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Recap

We consider surfaces which are a connect sum of g ≥ 0 tori with a
2-sphere, with b ≥ 0 boundary components and n ≥ 0 punctures
and we denote our surface as Sb

g,n.

We define the Mapping Class Group of S, Mod(S) as,

Mod(S) =
Homeo+(S, ∂S)

Homeo+0 (S, ∂S)
=
Homeo+(S, ∂S)

∼

Where Homeo+0 (S, ∂S) is the path component of the identity in
Homeo+(S, ∂S) and “∼” denotes the isotopy relation.
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Recap

A closed curve α is simple if it has no self intersections. α is
essential if it is not homotopic to a point, a puncture or a
boundary component.

We define the geometric intersection number between free
homotopy classes a and b of simple closed curves in a surface as,

i(a, b) = min{|α ∩ β| : α ∈ a, β ∈ b}

Two representatives α, β of homotopy classes a, b of simple closed
curves are in minimal position if |α ∩ β| = i(a, b).
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Recap

Here, we state the change of coordinates theorem.

Theorem (Change of Coordinates)

Two essential simple closed curves α, β on a surface S have the same
topological type if and only if there is an orientation-preserving
homeomorphism ϕ : S −→ S that fixes ∂S, with ϕ ◦ α = β.
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Dehn Twists

Let A = S1 × [0, 1] be the annulus. Consider the map T : A −→ A,

T (θ, t) = (θ + 2πt, t)

The map T is an orientation-preserving homeomorphism that fixes ∂A
pointwise. Here are two pictorial representations of the map T.

Now let S be an arbitrary (oriented) surface and let α be a simple
closed curve in S and N be a regular neighborhood of α, and choose an
orientation preserving homeomorphism ϕ : A −→ N .
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Dehn Twists

Define Tα : S −→ S, called a Dehn twist about α, as follows:

Tα(x) =

{
ϕ ◦ T ◦ ϕ−1(x) x ∈ N

x x ∈ S\N

This can be represented as,
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The Dehn Lickorish Theorem

The main theorem that we will prove for finite generation of Mod(Sg)
is the following.

Theorem (Dehn-Lickorish)

For g ≥ 0 the group Mod(Sg) is generated by finitely many Dehn twists
about nonseparating simple closed curves.

In the 1920’s Dehn proved that Mod(Sg) is generated by 2g(g − 1)
Dehn twists.

Mumford, building on Dehn’s work, showed in 1967 that only
Dehn twists about nonseparating curves were needed.
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Explicit Generators

In 1964 Lickorish gave an independent proof that Mod(Sg) is generated
by the Dehn twists about the 3g − 1 nonseparating curves given below.
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Explicit Generators

In 1979 Humphries proved that the twists about the 2g + 1 curves
given below suffice to generate Mod(Sg).

These generators are called the Humphries generators. Humphries
further showed that any set of Dehn twist generators for Mod(Sg)
must have at least 2g + 1 elements.
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The Setup

Definition (Pure Mapping Class Group)

For a surface Sg,n, the pure mapping class group, PMod(Sg,n), is
defined as the subgroup of Mod(Sg,n) consisting of elements that fix
each puncture individually.

This gives us a short exact sequence,

1 → PMod(Sg,n)
i−→Mod(Sg,n)

ϕ−→ Σn → 1

where i is the inclusion map and ϕ maps an element of Mod(Sg,n) to
the corresponding action on the n punctures in Σn. Note that
PMod(Sg,0) =Mod(Sg,0) and PMod(Sg,1) =Mod(Sg,1).
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Outline of the proof

In order to prove the Dehn-Lickorish Theorem, we will actually prove
the more general result given below.

Theorem

Let Sg,n be a surface of genus g ≥ 1 with n ≥ 0 punctures. Then the
group PMod(Sg,n) is finitely generated by Dehn twists about
nonseparating simple closed curves in Sg,n.

