(f)

@1�! C0(f)
@0�! 0

H0 ((C⇤, f)) =
Ker @0
Im@1

=
hpi
h0i ⇡ Z

H1 ((C⇤, f)) =
Ker @1
Im @2

=
hqi
hqi ⇡ 0

H2 ((C⇤, f)) =
Ker@2
Im@3

=
hr + si
h0i ⇡ Z

Example 9.9 (Sm ⇥ Sn).

Whenm 6= n 6= 1 |m�n| 6= 1 then Here will get four critical point of index 0, n,m,m+n

so all the boundary operators are all 0 so Hj(Sm⇥Sn) = Z if j = 0,m, n,m+n otherwise

it will be 0.

Now when either m = 1 or n = 1 |m� n| 6= 1 then we will get the gradient calculation

will be similar for index 1 to index 0 as Example 6.14 [Refer to example 4.21] so the

boundary operators will be 0 as calculated in Example 9.5.

If |m� n| = 1 then if one of them is 1 we can get the boundary operator from previous

example now after that we can see that we can deal with it similarly as the half part will

be constant through out the calculation. [Refer to 6.14,4.21]. So the boundary operators

will be 0 as calculated in Example 9.5.
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9 Morse Homology Theorem

Example 9.10 (T2).

As the previous height function is not Morse-Smale we are defining new function which

is Morse-Smale and easy to calculate.

Torus is di↵eomorphic to the quotient manifold [0, 1] ⇥ [0, 1]/ ⇠ [(x, 1) ⇠ (x, 0)] and

[(0, y) ⇠ (1, y)]. Now we define Morse function from M to R.f(x, y) = cos(2⇡x) +

cos(2⇡y). So rf(x, y) = �2⇡(sin(2⇡x), sin 2⇡y). and critical points are P = (0, 0) =

(0, 1) = (1, 0) = (1, 1) q =
�
0, 12

�
=
�
1, 12

�
r =

�
1
2 , 1

�
=
�
1
2 , 0

�
s =

�
1
2 ,

1
2

�

Index calculated as �p = 2,�r = 1,�h = 1,�s = 0 Now we will calculate the gradient flow

lines. [M is compact] � : R ! M is a flow line through (x, y)

�(t) = (�1(t), �2(t)) and �1(0) = x, �2(0) = y

�rf(�(t)) = (�01(t), �
0
2(t))

After calculating this we get (�1(t), �2(x)) =
⇣

tan�1
e
c(x)t

⇡
, tan

�1
e
c(y)t

⇡

⌘
c(x)&c(y) is a con-

stant depending on x and y. Now

t ! 1 �(t) !
✓
1

2
,
1

2

◆
= s

[when x 6= 0, 1 or y 6= 0, 1]

t ! �1 �(t) �! p = (0, 0), (1, 1), (1, 0), (0, 1)

for point (P,K), (k, P ) when P 2
�
0, 1, 12

 
we get f low line

⇣
P, tan

�1
e
c(k)t

⇡

⌘
,
⇣

tan�1
e
c(k)t

⇡
, P

⌘

c(k) > 0 80 < k < 1
2 and c(k) < 0 81

2 < k < 1.

Now we choose orientation by choosing normal outward direction. Our goal is now to cal-

culate sign for fl1(t), f l2(t) others will follow similarly we give orientation to Tp (W u(p))
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9 Morse Homology Theorem

same as manifold. Now we get induced orientation for Tq (W s(q)) and Tr (W s(r)) now

�r(f)(x),�r(f)(y) completes the positive oriented basis using B̂u(x) & �̂u(y). Now

from the stable manifold we get Bs(x)&Bs(y). After getting this we can check that
⇣
Bs(x), B̂u(x)

⌘
is positively oriented but

⇣
Bs(y), B̂u(y)

⌘
is negatively oriented basis of

TxM and TyM so n(p, r) = �1 and n(p, q) = 1 for this x 2 fl1(t), y 2 fl2(t).

This way we get. @2(p) = q� q+ r� r = 0, @1(q) = s� s = 0, @1(r) = s� s = 0; so every

boundary operator is ’ 0 ’.

so Hj

�
T2
�
= Hj(M) =

8
>>><

>>>:

0 j > 2

hpi ' Z j = 2

hq, ri ' Z� Z j = 1

hsi ' Z j = 0
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Chapter 10

Morse Homology of Grassmannian
10.1 Morse Theory on the adjoint orbit of a Lie group

Definition 10.1.

A Lie group is a smooth manifold G that is also a group in the algebraic sense, with the

property that the multiplication map m : G ⇥ G ! G and inversion map i : G ! G,

given by

m(g, h) = gh, i(g) = g�1,

are both smooth.

1. A Lie group is, in particular, a topological group.

2. It is traditional to denote the identity element of an arbitrary Lie group by the

symbol e.

A Lie algebra g over R consists of a real vector space g equipped with a bilinear operator

[] : g⇥g ! g, called the Lie bracket. It satisfies the following properties for allX, Y, Z 2 g:

1. Antisymmetry: [X, Y ] = �[Y,X]

2. Jacobi Identity: [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0

If G is a compact Lie group, then its tangent space at the identity TeG can be identified

with the set of left-invariant vector fields on G. Under this identification, TeG = g forms

a Lie algebra with the Lie bracket operation on vector fields.

The smooth representation of a Lie group G on its Lie algebra g is called the adjoint

representation:

Ad : G ! Aut(g)
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10 Morse Homology of Grassmannian

The di↵erential at the identity of G gives a smooth map:

ad : g ! End(g)

This makes the following diagram commute:

g End(g)

G Aut(g)

ad

exp exp

Ad

Here, exp(X) is defined as the value at 1 of the unique 1-parameter subgroup ↵ : R !

G whose tangent vector at zero is X 2 g. Furthermore, for any X, Y 2 g, we have

ad(X)(Y ) = [X, Y ].

Given x0 2 g, let Gx0 denote the isotropy group of the adjoint representation at x0,

defined as:

Gx0 = {g 2 G | Ad(g)(x0) = x0} ✓ G

and let G · x0 denote the orbit of the adjoint representation at x0, defined as:

G · x0 = {Ad(g)(x0) | g 2 G} ✓ g

The homogeneous spaceG/Gx0 and the orbitG·x0 inherit smooth structures, and the map

h : G/Gx0 ! G ·x0 given by h([g]) = Ad(g)(x0) is a G-equivariant di↵eomorphism.[Refer

to Foundations of Di↵erentiable Manifolds and Lie Groups by Warner.]

Definition 10.2.

Let x0 2 g, where g is the Lie algebra of a compact Lie group G. For any A 2 g we define

the function fA : G · x0 ! R by

fA(x) =< x,A >

for all x 2 G · x0, where <,>: g⇥ g ! R is an inner product on g.

The function fA depends on the choice of the inner product on the real vector space g.
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10 Morse Homology of Grassmannian

Definition 10.3.

A bilinear form B : g⇥ g ! R on a Lie algebra g is said to be associative if and only if

it satisfies

B([X, Y ], Z) = B(X, [Y, Z])

for all X, Y, Z 2 g, where [,] denotes the Lie bracket on g.

Now we for any matrix group we will see some definition and results.

Ad(g)(X) = gXg�1

ad(X)(Y ) = [X, Y ] = XY � Y X

exp(X) = eX =
1X

k=0

Xk

k!

det eX = etrace(X)

for all g 2 G and for all X, Y 2 g. Moreover, using the properties of the trace it is easy

to show that the trace form

B(X, Y )
def
= Re trace(XY )

is an associative bilinear form, i.e.

Re trace([X, Y ]Z) = Re trace((XY � Y X)Z) = Re trace(XY Z � Y XZ)

= Re trace(XY Z)� Re trace(Y XZ)

= Re trace(XY Z)� Re trace(XZY )

= Re trace(X(Y Z � ZY ))

= Re trace(X[Y, Z])

for all X, Y, Z 2 g, that is symmetric and invariant under the adjoint representation.

Lemma 10.4.

Suppose that G is a matrix group with Lie algebra g that satisfies the following condition:

if X 2 g, then tX̄ 2 g. Then the trace form is nondegenerate on g. Moreover, if

G = U(n), SU(n), or SO(n), then the trace form is negative definite on the Lie algebra

g.
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10 Morse Homology of Grassmannian

Proof. Suppose that X 2 g satisfies B(X, Y ) = 0 for all Y 2 g. Then taking Y = tX̄ we

have
0 = B

�
X, tX̄

�

= Re trace
�
X tX̄

�

= Re
X

i,j

XijX̄ij

=
X

ij

|Xij|2

and we see that X = 0. For G = U(n), SU(n), or SO(n), we have X = �tX̄ for any

X 2 g, and hence,

B(X,X) = �
X

ij

|Xij|2

Hence, for G = U(n), SU(n), and SO(n), the negative of the trace form is an associative

inner product on the Lie algebra g.

