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Short Bio

Mirzakhani was born on 3rd May 1977, in Tehran, Iran.

In the 1995 International Mathematical Olympiad, she became the
first Iranian student to achieve a perfect score and to win two gold
medals.

She obtained her BSc in mathematics in 1999 from the Sharif
University of Technology, Tehran.

She did her graduate studies at Harvard University, under the
supervision of Fields medallist Curtis T. McMullen and obtained
her PhD in 2004.
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Her PhD thesis was published in 3 parts in 3 top journals of
Mathematics, Annals of Mathematics, Inventiones Mathematicae
and Journal of the American Mathematical Society.

Mirzakhani was awarded the Fields Medal in 2014 for ”her
outstanding contributions to the dynamics and geometry of
Riemann surfaces and their moduli spaces”.

She died of breast cancer on 14 July 2017 at the age of 40.
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Geodesics on hyperbolic surfaces

In her PhD thesis, Mirzakhani studies the growth of the number
sX (L) of simple closed geodesics of length at most L on a closed
hyperbolic surface X .

Using this she gave a striking new proof of the Witten conjecture.
The first proof of this conjecture was given by Maxim Konsevic.

This conjecture has deep consequences in quantum gravity, a field
of theoretical physics, that seeks to describe gravity according to
the principles of quantum mechanics.
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Hyperbolic plane

The unit disk in the plane has a natural geometry called the
Hyperbolic geometry or the Lobachevski geometry.

Points: Points of unit disk

D = {(x , y) ∈ R2 | x2 + y2 < 1}

Lines: Circles in D perpendicular to the boundary circle, also called
geodesics.

Angles: Same as Euclidean angles.
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Hyperbolic Geometry

The geometry of points and lines in the hyperbolic plane satisfy
the first four postulates of Euclidean geometry, namely:

1. A straight line segment can be drawn joining any two points.

2. Any straight line segment can be extended indefinitely in a
straight line.

3. Given any straight line segment, a circle can be drawn having
the segment as radius and one endpoint as center.

4. All right angles are congruent.

However it does not satisfy the 5th postulate, or the parallel
postulate:

5 Given any straight line and a point not on it, there ”exists one
and only one straight line which passes” through that point and
never intersects the first line.
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Hyperbolic distance

Recall in Euclidean plane if γ : [0, 1]→ R2 is a curve, and
γ(t) = (x(t), y(t)) then its length is

`(γ) =

∫ 1

0
|γ′(t)|dt =

∫ 1

0

√
(x ′(t))2 + (y ′(t))2dt.

In the hyperbolic plane we measure lengths of curves differently. If

γ : [0, 1]→ D, γ(t) = (x(t), y(t))

then length of γ is

`(γ) =

∫ 1

0

2|γ′(t)|
1− |γ(t)|2

dt =

∫ 1

0

2
√

(x ′(t))2 + (y ′(t))2

1− x2(t)− y2(t)
dt.
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Geodesics

It turns out with this length measure also called hyperbolic metric,
the shortest curve between any two points is the unique circle
passing through those points and meeting the boundary at right
angles.

These curves of minimal length are called geodesics.

The distance between any two points in the Hyperbolic plane is the
length of the shortest curve joining the two points. Hence the
length of the unique geodesic between those points.
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Distance

Geodesic between the origin O = (0, 0) and the point A = (a, 0) in
D is the straight line OA, parametrized by

γ : [0, 1]→ D, γ(t) = (0, at).

Hence we can calculate the distance d(O,A) by

d(O,A) = `(γ) =

∫ 1

0

2|γ′(t)|
1− |γ(t)|2

dt

=

∫ 1

0

2|a|
1− a2t2

dt = ln
1 + |a|
1− |a|

.

Note that d(O,A)→∞ as a→ 1.

All distances can be calculated using this, since there are
isometries of D that take any two points to the origin and a point
on the x-axis.
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Hyperbolic geometry

This is the starting point of hyperbolic geometry. Some jargon:

I D is a metric space, since we know how to measure distances.

I Distances go off to infinity as we approach the boundary so
this is a complete metric space.

I D is a Riemannian manifold of dimension 2, since it is an
(open) subset of R2 and we can measure lengths of curves.

I The geometry of D is a type of non-euclidean geometry since
it does not satisfy the parallel postulate of Euclid.
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Closed Hyperbolic surfaces

These are surfaces that can be built from geodesic polygons in the
hyperbolic plane by identifying sides. For example:
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Closed Hyperbolic surfaces

Since these surfaces are obtained from the hyperbolic plane, they
naturally have a metric: length of a curve is the length of the
corresponding curve in the polygon.

Geodesics are the same as the geodesics in the polygon.

Closed means topologically they are compact. As a Riemannian
manifold they have constant curvature -1. This makes the surface
somewhat rigid.

These manifolds arise naturally in nature and also in physics. For
instance there is something called the world sheet in String theory.
It is the 2 dimensional manifold traced out by a string moving in
space and can be realised as a hyperbolic surface in certain cases.
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Genus

The genus of a closed surface is just the number of holes it has. A
surface is hyperbolic if it has genus at least 2.

Genus 2 Genus  3



Moduli Space

There is a nice enough topological space Mg parametrizing all
possible hyperbolic surfaces of genus g . This space is almost a
manifold, but not quite.

Points of Mg correspond to different hyperbolic surfaces. For two
different points the corresponding surfaces are not isomorphic.

Mg is called the moduli space of genus g hyperbolic surfaces and
this is a major topic of study in mathematics, investigated by
numerous mathematicians like Riemann, Mumford, Deligne,
Kontsevic, Okounkov to name a few.
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Simple closed geodesic

Let X be a closed hyperbolic surface.
A path γ : [0, 1]→ X is a simple closed geodesic if:

I γ([0, 1]) is a geodesic,

I γ(0) = γ(1),

I γ(s) 6= γ(t) if 0 ≤ s < t < 1.

In words γ has the same starting and ending points, which is also a
geodesic and which does not cross itself.
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Curves

Red curve is not closed, blue curve is closed but not simple, green
curve is simple and closed.



Mirzakhani’s result

Let us now fix a closed hyperbolic surface of genus g , X ∈Mg .

Let sX (L) be the number of simple closed geodesics in X whose
length is at most L. Then Mirzakhani proves that asymptotically

sx(L) ∼ η(X )L6g−6

where η(X ) is a constant depending on the surface X .

Moreover η :Mg → R+ is a continuous function.
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