This proof will follow by double induction on the genus and punctures
respectively, with base cases Mod(S1,0) ∼=Mod(S1,1) ∼= SL(2,Z).
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Outline of the proof

Induction on genus: The main ingredient of this part of the proof
is the modified complex of curves that we will define after this
section along with the lemma given below.

Lemma (Braid Relation)

If a and b are isotopy classes of simple closed curves that satisfy
i(a, b) = 1, then TaTb(a) = b.

Induction on no. of punctures: For this part of the proof, we will
use the Birman exact sequence (which we will define later) to show
that the difference between Mod(Sg,n) and Mod(Sg.n+1) is finitely
generated.
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Complex of curves

The complex of curves, C(S), associated with a surface S is defined
to be a simplicial complex whose 1-skeleton is given by the following
data.

Vertices correspond to isotopy classes of essential simple closed
curves on the surface.

There is an edge between two isotopy classes a, b if i(a, b) = 0.

We will use a modified subcomplex of this complex of curves for the
inductive step on the genus. The main results that we will prove will
be about the connectedness of these complexes.
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Complex of curves

Theorem

If 3g + n ≥ 5, then C(Sg,n) is connected.

Note that the condition implies g ≥ 2, n ≥ 0 or g ≥ 1, n ≥ 2 or
g ≥ 0, n ≥ 5. We will be using the following lemma from our previous
seminar.

Lemma (Bigon Criterion)

Two transverse simple closed curves in a surface S are in minimal
position if and only if they do not form a bigon.
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Complex of curves

Proof.

Let a, b be two isotopy classes of
essential s.c.c.’s on Sg,n. We induct
on i(a, b).

i(a, b) = 0 is trivial.

If i(a, b) = 1, let α ∈ a, β ∈ b such
that |α ∪ β| = 1.

Let c be the isotopy class of the
boundary of α ∪ β. If c is
nullhomotopic, this implies
Sg,n ≃ S1,0, if c is homotopic to a
puncture, then Sg,n ≃ S1,1. Both
cases contradict 3g + n ≥ 5.
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Complex of curves

(contd.)

Suppose i(a, b) ≥ 2. Then, for
minimal position representatives
∈ a, β ∈ b, give α an orientation.

Case 1: γ is essential since
|α ∩ γ| = 1. Take c = γ

Case 2: If either one of γ1, γ2 is
nullhomotopic, this implies arcs of
α and β bound a disc(bigon),
then by the bigon criterion, α, β
are not in minimal position.
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Complex of curves

(contd.)

If both γ1, γ2 are homotopic to a
puncture, then α bounds a twice
punctured disc on one side. Then
take similar γ3, γ4 on the other
side of α. For similar reasons as
above, both γ3, γ4 are not
nullhomotopic.

If both are nullhomotopic, then α
bounds a twice punctured disc on
both sides which implies
Sg,n ≃ S0,4 which is a
contradiction. So we can take
c = γ3 or c = γ4.

SMS NISER MCG 26/04/23 21 / 95



Complex of curves

(contd.)

So, by definition, i(c, a) < i(a, b) and i(c, b) < i(a, b). Then, by
inductive hypothesis, the result follows.
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Let N (S) denote the subcomplex of C(S) consisting of only the isotopy
classes of nonseparating essential simple closed curves.

Theorem

If g ≥ 2, then N (S) is connected.

Proof.

We first prove the theorem for g ≥ 2 and n ≤ 1, and then use induction
on n.

Let a, b be two isotopy classes of essential nonseparating s.c.c.’s on
Sg,n. Then, by the previous theorem, there exists a sequence
a = c1 = ... = ck = b.

We will show each intermediate element of this can be replaced by
isotopy classes of nonseparating s.c.c.’s.
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Complex of curves

(contd.)

Let ci, be an element of the above sequence. If ci is nonseparating, we
are done. If not, cut Sg,n along (a representative of) ci and let S′ and
S′′ be the two cut components.

Since g ≥ 2, n ≤ 1, S′, S′′ have strictly positive genus. Now, if ci−1, ci+1

belong to different cut components, then i(ci−1, ci+1) = 0 so we can
just remove ci from the sequence.