From now on we will assume that the Lie algebra g has an associative inner product. Our

next step is to describe the tangent and normal spaces of the orbit G · x0 in terms of the

Lie algebra structure.

Lemma 10.5.

Let ⌘ : G⇥M ! M be a transitive smooth action of a compact Lie group G on a smooth

manifold M , and let x 2 M . For all X 2 TxM there exists a Y 2 g such that

d

dt
⌘(exp(tY ), x)

����
t=0

= X

Proof. Let’s define ⌘x : G ! M as ⌘x(g) = ⌘(g, x) for all g 2 G. Then, the following

diagram commutes:
G

G/Gx M

⇡
⌘x

�

Here, � is a di↵eomorphism and ⇡ is a submersion. Hence, ⌘x is a submersion [Refer

to Foundations of Di↵erentiable Manifolds and Lie Groups by Warner]. In particular,

d⌘x|e : g ! TxM is surjective, where e is the identity of G.
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10 Morse Homology of Grassmannian

Given X 2 TxM , we can choose a Y 2 g such that d⌘x(Y ) = X. Then,

d

dt
⌘(exp(tY ), x)

����
t=0

=
d

dt
⌘x(exp(tY ))

����
t=0

= d⌘x(Y )

= X

The second equality follows, for instance, from Remark 3.36 of Foundations of Di↵eren-

tiable Manifolds and Lie Groups by Warner.

Lemma 10.6.

The tangent space at x 2 G · x0 is given by

Tx (G · x0) = [g, x] = [x, g]

Proof. We will prove this for only matrix group. In the preceding lemma, if we consider

X 2 Tx (G · x0), it implies the existence of a Y 2 g such that

d

dt
(Ad(exp(tY ))(x))

����
t=0

= X

d

dt
(Ad(exp(tY ))(x))

����
t=0

=
d

dt
((exp(tY ))x(exp(tY ))�1)

����
t=0

=
d

dt
((exp(tY ))x(exp(�tY )))

����
t=0

= {((Y exp(tY ))x(exp(tY ))�1)� ((exp(tY ))x(Y exp(tY ))�1)}
��
t=0

= {Y IxI � IxY I} = Y x� xY = [Y, x]

Therefore, we have Tx (G · x0) ✓ [g, x]. Conversely, for any Y 2 g, the equality

[Y, x] =
d

dt
(Ad(exp(tY ))(x))

����
t=0

shows that [Y, x] represents the derivative of a path in G · x0 passing through x at t = 0.

Consequently, [g, x] ✓ Tx (G · x0). Thus, we have

Tx (G · x0) = [g, x] = [x, g]

where the second equality arises from the skew-symmetry property of a Lie bracket.
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10 Morse Homology of Grassmannian

Lemma 10.7.

The normal space at x 2 G · x0 ✓ g with respect to an associative inner product on g is

given by

Nx (G · x0) = {Z 2 g | [Z, x] = 0}.

Proof. The vector Z 2 g is orthogonal to the tangent space at x 2 G · x0 if and only if

one (and hence all) of the following equivalent conditions hold:

< Z,X >= 0 for all X 2 Tx(G · x0)

, < Z, [x, Y ] >= 0 for all Y 2 g

, < [Z, x], Y >= 0 for all Y 2 g

,[Z, x] = 0

The second equivalence follows from associativity, and the last equivalence follows from

the fact that an inner product is nondegenerate.

Lemma 10.8.

For any x 2 G ·x0 and for any X 2 Tx (G · x0) the directional derivative of fA : G ·x0 ! R

in the direction of X is

DXfA =< X,A > .

Proof. First, observe that the function fA : G · x0 ! R naturally extends to f̃A : g ! R.

Furthermore, along any tangent direction to G · x0, the directional derivatives of fA and

f̃A coincide. Therefore, we can compute the partial derivative of fA in the direction

X 2 Tx (G · x0) as follows.

DXfA = lim
t!0

1

t

h
f̃A(x+ tX)� f̃A(x)

i

= lim
t!0

1

t
[< x+ tX,A > � < x,A >]

= lim
t!0

1

t
[t < X,A >]

=< X,A >
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10 Morse Homology of Grassmannian

Lemma 10.9.

A point p 2 G · x0 is a critical point of fA : G · x0 ! R if and only if

[p, A] = 0.

Proof. The point p 2 G · x0 is a critical point of fA if and only if one (and hence all) of

the following equivalent conditions hold:

DXfA = 0 for all X 2 Tp (G · x0)
, hX,Ai = 0 for all X 2 Tp (G · x0)
, h[Z, p], Ai = 0 for all Z 2 g
, hZ, [p, A]i = 0 for all Z 2 g
, [p, A] = 0

Here, the third equivalence follows from associativity, and the last equivalence follows

from the fact that an inner product is nondegenerate.

10.2 A Morse Function on an adjoint orbit of the
unitary group

Let’s now specialize to the scenario whereG = U(n+k) =
n
A 2 M(n+k)⇥(n+k)(C)

��t ĀA = In⇥n

o

and the associated Lie algebra g = u(n+ k) =
n
A 2 M(n+k)⇥(n+k)(C)

��t Ā = �A
o
, where

the inner product h·, ·i is defined as the negative of the trace form. In other words,

hA,Bi = � trace(AB)

for all A,B 2 u(n+ k). Additionally, we designate a specific point and

x0 =

✓
iIn⇥n 0n⇥k

0k⇥n 0k⇥k

◆
2 u(n+ k) We denote the adjoint action of U(n+ k) on u(n+ k)

by g · x = Ad(g)(x) = gxg�1, where g 2 U(n + k) and x 2 u(n + k). Later, we’ll

demonstrate that with these definitions, the orbit U(n + k) · x0 is di↵eomorphic to

Gn,n+k(C), the complex Grassmann manifold comprising n-dimensional complex planes

in Cn+k. This will be achieved by establishing the di↵eomorphism of both Gn,n+k(C)

and U(n+ k) · x0 to U(n+ k)/(U(n)⇥ U(k)), a smooth manifold of real dimension 2nk.

dim(U(n+ k)/(U(n)⇥ U(k))) = 2⇥ ( (n+k)(n+k+1)
2 � n(n+1)

2 � k(k+1)
2 = 2nk
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10 Morse Homology of Grassmannian

Lemma 10.10.

The function fA : U(n+ k) · x0 ! R given by fA(x) = hx,A > satisfies

fA(x) = �1

2
(gA(x)� C)

for some constant C 2 R where gA(x)
def
= kx� Ak2 for all x 2 U(n+ k) · x0. Hence, the

functions fA and gA have the same critical points, and a critical point p is degenerate for

fA if and only if it is degenerate for gA. Moreover, a non-degenerate critical p of index �p

for the function fA is a non-degenerate critical point of index 2nk � �p for the function

gA.

Proof. Given that the trace form is invariant under the adjoint representation, we have

< g · x0, g · x0 >=< gx0g�1, gx0g�1 >= Re trace(gx0g�1gx0g�1) = Re trace(gx0x0g�1) =

Re trace(x0x0g�1g) = Re trace(x0x0) =< x0, x0 > for all g 2 U(n + k). Thus, kxk2 =

kx0k2 holds for every x 2 U(n + k) · x0, meaning the orbit U(n + k) · x0 resides within

the sphere of radius kx0k in u(n+ k). Consequently,

gA(x) = kx� Ak2

=< x� A, x� A >

=< x, x > �2 < x,A > + < A,A >

= �2 < x,A > +C

for all x 2 U(n+ k) · x0, where C = kx0k2 + kAk2.

Let M be a manifold embedded in some Euclidean space Rr. Define a function E : N !

Rr by E(x,~v) = x+ ~v where N is the total space of the normal bundle of M in Rr, i.e.

N = {(x,~v) 2 Rr ⇥ Rr | x 2 M and ~v 2 Nx(M)}

Definition 10.11 (Focal point).

A point e 2 Rr is called a focal point of x 2 M with multiplicity µ if and only if

E(x,~v) = e for some ~v with (x,~v) 2 N and the Jacobian of E : N ! Rr at (x,~v) has

nullity µ > 0.
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10 Morse Homology of Grassmannian

Now we will discuss an Example of focal point of S1.