If they belong to the same component, say S′, then replace ci by an
isotopy class of nonseparating s.c.c.’s in S′′. Then repeat the above
process till we get a sequence of nonseparating elements. This proves
the result for g ≥ 2, n ≤ 1.
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Complex of curves

(contd.)

Now we induct on n. Cutting the surface along ci again, if ci−1, ci+1

belong to different components, we can just remove ci from the
sequence.

If ci−1, ci+1 lie in S′, a problem arises since the genus of S′′ can be zero.
If this is the case, then S′ has g ≥ 2 and has fewer punctures than
Sg,n(S

′′ must have n ≥ 2 else this implies ci is not essential).

Then, by the inductive hypothesis we can get a sequence of
nonseparating elements on S′ and we can replace ci by that sequence
and we are done.

SMS NISER MCG 26/04/23 25 / 95



The modified complex

Define the modified complex of curves N̂ (S) as the one dimensional
simplicial complex whose vertices are isotopy classes of nonseparating
simple closed curves and there is an edge between two classes a, b is
i(a, b) = 1.

Theorem

If g ≥ 2 and n ≥ 0, then N̂ (S) is connected.

Proof.

Let a, b be two isotopy classes of s.c.c.’s on Sg,n. By the previous
theorem, there is a sequence a = c1 = ... = ck = b such that
i(ci, ci+1) = 0 for all i = 1, ..., k. Consider ci, ci+1 and let α, β be the
respective minimal position representatives.
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The modified complex

(contd.)
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The modified complex

(contd.)

Denote the surface obtained after cutting along α as Sα and the
surface obtained after cutting along both α, β as Sα,β.

Since Sα,β may not be connected, the proof boils down to the fact that
Sα is connected so α1 lies in the same component of Sα,β as one of
β1, β2 and similarly for α1.

Let di be the corresponding isotopy class. di is essential since
i(di, ci) = 1.

Assume di is separating and cut the surface across a representative of
di. Then α intersects each of the cut boundaries exactly once which
implies α maps [0, 1] into two disconnected components which is a
contradiction.
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The Birman Exact Sequqnce

Theorem (Birman exact sequence)

Let S be a surface with χ(S) ≤ 0, possibly with punctures and/or
boundary. Let (S, x) be the surface obtained from S by marking a point
x in the interior of S. Then the following sequence is exact:

1 −→ π1(S, x)
push−−−→Mod(S, x)

forget−−−−→Mod(S) −→ 1
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Definition of Fibre Bundle

Source:- Wikipedia
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Proof of Birman Exact Sequence

Proof.

■ First we need to show that the following is a fibre bundle

ε−1(U) U ×Homeo+(S, x)

x ∈ U ⊆ S

h

ε
pr

ε(ϕ) = ϕ(x) ∀ϕ ∈ Homeo+(S)
ε−1(U) = {ϕ ∈ Homeo+(S) |ϕ(x) ∈ U} ⊆ Homeo+(S)
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Proof of Birman Exact Sequence (continued)

Proof (contd.)

■ To Show that h is a homeomorphism as other properties hold we are
give explicit description of h and it’s inverse as follows:

h(u, ψ) = ϕu ◦ ψ and h−1(Ψ) = (Ψ(x), ϕ−1
Ψ(x) ◦Ψ)

Here (u, ψ) ∈ U ×Homeo+(S, x) fixes the point x and after that
ϕu ∈ Homeo+(U) is defined for each u ∈ U such that ϕu(x) = u so
h(u, ψ) = ϕu ◦ ψ(x) = ϕu(x) = u ∈ U so h(u, ψ) ∈ ε−1(U) and h is
continuous in compact open topology as ϕu varies continuously with u
similarly we can say about the inverse of h. So h is a homeomorphism
and now it is proven that the diagram commutes. So it is a fibre
bundle.
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Proof of Birman Exact Sequence (continued)

Proof (contd.)

■Now For any other point y ∈ S we can take ξ ∈ Homeo+(S) such
that ξ(y) = x then there exist a homemorphism between ε−1(U) and
ε−1(ξ(U)) [ϕ −→ ϕ ◦ ξ]. So it is a fibre bundle. Now We will use two
result from Hatcher
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Proof of Birman Exact Sequence (continued)

Proof (contd.)

■So we get a Long Exact Sequence of Homotopy groups:
... −→ π1(Homeo

+(S)) −→ π1(S) −→ π0(Homeo
+(S, x)) −→

π0(Homeo
+(S)) −→ π0(S) −→ ...

Now S is path-connected so π0(S) ∼= 1 and by a theorem stated below
π1(Homeo

+(S)) ∼= 1 as Homeo0(S) [Connected component of the
identity in the space of homeomorphisms of a surface S.] is contractible,
hence every connected component of Homeo+(S) is contractible
(consider group structure of Homeo+(S)). As each connected
component is contractible the whole space must be simply connected.

Theorem

Let S be a compact surface, possibly minus a finite number of points
from the interior. Assume that S is not homeomorphic to
S2,R2, D2, T 2, the closed annulus, the once-punctured disk, or the once
punctured plane. Then the space Homeo0(S) is contractible.
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Proof of Birman Exact Sequence (continued)

Proof (contd.)

■Now From the previous results we get:
=⇒ 1 −→ π1(S) −→ π0(Homeo

+(S, x)) −→ π0(Homeo
+(S)) −→ 1

=⇒ 1 −→ π1(S, x) −→ π0(Homeo
+(S, x)) −→ π0(Homeo

+(S)) −→
1[as S is path-connected]
=⇒ 1 −→ π1(S, x) −→Mod(S, x)) −→Mod(S) −→ 1[From Definition]
Now the proof is complete.

Remark:-To prove the theorem stated in the above slide we
need the fact that χ(S) ≤ 0
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A short lemma on group action

Lemma

Suppose that a group G acts by simplicial automorphisms on a
connected, 1-dimensional simplicial complex X. Suppose that G acts
transitively on the vertices of X and that it also acts transitively on
pairs of vertices of X that are connected by an edge. Let v and w be
two vertices of X that are connected by an edge and choose h ∈ G so
that h(w) = v. Then the group G is generated by the element h
together with the stabilizer of v in G.
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Proof of Lemma

Proof.

■ Let H ≤ G generated by the stabilizer of v together with the
element h. Now we will try to show that ∀g ∈ G =⇒ g ∈ H
Now fixing g ∈ G and as X is connected we can get a path from v to
g(v) let’s assume the path be v = v1, v2, ..., vk = g(v)
■ Now as G acts transitively on X so we can get a gi ∈ G such that
gi(v) = vi. Now we will use induction on i to prove that g ∈ H.The
base case is trivial. So let’s assume that gi ∈ H. So in the next step we
will show that gi+1 ∈ H
■ From the action we get that g−1

i takes the edge between vi = gi(v)
and vi+1 = gi+1(v) to the edge (v, g−1

i gi+1(v) and from transitivity
property ∃r ∈ G such that it takes the previous edge to (v, w)
■ So now we can get r(v) = v =⇒ r is in to stabilizer of v and
rg−1

i gi+1(v) = w =⇒ hrg−1
i gi+1(v) = h(w) = v =⇒ hrg−1

i gi+1 ∈ H.
As h ∈ H and r ∈ H from definition and gi ∈ H by hypothesis. So
gi+1 ∈ H.Now G = H as induction implies g ∈ H for any g ∈ G.
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Finte Generation

Theorem

Let Sg,n be a surface of genus g ≥ 1 with n ≥ 0 punctures. Then the
group PMod(Sg,n) is finitely generated by Dehn twists about
nonseparating simple closed curves in Sg,n.

Proof.

As per the outline we will use double induction on number of Genus
and Punctures.

Base Cases:-T 2 = S1,0 and S1,1 has been proved before that it is
finitely generated by Dehn twists.