Center as a focal point of S1

Tangent at (cos t, sin t) will be (� sin t, cos t) so Normal at (cos t, sin t) will be (� cos t,� sin t)

NS1 = {(cos t, sin t, x cos t, x sin t) | t 2 (0, 2⇡), x 2 R}

E : NS1 ! R2 E(cos t, sin t, x cos t, x sin t) = (x+ 1)(cos t, sin t)

' : R2 ! NS1'(t, ✓) = (cos t, sin t, x cos t, x sin t)

Now |JE�'| =
����
�(x+ 1) sin t cos t
(x+ 1) cos t sin t

���� = �(x+ 1)

so |JE·'| = 0 i↵ x = �1 so (0, 0) is the one and only focal point.

Definition 10.12.

Let u1, . . . , um be local coordinates on M . The inclusion of M into Rr determines r

smooth functions

x1 (u1, . . . , um) , . . . , xr (u1, . . . , um)

given by projecting onto the axes in Rr. We will denote ~x (u1, . . . , um) = (x1, . . . , xr). The

first fundamental form associated to this coordinate system is the following symmetric

m⇥m matrix of real valued functions:

(gij) =

✓
@~x

@ui

· @~x
@uj

◆

The second fundamental form is the symmetric m⇥m matrix of vector valued functions
⇣
~̀
ij

⌘
where

~̀
ij

def
= normal component of

@2~x

@ui@uj

.

Lemma 10.13.

The nullity of the Jacobian of E at (p, t~v) 2 N equals the nullity of an r ⇥ r matrix of

the form 0

@
@~x

@ui

���
p

· @~x

@uj

����
p

� t~v · ~̀ij 0

⇤ I(r⇠m)⇥(r�m)

1

A

where I(r�m)⇥(r�m) denotes the (r�m)⇥ (r�m) identity matrix. Hence, p+ t~v is a focal

point of p 2 M with multiplicity µ if and only if the upper left m⇥m minor of the above

matrix is singular with nullity µ.
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10 Morse Homology of Grassmannian

Proof. Locally, we select r �m orthonormal vector fields

~w1 (u1, . . . , um) , . . . , ~wr�m (u1, . . . , um)

spanning the normal bundle ofM ✓ Rr. We introduce local coordinates (u1, . . . , um, t1, . . . , tr�m)

on the total space of the normal bundle N as follows: Let (u1, . . . , um, t1, . . . , tr�m) cor-

respond to the point
 
~x (u1, . . . , uk) ,

r�mX

↵=1

t↵ ~w↵ (u1, . . . , um)

!
2 N

In these coordinates, the function E : N ! Rr becomes

~e (u1, . . . , um, t1, . . . , tr�m) = ~x (u1, . . . , uk) +
r�mX

↵=1

t↵ ~w↵ (u1, . . . , um)

and its partial derivatives are

@~e

@ui

=
@~x

@ui

+
r�mX

↵=1

t↵
@ ~w↵
@ui

@~e

@t↵
= ~w↵

By multiplying the Jacobian of ~e on the left by the r ⇥ r nonsingular matrix whose

rows consist of the linearly independent vectors @~x

@u1
, . . . , @~x

@um
, ~w1, . . . , ~wr�m, we obtain an

r ⇥ r matrix whose nullity equals the nullity of the Jacobian of E. This matrix has the

following form: 0

@

⇣
@~x

@ui
· @~x

@uj
+
P

↵
t↵

~w↵
@ui

· @~x

@uj

⌘
0

⇣P
↵
t↵

@ ~w↵
@ui

· ~w�
⌘

I(r�m)⇥(r�m)

1

A .

Using the identity

0 =
@

@ui

✓
~w↵ ·

@~x

@uj

◆
=
@ ~w↵
@ui

· @~x
@uj

+ ~w↵ ·
@2~x

@ui@uj

we deduce that the upper left m⇥m minor of the matrix is
 
@~x

@ui

· @~x
@uj

�
r�mX

↵=1

t↵ ~w↵ · ~̀ij

!

where
P

r�m

↵=1 t↵ ~w↵ is some vector t~v that is normal to M .

Lemma 10.14.

The point p 2 M ✓ Rr is a critical point of gA(x) = kx � Ak2 if and only if A � p is
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normal to M at p. Moreover, if ~v = A � p is normal to M at p, then the Hessian of gA

at the critical point p satisfies

Hp (gA) = 2

0

@ @~x

@ui

����
p

· @~x
@uj

�����
p

� ~v · ~̀ij

1

A

Proof. In line with Definition 10.12, let’s denote

gA (~x (u1, . . . , um)) = k~x� Ak2 = ~x · ~x� 2~x · A+ A · A

This gives us
@gA
@ui

= 2
@~x

@ui

· (~x� A)

Observing this, we note that gA reaches a critical point at p if and only if p � A (or

equivalently A� p) is perpendicular to M at p. The second partial derivatives of gA are

@2gA
@ui@uj

= 2

✓
@~x

@ui

· @~x
@uj

+
@2~x

@ui@uj

· (~x� A)

◆

Thus, if ~v = A � p is perpendicular to M at p, then p is a critical point of gA, and the

Hessian of gA at p is represented by

Hp (gA) = 2

0

@ @~x

@ui

����
p

· @~x
@uj

�����
p

� ~v · ~̀ij

1

A

Lemma 10.15.

A point p 2 M is a degenerate critical point of the function gA : M ! R given by

gA(x) = kx�Ak2 if and only if A is a focal point of p 2 M . The nullity of p as a critical

point of gA of is equal to the multiplicity of A as a focal point of p 2 M .

Proof. If p represents a critical point of gA(x) = kx � Ak2, then according to Lemma

10.14, ~v = A � p is perpendicular to M at p. Hence, E(p,~v) = A where (p,~v) 2 N .

Furthermore, Lemmas 10.14 and 10.13 a�rm that the nullity of the Hessian Hp (gA) and

the nullity of the Jacobian of E at (p,~v) are equivalent.
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Lemma 10.16.

The index of gA = kx � Ak2 at a non-degenerate critical point p 2 M is equal to the

number of focal points of p 2 M that lie on the line segment from p to A; each focal

point being counted with multiplicity.

Proof. The index of the matrix

Hp (gA) = 2

0

@ @~x

@ui

����
p

· @~x
@uj

�����
p

� ~v · ~̀ij

1

A

equals the count of its negative eigenvalues. By choosing local coordinates such that 
@~x

@ui

���
p

· @~x

@uj

����
p

!
becomes the identity matrix, this count equates to the number of eigen-

values of
⇣
~v · ~̀ij

⌘
that exceed 1.

For each eigenvalue � > 1, according to Lemma 10.13, the point p+ 1
�
~v stands as a focal

point of p 2 M . Furthermore, the multiplicity of the focal point p + 1
�
~v matches the

multiplicity of � as an eigenvalue. Similarly, if p + t~v represents a focal point of p 2 M

with multiplicity µ where 0 < t < 1, Lemma 10.13 suggests that 1
t
> 1 emerges as an

eigenvalue of
⇣
~v · ~̀ij

⌘
with multiplicity µ.

As the focal point of S1 is the center of the S1 denoted as f here.and if we choose any

point inside the circle as A then we can see that the previous theorem is true as only

critical point is p, q the diagonally opposite point of the circle where the diagonal passes

through A. As line joining between A, p passes through f with nullity of JE as 1 so
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�p = 1. As line joining between A, q doesn’t passes through f(only focal point of S1) so

�q = 0.

Remark 10.17.

When ~v serves as a unit vector normal to M at p, the matrix
⇣
~v · ~̀ij

⌘
earns the title of

the second fundamental form of M at p in the direction of ~v. The eigenvalues of this

matrix are recognized as the principal curvatures of M at p in the normal direction of ~v,

while the reciprocals of these eigenvalues are termed the principal radii of curvature.

We will now utilize the preceding results for the manifold M = U(n+ k) · x0 ⇢ u(n+ k).

It’s worth noting that according to Proposition 10.7,

N = {(x, Z) 2 u(n+ k)⇥ u(n+ k) | x 2 U(n+ k) · x0 and [Z, x] = 0}

To determine the Jacobian of E : N ! u(n + k), we’ll require a basis for the tangent

space of N .

Lemma 10.18.

Let N ⇢ g ⇥ g be the total space of the normal bundle of G · x0, let x 2 G · x0, and let

Z 2 Nx (G · x0). If [Y1, x] , . . . , [Y2nk, x] is a basis for Tx (G · x0) and Z2nk+1, . . . , Z2(n+k
2 )

is a basis for Nx (U(n+ k) · x0), then

X1 = ([Y1, x] , [Y1, Z])
...

...
...

X2nk = ([Y2nk, x] , [Y2nk, Z])

X2nk+1 =
⇣�!
0 , Z2nk+1

⌘

...
...

...

X2((n+k)
2 ) =

⇣�!
0 , Z2((n+k)

2 )

⌘
.

is a basis for T(x,Z)N .

Proof. For j = 1, . . . , 2nk, let’s define paths �j : R ! U(n+k) ·x0 by �j(t) = (exp tYj) ·x.

These paths through x satisfy �0
j
(0) = [Yj, x] for all j = 1, . . . , 2nk. We assert that
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�?
j
(t) = (exp tYj) · Z 2 N�j(t)(U(n + k) · x) for all j = 1, . . . , 2nk. To comprehend this,

observe that: ⇥
�j(t), �

?
j
(t)
⇤
= [(exp tYj) · x, (exp tYj) · Z]

= (exp tYj) · [x, Z]

= (exp tYj) · 0

= 0

Thus, pj(t) =
�
�j(t), �?j (t)

�
2 N for all t 2 R and pj(0) = (x, Z). Consequently,

p0
j
(0) = ([Yj, x] , [Yj, Z]) 2 T(x,Z)N for all j = 1, . . . , 2nk.

Now, let’s define pj(t) = (x, Z + tZj) for all j = 2nk+1, . . . , 2
�
(n+k)

2

�
. Clearly, pj(t) 2 N

for all t 2 R and pj(0) = (x, Z). Therefore, the derivative p0
j
(0) =

⇣�!
0 , Zj

⌘
2 T(x,Z)N for

all j = 2nk+1, . . . , 2
�
(n+k)

2

�
. The linear independence stems evidently from the selection

of Yj’s and Zj’s.

Lemma 10.19.

Let (x, Z) 2 N . For all j = 1, . . . , 2nk we have,

DXjE
��
(x,Z)

= [Yj, x] + [Yj, Z] ,

and for all j = 2nk + 1, . . . , 2
�
(n+k)

2

�
we have,

DXjE
��
(x,Z)

= Zj.

Proof. First we need to extend E to whole u(n+ k)⇥ u(n+ k).

For any j = 1, . . . , 2nk we have,

DXjE
��
(x,Z)

= lim
t!0

1

t
(E ((x, Z) + tXj)� E(x, Z))

= lim
t!0

1

t
(E (x+ t [Yj, x] , Z + t [Yj, Z])� (x+ Z))

= lim
t!0

1

t
(x+ t [Yj, x] + Z + t [Yj, Z]� x� Z)

= [Yj, x] + [Yj, Z] .
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For any j = 2nk + 1, . . . , 2
�
(n+k)

2

�
we have,

DXjE
��
(x,Z)

= lim
t!0

1

t
(E ((x, Z) + tXj)� E(x, Z))

= lim
t!0

1

t
(E (x, Z + tZj)� (x+ Z))

= lim
t!0

1

t
(x+B + tZj � x� B)

= Zj.

Theorem 10.20.

If A 2 u(n + k) has distinct eigenvalues, then the function fA : U(n + k) · x0 ! R given

by fA(x) =< x,A > is Morse function.

Proof. Let A 2 u(n+ k) be a matrix with distinct eigenvalues, and p 2 U(n+ k) · x0 be

a critical point of fA. Given that p 2 U(n + k) · x0, there exists g 2 U(n + k) such that

g · p = x0. Since the inner product <,> is invariant under the adjoint representation, we

can express fA(x) =< x,A > as fA(x) =< g ·x, g ·A >= fg·A(g ·x) for all x 2 U(n+k) ·x0.

Consequently, p is a non-degenerate critical point of fA if and only if x0 is a non-degenerate

critical point of the function fg·A. As A and g · A = gAg�1 share the same eigenvalues,

it su�ces to prove the theorem in the case where the critical point p = x0.

According to Proposition 10.9, x0 is a critical point of fA if and only if [x0, A] = 0, or

equivalently, if and only if x0 commutes with A. Since x0 and A commute, there exists

g 2 U(n + k) such that both gx0g�1 and gAg�1 are diagonal. Successive conjugations

by permutation matrices can bring gx0g�1 back to x0 while maintaining gAg�1 diagonal.

Hence, there exists a g 2 U(n + k) such that g · x0 = x0 and g · A is diagonal. By the

same reasoning, we can assume that A is diagonal.

As per Lemma 10.10, x0 is a non-degenerate critical point for the function fA(x) =<

x,A > if and only if it is a non-degenerate critical point for the function gA(x) = kx�Ak2.

Therefore, by Lemma 10.15, x0 is a non-degenerate critical point of fA if and only if the

Jacobian of E : N ! u(n+ k) is non-singular at (x0, A� x0) 2 N .
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The computation of the partial derivatives of E was accomplished in Lemma 10.19. To

conclude the proof, we need to select specific matrices Y1, . . . , Y2nk such that [Y1, x0] , . . . , [Y2nk, x0]

forms a basis for Tx0 (U(n+ k) · x0) and verify that [Y1, A] , . . . , [Y2nk, A] , Z2nk+1, . . . , Z(n+k)2

are linearly independent. (Note that [Yj, x0] + [Yj, A� x0] = [Yj, A].)

The following selections demonstrate linear independence clearly. For j = 1, . . . , 2nk, we

choose Yj =

✓
An⇥n Bn⇥k

Ck⇥n Dk⇥k

◆
and C =t B by assigning a 1 or i in some entry of B with

zeros elsewhere. For j = 2nk+1, . . . , (n+k)2, we select Zj =

✓
An⇥n Bn⇥k

Ck⇥n Dk⇥k

◆
by either

placing a basis element of u(n) in A zeros elsewhere or by placing a basis element of u(k)

in D with zeros elsewhere.

10.3 Calculating Gradient

Lemma 10.21.

Define J(X) = [X, x] for all X 2 Tx (U(n+ k) · x0). Then J is an almost complex

structure on U(n+ k) · x0, i.e. J2 = �1.

Proof. According to Lemma 10.6, X 2 Tx (U(n+ k) · x0) if and only if X = [Y, x] for

some Y 2 u(n + k). Since g · [Y, x] = [g · Y, g · x] for all g 2 U(n + k), we only need to

verify that [[[Y, x0] , x0] , x0] = � [Y, x0] for all Y 2 u(n+ k).

The matrix [Y, x0] takes the form:

[Y, x0] =

✓
0 �iB
iC 0

◆

where the upper left block of zeroes is n⇥ n and the lower right block of zeroes is k⇥ k.

Since

[[Y, x0] , x0] =

✓
0 iB

�iC 0

◆

we observe that [[[Y, x0] , x0] , x0] = � [Y, x0].

Lemma 10.22.

For all A 2 u(n+ k) and x 2 U(n+ k) · x0 the projection of A onto Tx (U(n+ k) · x0) is

�[[A, x], x].
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Proof. Consider A 2 u(n + k) and x 2 U(n + k) · x0 ✓ u(n + k). The projection of

A onto Tx (U(n+ k) · x0) is defined as the unique vector X 2 Tx (U(n+ k) · x0) such

that A � X 2 Nx (U(n+ k) · x0). As per Lemma 10.7, this condition is equivalent to

[A�X, x] = 0, or [A, x] = [X, x]. Thus, the lemma asserts that [A, x] = �[[[A, x], x], x],

implying that [�, x] serves as an almost complex structure on U(n + k) · x0. This fact

was demonstrated in Lemma 10.21.

Theorem 10.23.

The gradient vector field of fA is (rfA) (x) = �[[A, x], x].

Proof. The vector (rfA) (x) is the unique element of Tx (U(n+ k) · x0) which satisfies

< (rfA) (x), X >= DXfA

for all X 2 Tx (U(n+ k) · x0). So by Lemma 10.8,

< (rfA) (x), X >=< A,X >

for all X 2 Tx (U(n+ k) · x0). That is, (rfA) (x) is the projection of A onto the tangent

space Tx (U(n+ k) · x0). The result now follows from the previous lemma.

Remark 10.24.

For any x 2 U(n+ k) · x0, the path �x(t) = exp(t[A, x]) · x satisfies �0
x
(0) = �r (fA) (x).