Induction on punctures:-Let g ≥ 1and let n ≤ 0 Assume that
PMod(Sg,n) is generated by finitely many Dehn twists about
nonseparating simple closed curves {αi} in Sg,n, Now we have the
Birman-Exact Sequence [Restricting to the Subgroup PMod]:
1 −→ π1(Sg,n) −→ PMod(Sg,n+1) −→ PMod(Sg,n+1) −→ 1
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An Useful Fact

Lemma

Let α be a simple loop in a surface S representing an element of
π1(S, x). Then

Push([α]) = TaT
−1
b

where a and b are the isotopy classes of the simple closed curves in
(S, x) obtained by pushing α off itself to the left and right, respectively.
The isotopy classes a and b are nonseparating in (S, x) if and only if α
is nonseparating in S.
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Proof of Finite Generation (Contd.)

Proof.

Induction on punctures (Contd.):- Now we can say that π1(Sg,n) is
finitely generated by Van-Kampen Theorem. Now we will use a
fact (stated above) on the push map to get that the image of each
of these generating loops is a product of two Dehn twists about
nonseparating simple closed curves.
Now given the nonseparating simple curve αi in Sg,n, there exists
a nonseparating curve in Sg,n+1 that maps to αi under the
forgetful map Sg,n+1 −→ Sg,n. Thus the Dehn twist Tαi in
PMod(Sg,n) has a preimage in PMod(Sg,n+1) that is a Dehn twist
about a nonseparating simple closed curve in Sg,n+1.
So the proof for the induction on punctures is done.
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Proof of Finite Generation (Contd.)

Remark:-From the inductive step on the number of punctures
that, for any n ≥ 0, the group PMod(S1,n) is generated by
finitely many Dehn twists about nonseparating simple closed
curves as Mod(S1,1),Mod(S1,0) are finitely generated from base
case so can assume that g ≥ 2 in your next Inductive step.

Proof (Contd.)

Induction on genus:-Now let’s assume that PMod(Sg−1,n)is finitely
generated by Dehn twists about nonseparating simple closed
curves for any n ≥ 0. Now we can use the result proved before:

Theorem

If g ≥ 2 and n ≥ 0, then N̂ (S) is connected.

and also we can check that (Sg) acts transitvely on both set of

vertices and edges of N̂ (Sg) [From Corollary stated below]

SMS NISER MCG 26/04/23 43 / 95



Change of Co-ordinates Principle

Theorem (Change of Co-ordinates Principle)

Two essential simple closed curves α, β on a surface S have the same
topological type if and only if there is an orientation-preserving
homeomorphism ϕ : S −→ S that fixes ∂S, with ϕ ◦ α = β

Corollary

If α is a non-separating simple closed curve on S, then there is a
non-separating simple closed curve β with i(α, β) = 1.
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Proof of Finite Generation (Contd.)

Proof (Contd.)

Induction on genus (Contd.):-Let a be an arbitrary isotopy class of
nonseparating simple closed curves in Sg and let b be an isotopy
class with i(a, b) = 1. Let Mod(Sg, a) denote the stabilizer in
Mod(Sg) of a. By

Lemma (Braid Relation)

If a and b are isotopy classes of simple closed curves that satisfy
i(a, b) = 1, then TaTb(a) = b.

We have TbTa(b) = a. Thus, by Lemma proved before this result,
Mod(Sg) is generated by Mod(Sg, a) together with Ta and Tb.
Thus it suffices to show that Mod(Sg, a) is finitely generated by
Dehn twists about nonseparating simple closed curves.
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Proof of Finite Generation (Contd.)

Proof (Contd.)

Induction on genus (Contd.):-Let Mod(Sg, a⃗) ≤Mod(Sg, a)
consisting of elements that preserve the orientation of a. from this
we get:
1 −→Mod(Sg, a⃗) −→Mod(Sg, a) −→ Z/2Z −→ 1.
Since TbT

2
aTb switches the orientation of a (by corollary of change

of coordinates), it represents the nontrivial coset of Mod(Sg, a⃗) in
Mod(Sg, a). Thus the proof reduces to show that Mod(Sg, a⃗) is
finitely generated by Dehn twists about nonseparating simple
closed curves in Sg.
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Coset TbT
2
aTb

By corollary of change of coordinates we only need t show for a fix a
and b with intersection number 1. So
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Proof of Finite Generation (Contd.)