However, �x is not a gradient flow line. To see this we compute �0
x
(t0) as follows. Define

�̃x(t) = �x (t+ t0).

�0
x
(t0) = �̃0

x
(0)

=
d

dt
exp ((t+ t0) [A, x]) · x

����
t=0

=
d

dt
exp(t[A, x]) · (exp (t0[A, x]) · x)

����
t=0

= [[A, x], exp (t0[A, x]) · x]

6= [[A, �x (t0)] , �x (t0)]

The correct formula for the gradient flow lines of fA are given in later; We will describe

the gradient flow lines in terms of the action of GLn+k(C) on the complex Grassmann

manifold Gn,n+k(C).
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10.4 The critical point of fA : U(n + k) · x0 ! R

Now, we’ll select a particular Morse function defined on the orbit U(n + k) · x0 and

determine its critical points and indices. Consider the matrix:

A =

0

BBB@

i 0
2i

. . .
0 (n+ k)i

1

CCCA

Proposition 10.25.

The function fA : U(n + k) · x0 ! R is a Morse function whose critical points are the

diagonal matrices in u(n+ k) which have exactly n entries equal to i and k entries equal

to 0 along the diagonal.

Proof. According to Lemma 10.9, a point p 2 U(n+k) ·x0 becomes a critical point of the

function fA if and only if it commutes with the matrix A. Given that A is diagonal with

distinct eigenvalues, this criterion implies that p must also be diagonal. Since conjugation

by an element of U(n + k) preserves the eigenvalues of a matrix, p must have exactly n

entries equal to i and k entries equal to 0 along its diagonal. Furthermore, by conjugating

x0 with permutation matrices, it’s evident that all such diagonal matrices fall within the

orbit U(n+ k) · x0.

To compute the indices of the critical points of fA, we will employ Lemmas 10.10 and

10.16. Before delving into the computation, let’s introduce some additional notation.

Consider an n-tuple � = (r1, . . . , rn) comprising integers from 1 to n+k, where r1 < r2 <

· · · < rn. This tuple, termed a Schubert symbol, encapsulates vital information for our

analysis. For any Schubert symbol �, we denote x� as the diagonal matrix in u(n + k)

with an i in rows r1, . . . , rn and zeros elsewhere. Thus, � e↵ectively specifies the critical

point x� under consideration.

To determine the index of x�, we need to identify specific matrices Y1, . . . , Y2nk such that

[Y1, x�], . . . , [Y2nk, x�] form a basis for Tx�(U(n+k) ·x0). To this end, we define the matrix

155



10 Morse Homology of Grassmannian

Yr,s(z) as follows: it takes the value z in the (r, s) entry, �z̄ in the (s, r) entry, and zeros

elsewhere. This leads us to the following proposition, which is self-evident.

Proposition 10.26.

If D 2 u(n+ k) is diagonal with entries (d1, . . . , dn+k) along the diagonal then,

[Yr,s(z), D] = Yr,s (z (ds � dr))

for all z 2 C.

Theorem 10.27.

The index of x� is twice the number of rows above each i which consist entirely of zeros.

That is,

index of x� = 2
nX

j=1

(rj � j) = 2

 
nX

j=1

rj

!
� n(n+ 1).

Proof. According to Lemma 10.16, to determine the index of x� as a critical point of the

function gA(x) = kx � Ak2, we count the points B (taking multiplicities into account)

along the line segment between x� and A where the Jacobian of the function E : N !

u(n+ k) given by E(x,~v) = x+~v is singular at (x�, B � x�) in N . The multiplicity of B

corresponds to the dimension of the kernel of the Jacobian of E at (x�, B � x�). Since

x� also serves as a critical point of fA, its index as a critical point of fA is 2nk minus its

index as a critical point of gA, as per Lemma 10.10.

Now, let’s delve into the computation by introducing matrices Yr,s(1) and Yr,s(i) in

u(n + k), where 1  r < s  n + k, with either r or s belonging to {r1, . . . , rn},

but not both. As [Yr,s(1), x�] = ±Yr,s(i) and [Yr,s(i), x�] = ±Yr,s(1), it’s evident that

{[Yr,s(1), x�], [Yr,s(i), x�]} forms a basis for Tx�(U(n + k) · x0). We select the obvious

matrices Z2nk+1, . . . , Z(n+k)2 as a basis for Nx�(U(n + k) · x0), which possess only two

non-zero entries either 1, �1, or i in the position (r, s) where r, s either they both belong

to � or don’t.

Lemma 10.16 provides insight into the Jacobian of E at (x�, t(A � x�)) in N , where

0 < t < 1. We obtain the columns of this Jacobian by computing the commutators,
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leveraging Proposition 8.31:

[Yr,s(1), x� + t(A� x�)] =

(
Yr,s(it(s+ 1� r)� i) if r 2 {r1, . . . , rn}
Yr,s(i� it(r + 1� s)) if s 2 {r1, . . . , rn}

[Yr,s(i), x� + t(A� x�)] =

(
Yr,s(1� t(s+ 1� r)) if r 2 {r1, . . . , rn}
Yr,s(t(r + 1� s)� 1) if s 2 {r1, . . . , rn}

Analyzing these commutators, it’s evident that the Jacobian has a non-trivial kernel if

and only if one or more of them are identically zero. The dimension of the kernel at such

a point is determined by counting the number of zero commutators. Thus, to compute

the index of x�, we count the number of commutators for which there exists a t such

that 0 < t < 1 making the commutator zero. Since r < s, such a t exists if and only if

r belongs to {r1, . . . , rn}. For a fixed r in {r1, . . . , rn}, the number of allowed s values

equals the number of rows below row r in x� that consist entirely of zeros. Since both

[Yr,s(1), x�+ t(A�x�)] and [Yr,s(i), x�+ t(A�x�)] become zero for t = 1/(s+1� r), the

index of x� as a critical point of gA is twice the sum of these numbers. Considering there

are rj � j rows of zeros above row rj, and since there are k rows of zeros in the matrix,

there are k � (rj � j) rows of zeros below row rj for all j = 1, . . . , n. Consequently, the

index of x� as a critical point of gA is given by:

2
nX

j=1

(k � (rj � j)) = 2nk � 2
nX

j=1

(rj � j)

and the index of x� as a critical point of fA is 2
P

n

j=1 (rj � j).

Example 10.28.

Now to understand the technique of the proof we will calculate the index of a critical

point of Gr2,4.

Now we know that the critical point of fA on G.x0. is a diagonal matrix of dimension

4⇥ 4 with two ’ i ’ & two ’ 0 ’. A =

0

BB@

i 0 0 0
0 2i 0 0
0 0 3i 0
0 0 0 4i

1

CCA

So the critical points are x(1,2), x(1,3), x(1,4), x(2,3), x(2,4), x(3,2) The indices are 0, 2, 4, 4, 6, 8

consecutively.

Now we will try to calculate index of one of the critical point then others will follow
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similarly.

Now first we need to calculate the index of this critical point as a critical point of the

function gA(x) = kx� Ak2.

Now if we join x(2,4) with A by a line segment then. index will be sum of nullity of each

focal point on the line segment.

Now let’s consider the 4⇥ 4 matrices from u(n+ k)

A1 =

0

BB@

0 0 0 0
0 0 i 0
0 i 0 0
0 0 0 0

1

CCA , A2 =

0

BB@

0 0 0 0
0 0 1 0
0 �1 0 0
0 0 0 0

1

CCA , A5 =

0

BB@

0 i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

1

CCA , A4 =

0

BB@

0 1 0 0
�1 0 0 0
0 0 0 0
0 0 0 0

1

CCA

A5 =

0

BB@

0 0 0 0
0 0 0 0
0 0 0 i
0 0 i 0

1

CCA , A6 =

0

BB@

0 0 0 0
0 0 0 0
0 0 0 1
0 0 �1 0

1

CCA , A7 =

0

BB@

0 0 0 i
0 0 0 0
0 0 0 0
i 0 0 0

1

CCA , A8 =

0

BB@

0 0 0 1
0 0 0 0
0 0 0 0
�1 0 0 0

1

CCA

We can see that they are linearly independent and Tx(2,4)
(U(4) · x0) = hAiii2[8]

B9 =

0

BB@

0 0 1 0
0 0 0 0
�1 0 0 0
0 0 0 0

1

CCA , B10 =

0

BB@

0 0 i 0
0 0 0 0
i 0 0 0
0 0 0 0

1

CCA , B11 =

0

BB@

0 0 0 0
0 0 0 i
0 0 0 0
0 i 0 0

1

CCA , B12 =

0

BB@

0 0 0 0
0 0 0 1
0 0 0 0
0 �1 0 0

1

CCA

Similarly they are also linearly independent and Nx(2,4)
(U(4), x0) = hBiii2[9,12] Now for

0 < t < 1
�
x(2,4), t

�
A� x(2,4)

��
2 Nx(2, 4)

JE has columns
⇥
Ai, x(2,4) + t

�
A� x(2,4)

�⇤
8i 2 [8] and Bi 8i 2 [0, 12]. So the

Columns are
0

BB@

0 0 1 0
0 0 0 0
�1 0 0 0
0 0 0 0

1

CCA ,

0

BB@

0 0 i 0
0 0 0 0
i 0 0 0
0 0 0 0

1

CCA ,

0

BB@

0 0 0 0
0 0 0 i
0 0 0 0
0 i 0 0

1

CCA ,

0

BB@

0 0 0 0
0 0 0 1
0 0 0 0
0 �1 0 0

1

CCA

0

BB@

0 i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

1

CCA ,

0

BB@

0 0 0 �i(2t� 1)
0 0 �i(2t� 1) 0
0 0 0 0
0 0 0 0

1

CCA ,

0

BB@

0 0 0 i(2t� 1)
0 0 i(2t� 1) 0
0 0 0 0
0 0 0 0

1

CCA ,

0

BB@

0 �1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

1

CCA ,

0

BB@

0 0 0 0
0 0 0 0
0 0 0 �1
0 0 1 0

1

CCA ,

0

BB@

0 0 0 0
0 0 0 0
0 0 0 i
0 0 i 0

1

CCA ,

0

BB@

0 0 0 �1
0 0 0 0
0 0 0 0
1 0 0 0

1

CCA ,

0

BB@

0 0 0 i(2t+ 1)
0 0 0 0
0 0 0 0

i(2t+ 1) 0 0 0

1

CCA

As 0 < t < 1 so only for t = 1
2 we get a focal point with nullity 2 so x(2,4) has index 2 in

gA and this implies 8� 2 = 6 index in fA.
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10.5 A Morse function on the complex Grassman-
nian

We’ve established the existence of a Morse function on a specific orbit of the adjoint

representation of U(n + k) on its Lie algebra u(n + k). Now, let’s connect this function

to a Morse function on the complex Grassmann manifold Gn,n+k(C).

Consider Gn,n+k(C), the complex Grassmann manifold comprising n-dimensional complex

planes in Cn+k, and let Cn ✓ Cn+k be the subspace spanned by the first n standard basis

vectors. There’s a transitive action

U(n+ k)⇥Gn,n+k(C) ! Gn,n+k(C)

defined by mapping Cn 2 Gn,n+k(C) to its image under the linear transformation deter-

mined by a matrix in U(n + k). Clearly, the stabilizer of Cn consists of all matrices of

the form ✓
Un 0
0 Uk

◆

where Un 2 U(n) and Uk 2 U(k). Thus, we obtain a di↵eomorphism

 1 : Gn,n+k(C) ! U(n+ k)/(U(n)⇥ U(k))

Leveraging this di↵eomorphism, we can embed Gn,n+k(C) into the Lie algebra u(n + k)

as follows: Define a map  2 : U(n+ k)/(U(n)⇥ U(k)) ! u(n+ k) by  2([U ]) = U · x0 =

Ux0U�1, where [U ] denotes the coset represented by U 2 U(n + k). A lemma confirms

that  2 is a di↵eomorphism, thereby establishing

 
def
=  2 �  1 : Gn,n+k(C)

 1�! U(n+ k)/(U(n)⇥ U(k))
 2�! U(n+ k) · x0

as a di↵eomorphism. With this, we define a Morse function fA : Gn,n+k(C) ! R by

fA(x) = h (x), Ai = � trace( (x)A)

where  (x)A represents matrix multiplication.

Lemma 10.29.

The map  2 is a well defined di↵eomorphism onto the orbit U(n+ k) · x0 ✓ u(n+ k).
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Proof. When a compact Lie group G smoothly acts on a manifold M , the quotient space

G/Gx is di↵eomorphic to the orbit G · x for all x 2 M (Theorem 3.62 of Foundations

of Di↵erentiable Manifolds and Lie Groups by Warner). Hence, we only need to confirm

that U(n)⇥U(k) acts as the stabilizer of x0. Let’s identify U(n)⇥U(k) ✓ u(n+ k) with

matrices of the form ✓
Un 0
0 Uk

◆

where Un 2 U(n) and Uk 2 U(k). For any U 2 U(n)⇥ U(k), we have:

Ux0U
�1 =

✓
Un 0
0 Uk

◆✓
iIn 0
0 0

◆✓
tŪn 0
0 tŪk

◆

=

✓
iUn 0
0 0

◆✓
tŪn 0
0 tŪn

◆

=

✓
iUn

tŪn 0
0 0

◆

= x0.

This demonstrates that U(n)⇥ U(k) ✓ U(n+ k)x0 . Now, assume U 2 U(n+ k) satisfies

Ux0U�1 = x0. Let

U =

✓
An B
C Dk

◆

where An is an n⇥ n complex matrix and Dk is a k ⇥ k complex matrix. Then,

x0 = Ux0
tŪ

= i

✓
An 0
C 0

◆✓
tĀn

tC̄
tB̄ tD̄k

◆

= i

✓
An

tĀn An
tC̄

CtĀn CtC̄

◆
.

In particular, this says that An
tĀn = In, and hence, An 2 U(n). So, all the columns and

rows of An have unit length, and hence, B = C = 0. Thus, U tŪ = In+k implies that

Dk 2 U(k), and hence, U 2 U(n)⇥ U(k).

Now we will see an explicit example of Morse function on Grassmannian.

Lemma 10.30.

If U =

✓
An B
C Dk

◆
2 U(n+ k) where An is some n⇥ n complex matrix and Dk is some
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k ⇥ k complex matrix, then fA (U · x0) is given by,

�
nX

j=1

j
�
length of jth row of An

�2 �
kX

j=1

(j + n)
�
length of jth row of C

�2
.

Proof. As in the proof of the preceding lemma we have,

Ux0U
�1 =

✓
An B
C Dk

◆✓
iIn 0
0 0

◆✓
tĀn

tC̄
tB̄ tD̄k

◆

= i

✓
An 0
C 0

◆✓
tĀn

tC̄
tB̄t tD̄k

◆

= i

✓
An

tĀn An
tC̄

CtĀn CtC̄

◆
.

Hence,

fA (U · x0) =< Ux0U
�1, A >

= � trace

0

B@i

✓
At

n
Ān At

n
C̄

CtĀn CtC̄

◆
(�i)

0

B@
1 0

. . .
0 n+ k

1

CA

1

CA

= �
nX

j=1

j
nX

i=1

kajik2 �
kX

j=1

(j + n)
nX

i=1

kcjik2

10.6 Stable & Unstable Manifold and Morse-Smale
function

Now, let’s delve into describing the gradient flow lines of fA : Gn,n+k(C) ! R. This

description will be articulated in terms of the action of GLn+k(C) on Gn,n+k(C), which

represents the set of n-dimensional complex planes in Cn+k. This action is defined as

follows: for any G 2 GLn+k(C) and any plane P 2 Gn,n+k(C), the product G · P is

defined to be G(P ), the image of the plane P under the linear transformation determined

by G.

To embark on this, we introduce the following general lemma.

Lemma 10.31.

Let ⌘ : G⇥M ! M be a smooth action of a compact Lie group G on a smooth manifold

M . Let x 2 M and let ⌘x : G ! M be induced from ⌘. Then Te (Gx) ✓ ker d⌘x(e) where
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e 2 G is the identity and Gx is the stabilizer of x. Moreover, Te (Gg·x) = Adg (Te (Gx))

for all g 2 G.

Proof. Consider a path �(t) in Gx with �(0) = e. Since �(t) lies entirely within Gx, the

function ⌘x(�(t)) is constant along this path. Therefore, its derivative with respect to t

evaluated at t = 0 is zero, i.e., d

dt
⌘x(�(t))

��
t=0

= d⌘x(e) (�0(0)) = 0. This demonstrates

that Te (Gx) ✓ ker d⌘x(e).

To prove the second statement, let’s recall that Gg·x = gGxg�1 and then consider paths

of the form g�(t)g�1, where �(t) 2 Gx and �(0) = e.

Lemma 10.32.