Proof (Contd.)

Induction on genus (Contd.):- Now by a Theorem:

Theorem (The cutting homomorphism)

Let S be a closed surface with finitely many marked points. Let
α1, ..., phan be a collection of pairwise disjoint, homotopically distinct
essential simple closed curves in S. There is a well-defined
homomorphism

ζ :Mod(S, {[α1], ..., [αn]}) −→Mod(S −
⋃
αi)

with kernel ⟨Tα1 , ..., Tαn⟩.

We get another short exact sequence:
1 −→ ⟨Ta⟩ −→Mod(Sg, a⃗) −→ PMod(Sg − α) −→ 1,
where Sg − α is the surface obtained from Sg by deleting a
representative α of a.
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Proof of Finite Generation (Contd.)

Proof (Contd.)

Induction on genus (Contd.):- So Now we get a surfaceSg − α
which is homeomorphic to Sg1,n+2.
So by our inductive hypothesis, PMod(Sg − α) is generated by
finitely many Dehn twists about nonseparating simple closed
curves. Since each such Dehn twist has a preimage in Mod(Sg, a⃗)
that is also a Dehn twist about a nonseparating simple closed
curve, it follows that Mod(Sg, a⃗) is generated by finitely many
Dehn twists about nonseparating curves, and we are done.
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Alexander Method

Theorem (Alexander Method)

Let S be a compact surface, possibly with marked points, and let
ϕ ∈ Homeo+(S, ∂S). Let {γ1, . . . , γn} a collection of essential
simple proper arcs and closed curves on S with the following properties:
1. The γi are pairwise in minimal position.
2. The γi are pairwise nonisotopic.
3. For distinct i, j, k, at least one of γi ∩ γj , γi ∩ γk, or γj ∩ γk is empty.
(1) If there is a permutation σ of 1, ..., n so that ϕ(γi) is isotopic to
γσ(i) relative to ∂S for each i, then ϕ(∪γi) is isotopic to ∪γi relative to
∂S.
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Strategy of the proof of Finite Presentable

■ Proof is suggested by Andrew Putnam

■ We will show the arc complex A(S) is contractibe.

■ Then we will use the action of Mod(S) on A(S) to build
K(Mod(S),1) with finite 2-skeleton.

■ From this it immediately follows that Mod(S) is finitely presented.
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Disadvantage of the proof

This proof is simple proof of finite presentability, we do not know what
explicit finite presentation comes out of this approach.
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The Arc Complex

Let S be a compact surface that either has nonempty bondary or has
at least one marked point.

The Arc Complex

The arc complex A(S) is a an abstract simplicial flag complex
described by the following data :-

Vertices: There is one vertex for each free isotopy class of essential
simple proper arcs in S

Edges: Vertices are connected by an edge if the corresponding free
isotopy classes have disjoint representatives.

SMS NISER MCG 26/04/23 57 / 95



Contractibility of the Arc Complex

Theorem

Let S be any compact surface with finitely many marked points. If A(S)
is nonempty, then it is contractible. (Hatcher) [Hat91]
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Contractibility of the Arc Complex

Proof

Strategy:-
First we choose a base vertex v of A(S).
We will define a flow of A(S) which will take a point on A(S) to the
simplicial star associated to v.
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Contractibility of the Arc Complex

Realization of a point on A(S) on the surface S:-

Let p is an arbitrary point of A(S) spanned by v1, v2, ...vn is given by
barycentric coordinates, that is, a formal sum

∑
civi where

∑
ci = 1

and ci ≥ 0 ∀i.
Let α be a fixed representative of v.