Let P 2 Gn,n+k(C). The gradient flow of the Morse function fA : Gn,n+k(C) ! R through

P is given by �P (t) = exp(itA)(P ).

Proof. Consider Cn ✓ Cn+k, the subspace spanned by the first n standard basis elements

of Cn+k. Let U 2 U(n + k) be a unitary matrix such that U (Cn) = P , and define x =

Ux0U�1 2 u(n+ k). In Remark 10.24, we observed that the path �x(t) = exp(t[A, x]) · x

in u(n + k) satisfies �0
x
(0) = [[A, x], x], which is minus the gradient vector of fA at x.

Under the di↵eomorphism U(n + k) · x0 ⇡ Gn,n+k(C), this path corresponds to �̃x(t) =

exp(t[A, x])(P ). Since �P (t+ t0) = �
P̃
(t) for some P̃ 2 Gn,n+k(C), it’s su�cient to prove

that �0
P
(0) = �̃0

x
(0). Define ⌘ : GLn+k(C)⇥Gn,n+k(C) ! Gn,n+k(C) as the smooth action

of GLn+k(C) on Gn,n+k(C) and let ⌘P : GLn+k(C) ! Gn,n+k(C) be induced from ⌘. In this

notation, �P (t) = ⌘P (exp(itA)) and �̃x(t) = ⌘P (exp(t[A, x])). By the chain rule, we have

�0
P
(0) = d⌘P (In+k) (iA) and �̃0

x
(0) = d⌘P (In+k) ([A, x]) where In+k is the (n+k)⇥ (n+k)

identity matrix. Thus, it su�ces to show d⌘P (In+k) (iA � [A, x]) = 0. To demonstrate

that iA� [A, x] 2 ker d⌘P (In+k), we apply the previous lemma and show that,

iA� [A, x] 2 TIn+k
(GLn+k(C)P ) = U

�
TIn+k

(GLn+k(C)Cn)
�
U�1

The stabilizer of Cn 2 Gn,n+k(C) consists of matrices in GLn+k(C) whose lower left

k ⇥ n block is zero. Since GLn+k(C) is open in C(n+k)2 , the tangent space at In+k of the
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stabilizer of Cn consists of matrices in the tangent space whose lower left k ⇥ n block is

zero. Therefore, we express iA� [A, x] as such a matrix conjugated with U :

iA� [A, x] = iA�
⇥
A,Ux0U

�1
⇤

= iA� U
⇥
U�1AU, x0

⇤
U�1

= U
�
iU�1AU �

⇥
U�1AU, x0

⇤�
U�1

Letting Y = U�1AU , it’s clear that iY � [Y, x0] has its lower left k ⇥ n block equal to

zero.

Remark 10.33.

In Remark 10.24, it was demonstrated that �̃0
x
(t) di↵ers from �r(f) (�̃x(t)) for t 6= 0.

It’s natural to question why the preceding proof applies to the path �P (t) = exp(itA)(P )

but not to �̃x(t) = exp(t[A, x])(P ), given that both paths satisfy

�0
P
(0) = �̃0

x
(0) = �r (fA) (P ).

The fundamental distinction lies in the fact that iA remains constant with respect to the

point P , whereas [A, x] does not. Consequently, while the path �P (t) fulfills �P (t+ t0) =

�
P̃
(t) for some P̃ 2 Gn,n+k(C), the same does not hold for the path �̃x(t).

It’s crucial to note that the matrix exp(itA) 2 GLn,n+k(C) is not unitary. Therefore,

the aforementioned description of gradient flow lines does not straightforwardly extend

to adjoint orbits U(n+ k) · x0 ✓ u(n+ k).

Our objective now is to delineate the unstable manifolds W u (x�) of fA. We begin by re-

visiting the concept of Schubert cells associated with a Schubert symbol � = (r1, . . . , rn).

The associated Schubert cell e(�) ✓ Gn,n+k(C) encompasses all planes P in Gn,n+k(C)

such that dim (P \ Crj) = j and dim (P \ Crj�1) = j � 1 for j = 1, . . . , n. Here,

Cj ✓ Cn+k represents the subspace spanned by the first j standard basis elements.

Recall that Gn,n+k(C) is topologized as a quotient of the Stiefel manifold Vn,n+k(C) ✓

Cn(n+k). This implies the existence of a map ⇡ : Vn,n+k(C) ! Gn,n+k(C), which sends an
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n-tuple of linearly independent vectors in Cn+k to the n-plane they span. An open set

U ✓ Gn,n+k(C) if and only if ⇡�1(U) is open in Vn,n+k(C) ⇢ Cn(n+k).

For any Schubert symbol �, let P� be the plane spanned by the standard basis elements

er1 , . . . , ern . Since P� corresponds to x� under the di↵eomorphism  : Gn,n+k(C) ! U(n+

k) · x0, Theorem 10.20 asserts that P� serves as a critical point of fA : Gn,n+k(C) ! R.

Theorem 10.34.

For any Schubert symbol � = (r1, . . . , rn),

W u (P�) = e(�).

Proof. Let � = (r1, . . . , rn) denote any Schubert symbol, and consider P 2 e(�). To

demonstrate that P 2 W u (P�), we aim to show that for any open neighborhood U ⇢

Gn,n+k(C) containing P�, there exists T < 0 such that for all t < T , we have �P (t) =

exp(itA)(P ) 2 U .

Given that P 2 e(�), we can select a basis v1, . . . , vn of P such that for all j = 1, . . . , n,

vj has a 1 in the rth
j

entry and zeros in entries rj + 1, . . . , n + k. It’s worth noting

that exp(itA) is essentially a diagonal matrix with entries e�t, e�2t, . . . , e�(n+k)t along the

diagonal. Moreover, the vectors:

er1t exp(itA) (v1) , . . . , e
rnt exp(itA) (vn)

span the plane exp(itA)(P ). For j = 1, . . . , n, themth entry of the vector erjt exp(itA) (vj)

is:
ze(rj�m)t if m < rj � 1
1 if m = rj
0 if m = rj + 1, . . . , n+ k

Considering �̃P (t) = (er1t exp(itA) (v1) , . . . , ernt exp(itA) (vn)) as a path in Vn,n+k(C), we

have ⇡ (�̃P (t)) = �P (t) for all t 2 R. Since (er1 , . . . , ern) 2 ⇡�1(U), where ⇡�1(U) is open

in Vn,n+k(C), and limt!�1 �̃P (t) = (er1 , . . . , ern), we can select T < 0 such that for all

t < T , we have �̃P (t) 2 ⇡�1(U). This implies that �P (t) 2 U for all t < T .

Having shown e(�) ✓ W u (P�), we now consider P 2 W u (P�). Since the Schubert cells

partition Gn,n+k(C), there exists a Schubert symbol �̃ such that P 2 e(�̃). Consequently,
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P 2 W u (P�̃) by the argument presented in the preceding paragraph. Since the unstable

manifolds are disjoint, this implies that �̃ = �, and hence P 2 e(�).

To express the corresponding result for the stable manifolds W s (P�) of fA, we introduce

some notation. If e1, . . . , en+k denotes the standard basis for Cn+k, we define the ”inverse

standard basis” as ẽj = en+k�j+1 for j = 1, . . . , n+k. This leads to the ”inverse filtration”

of Cn+k as follows:

C̃0 ⇢ C̃1 ⇢ C̃2 ⇢ · · · ⇢ C̃n+k

where C̃j denotes the subspace spanned by the first j inverse standard basis elements.

For a Schubert symbol � = (r1, . . . , rn), we define the ”inverse Schubert cell” ẽ(�) by

stipulating that P 2 ẽ(p) if and only if for all j = 1, . . . , n, the following conditions hold:

1) dim
⇣
P \ C̃n+k+1�rj

⌘
= n+ 1� j

2) dim
⇣
P \ C̃n+k�rj

⌘
= n� j.

An essential observation about the inverse Schubert cell ẽ(�) is that P 2 ẽ(�) if and only

if one can select a basis v1, . . . , vn for p where vj has a zero in entries 1, . . . , rj � 1 and

a 1 in the rth
j

entry for all j = 1, . . . , n. The proof of the forthcoming theorem parallels

that of the previous one.

Theorem 10.35.

For any Schubert symbol � = (r1, . . . , rn) we have

W s (P�) = ẽ(�)

The preceeding two theorems give us the following description of the intersections of the

stable and unstable manifolds of fA.

Corollary 10.36.

If � = (r1, . . . , rn) and �̃ = (r̃1, . . . , r̃n) are Schubert cells, then W u (P�)\W s (P�̃) 6= ; if

and only if rj � r̃j for all j = 1, . . . , n.
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Proof. A plane P belongs to W u (P�) if and only if we can select a basis v1, . . . , vn for P

such that vj has a 1 in the rth
j

entry and zeros in entries rj + 1, . . . , n+ k. Conversely, a

plane P belongs to W s (p�̃) if and only if we can choose a basis ṽ1, . . . , ṽn for P where ṽj

has zeros in entries 1, . . . , r̃j � 1 and a 1 in the r̃th
j

entry for all j = 1, . . . , n.

If rj � r̃j for all j = 1, . . . , n, then the vectors w1, . . . , wn where wj has a 1 in entries rj

and r̃j and zeros elsewhere will form a basis for a plane in W u (P�) \W s (P�̃). However,

if rj < r̃j for some 1  j  n, then a contradiction arises, demonstrating that there can

be no flow from P� to P�̃.

Suppose there exists an n-plane P 2 W u (p�)\W s (p�̃), and let v1, . . . , vn and ṽ1, . . . , ṽn

be as defined earlier. By adding certain multiples of ṽj+1, . . . , ṽn to ṽj, we can construct a

vector v 2 P that has zeros in entries 1, 2, . . . , r̃j � 1, r̃j+1, r̃j+2, . . . , r̃n and a 1 in the r̃th
j

entry. However, v cannot belong to the span of v1, . . . , vn. Therefore, the n-plane p would

need to contain the n + 1 linearly independent vectors v1, . . . , vn, v. This contradiction

demonstrates that W u (P�) \W s (P�̃) = ;.

Following the previous corollary, we establish a partial ordering on the Schubert cells as

follows. Given Schubert cells � = (r1, . . . , rn) and �̃ = (r̃1, . . . , r̃n), we define � � �̃ if

and only if rj � r̃j for all j = 1, . . . , n. Notably, under this definition, � � �̃ if and only

if P� ⌫ P�̃.

For any pair of critical points P� and P�̃ of fA : Gn,n+k(C) ! R, we define W (P�, P�̃) =

W u (P�)\W s (P�̃). Now, we aim to demonstrate that for all critical points P� and P�̃ of

fA, W u (P�) t W s (P�̃), i.e., fA : Gn,n+k(C) ! R constitutes a Morse-Smale function.

Lemma 10.37.

Let ⇡ : E ! B be a smooth fiber bundle. Let V,W be submanifolds of B and let

p 2 V \ W . The manifolds V and W meet transversely at p if and only if there exists

some q 2 ⇡�1(p) with ⇡�1(V ) t ⇡�1(W ) at q.

Proof. First note that since ⇡ : E ! B is a submersion ⇡�1(V ) and ⇡�1(W ) are subman-
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ifolds of E by Theorem 5.11. Also, transversality is a local property and so it su�ces to

prove the lemma for a trivial bundle E = B ⇥ F . In this case we have,

⇡�1(V ) = V ⇥ F ✓ B ⇥ F

⇡�1(W ) = W ⇥ F ✓ B ⇥ F .

For any q = (p, x) 2 ⇡�1(p) we have,

Tq

�
⇡�1(V )

�
= Tp(V )⇥ Tx(F )

Tq

�
⇡�1(W )

�
= Tp(W )⇥ Tx(F )

Clearly,

(Tp(V )⇥ Tx(F ))� (Tp(W )⇥ Tx(F )) = Tp(B)⇥ Tx(F )

if and only if

Tp(V )� Tp(W ) = Tp(B)

Theorem 10.38.

The function fA : Gn,n+k(C) ! R is a Morse-Smale function.

Proof. Let Vn,n+k(C) ✓ Cn(n+k) represent the Stiefel manifold. Then ⇡ : Vn,n+k(C) !

Gn,n+k(C) forms a smooth fiber bundle. Let � = (r1, . . . , rn) and �̃ = (r̃1, . . . , r̃n) be

Schubert symbols satisfying � � �̃. For any P 2 W (P�, P�̃), we can select a basis

v1, . . . , vn for P such that vj has a 1 in the rth
j

entry and 0 in entries rj + 1, . . . , n + k.

Likewise, we can choose a basis ṽ1, . . . , ṽn for P with zeros in entries 1, . . . , r̃j � 1 and a

1 in the r̃th
j

entry.

Let q = (v1, . . . , vn) 2 Vn,n+k(C). Our goal is to demonstrate

⇡�1 (W u (P�)) t ⇡�1 (W s (P�0))

at q. Recall Vn,n+k(C) ✓ Cn(n+k). The tangent space Tq (⇡�1 (W u (P�))) consists of

vectors (v1, . . . , vn) 2 Cn(n+k) where vj has entries rj+ 1, . . . , n + k equal to zero (j =

1, . . . , n). Similarly, Tq (⇡�1 (W s (P�0))) comprises frames (ṽ1, . . . , ṽn) 2 Cn(n+k) where ṽj
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has entries 1, . . . , r̃j� 1 equal to zero (j = 1, . . . , n). Given rj � r̃j for all j = 1, . . . , n,

we obtain Tq

�
⇡�1 (W u (P�))� Tq

�
⇡�1 (W s (P�̃)) = Cn(n+k) = Tq (Vn,n+k(C)) .

10.7 The homology of Grn,n+k

The insights we’ve gained pave the way for a straightforward computation of the homology

of Gn,n+k(C) utilizing the Morse-Smale function fA : Gn,n+k(C) ! R.

Recall that Theorem 10.20 establishes that the Morse function fA possesses even indices,

as fA is a Morse-Smale function. This indicates that @n associated with the CW-complex

defined by fA are all null. Hence, according to the CW-Homology Theorem and the

Second Fundamental Theorem of Morse Theory, the homology of Gn,n+k(C) can be as-

certained by enumerating the critical points according to their indices. This culminates

in the following assertion.

Theorem 10.39.

The homology group Hj (Gn,n+k(C);Z) is isomorphic to the free abelian group generated

by the critical points of fA of index j for all j 2 Z+.

Definition 10.40.

A partition of j 2 Z+is an unordered sequence of positive integers with sum j. The

number of partitions of j is denoted by p(j).

The following table gives the value of p(j) for all j  10.

j 0 1 2 3 4 5 6 7 8 9 10
p(j) 1 1 2 3 5 7 11 15 22 30 42

For example, the integer 5 has seven partitions, namely:

11111, 1112, 113, 14, 122, 23, 5.

Theorem 10.41.

For all j 2 Z+, the homology group Hj (Gn,n+k(C);Z) is zero if j is odd and a free abelian
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group on r̃(j/2) generators if j is even, where r̃(j/2) denotes the number of partitions of

j/2 into at most n integers each of which is less than or equal to k.

Proof. For every Schubert symbol (r1, . . . , rn) with

(r1 � 1) + (r2 � 2) + · · ·+ (rn � n) = j/2

we get a partition of j :

r1 � 1  r2 � 2  rn � n

(if we ignore any leading zeros) consisting of integers less than or equal to k. Conversely,

give any partition i1  i2  · · ·  in of j/2 (which we pad with leading zeros to make

length n ) with integers that are less than or equal to k we have a Schubert symbol:

� = (i1 + 1, i2 + 2, . . . , in + n)

In relation to the critical point x�, ij corresponds to the number of rows of zeros above

the j/2th i along the diagonal for all i = 1, . . . , j/2. This proves the theorem.

Now we will sum up all the homology groups of Gr2,4, Gr2,4, Gr2,4 using the previous

results.

Homology Gr2,4 GeneratorsGr2,4 Gr2,5 GeneratorsGr2,5 Gr3,5 GeneratorsGr3,5

H0 Z x(1,2) Z x(1,2) Z x(1,2,3)

H2 Z x(1,3) Z x(1,3) Z x(1,2,4)

H4 Z� Z x(1,4), x(2,3) Z� Z x(1,4), x(2,3) Z� Z x(1,2,5),x(1,3,4)

H6 Z x(2,4) Z� Z x(1,5), x(2,4) Z� Z x(1,3,5),x(2,3,4)

H8 Z x(3,4) Z� Z x(2,5), x(3,4) Z� Z x(1,4,5),x(2,3,5)

H10 0 0 Z x(3,5) Z x(2,4,5)

H12 0 0 Z x(4,5) Z x(3,4,5)

Hj [j is odd] 0 0 0 0 0 0
Hj [j > 12] 0 0 0 0 0 0

So we can see that Gr2,5 ⇡ Gr3,5
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