We can realize p in S as follows:-

■ First realize the vi as disjoint arcs in S, each in minimal position
with α,

■ Then thicken each vi-arc to a band which is declared to have width
ci.
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Contractibility of the Arc Complex
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Definition of the flow

At time t, we push a total band width of tθ in some prechosen
direction along the arc α.
At time 1, all of the bands are disjoint from the arc α, and we are in
the star of v.
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Contractibility of the Arc Complex
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Contractibility of the Arc Complex
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Finite Presentability via Group Actions on Complexes

Definition

A group G acts on a CW-complex X without rotations if, whenever
an element g ∈ G fixes a cell σ ⊂ X, then g fixes σ pointwise.

Remark:

Any action of a group on CW-complex can be turned into an action
without rotations by baricentrically subdividing the complex.
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Finite Presentability via Group Actions on Complexes

Theorem

Let G be a group acting on a contractible CW-complex X without
rotations.
Suppose that each of the following conditions holds.
1. The quotient X is finite.

2. Each vertex stabilizer is finitely presented.

3. Each edge stabilizer is finitely generated.

Then G is finitely presented.
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Proof That The Mapping Class Group Is Finitely
Presented

Theorem

If S is a compact surface with finitely many marked points, then the
group Mod(S) is finitely presented.
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Proof That The Mapping Class Group Is Finitely
Presented

Proof.

Assumption:
The proof holds for Sg,n with n ≥ 0 marked points

■ With this assumption we will show that the theorem holds for the
case when S has nonempty boundary
■ Then we will prove for the case when S is closed.
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Proof(continues)

Let S be a compact surface with n ≥ 0 boundary components and
assume that S is not the disc D2.
Induction Hypothesis:
For any compact surface with n− 1 boundary components, the
mapping class group is finitely presented.
Base Case: We took that as our assumption.
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The Capping Homomorphism

Let S
′
be the surface obtained from a surface S by capping the

boundary component β with a once-marked disk;
call the marked point in this disk 0. Denote by Mod(S, p1, ..., pk) the
subgroup of Mod(S) consisting of elements that fix the punctures
p1, ..., pk, where k ≥ 0.
Let Mod(S, p0, ..., pk) denote the subgroup of Mod(S) consisting of
elements that fix the marked points p0, ..., pk and then let
Cap :Mod(S, p1, ..., pk) →Mod(S, p0, ..., pk) be the induced
homomorphism. Then the following sequence is exact:

1 → ⟨Tβ⟩ →Mod(S, p1, ..., pk)
Cap−−→Mod(S, p0, ..., pk) → 1.
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Induction Step

Suppose S∗ is the surface obtained from a surface S by capping a
boundary component β with a once marked disk, then the following
sequence is exact:

1 → ⟨Tβ⟩ →Mod(S)
Cap−−→Mod∗(S∗) → 1 ,

where Mod∗(S∗) is the subgroup of Mod(S∗) consisting of elements
that fix the marked point coming from the capping operation.
By the inductive hypothesis, we have that Mod(S∗) is finitely
presented.
Since Mod∗(S∗) has finite index in Mod(S∗), it is also finitely
presented. [WM66]
Since the extension of a finitely presented group by a finitely presented
group is finitely presented, it follows by the above exact sequence that
Mod(S) is finitely presented.
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Proof(Continues)

Consider the Birman Exact Sequence

1 → π1(Sg,n) → PMod(Sg,n+1) → PMod(Sg,n) → 1

So, Mod(Sg,0) is finitely presented if Mod(Sg,1) is, since the quotient of
a finitely presented group by a finitely generated group is finitely
presented. [WM66]

We have reduced the proof to showing that Mod(Sg,n) is finitely
presented when n > 0.
We may assume that (g, n) ̸= (0, 1) because we already know
Mod(S0,1) = 1.
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Proof(continues)

Since a group is finitely presented if and only if any of its
finite-index subgroups are finitely presented, it suffices to
prove that PMod(Sg,n) is finitely presented.
We proceed by induction.

Induction Hypothesis: PMod(Sg′ ,n′ ) is finitely presented when

g
′
< g or when g

′
= g and n

′
< n.
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Proof(continues)

We know that the arc complex A(Sg,n) is contractible.

Now, PMod(Sg,n) acts without rotation on its barycentric
subdivision,A′

(Sg,n).

Note that the vertices of A′
(Sg,n) correspond to simplices of A(Sg,n).

It follows from the change of coordinates principle that the
quotient of A′

(Sg,n) by PMod(Sg,n) is finite.
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Proof(Gv is finitely presented)

Let v be a vertex of A′
(Sg,n) and let Gv be its stabilizer in PMod(Sg,n).

We will show that Gv is finitely presented.

■ v corresponds to a simplex of A(Sg,n), that is, the isotopy class of a
collection of disjoint simple proper arcs αi in Sg,n.
■ We cut Sg,n along the αi, to obtain a (possibly disconnected)
compact surface with boundary Sα, possibly with marked points in its
interior.
■ We may pass from the cut surface Sα to a surface with marked
points but no boundary by collapsing each boundary component to a
marked point (or, what will have the same effect, capping each
boundary component with a once-marked disk).
■ Denote the connected components of the resulting surface by Ri.
Each Ri has marked points coming from the marked points of Sg,n
and/or marked points coming from ∪αi.
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Proof(Gv is finitely presented)

Note: Each PMod(Ri) falls under the inductive hypothesis.
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Proof(G0
v is finitely presented)

Let G0
v denote the subgroup of Gv consisting of elements that fix each

isotopy class [αi] with orientation.
■ Then these elements necessarily fix each Ri as well.
■ Since G0

v has finite index in Gv, it suffices to show that G0
v is finitely

presented.
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Proof(G0
v is finitely presented)

There is a map:

η : G0
v → ΠPMod(Ri)
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η is a well defined map

Lemma:
Let α1, ..., αn be a collection of homotopically distinct simple closed
curves in a surface S, each not homotopic to a point in S.
Let β and β

′
be simple closed curves in S that are both disjoint from

∪αi and are homotopically distinct from each αi.
If β and β

′
are isotopic in S, then they are isotopic in S − ∪αi.
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Proof of the Lemma

■ It suffices to find an isotopy from β to β
′
in S that avoids ∪αi .

■ First, we may modify β so that it is transverse to β
′
and is still

disjoint from ∪αi.
■ If β ∩ β′

= ϕ then β and β
′
form the boundary of an annulus A in S.

■Since β (and β
′
) is not homotopic to any αi, it cannot be that any αi

are contained in A. The annulus A gives the desired isotopy from β
and β

′
.

■If β ∩ β′ ̸= ϕ, then by the bigon criterion they form a bigon. Since
the αi are not homotopic to a point and (∪αi) ∩ (β ∪ β′

) = ϕ, the
intersection of ∪αi with the bigon is empty. We can thus push across
the bigon, keeping β disjoint from ∪αi throughout the isotopy.
■ By induction, we reduce to the case where β and β

′
are disjoint.

This completes the proof.
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η is a well defined map

For η to be well-defined homomorphism, one needs the fact that if
two homeomorphisms of Sg,n fixing ∪αi are homotopic,
then they are homotopic through homeomorphisms that fix ∪αi.
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η is a surjective map

■ Choose an element of ΠPMod(Ri).
■Then one can choose a representative homeomorphism that is the
identity in a neighborhood of the marked points.
■ And then one can lift this to a representative of an element of G0

v

that is the identity on a neighborhood of the union of the marked point
with the αi.
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Kernel of the map η

Lemma:The inclusion Homomorphism:
Let S be a closed subsurface of a surface S

′
.

Assume that S is not homeomorphic to a closed annulus and that no
component of S

′ − S is an open disk.
Let η :Mod(S) →Mod(S

′
) be the induced map. Let α1...αn denote

the boundary components of S that bound once-punctured disks in
S

′ − S and let β1, γ1,...,βn, γn denote the pairs of boundary components
of S that bound annuli in S

′ − S.
Then the kernel of η is the free abelian group
ker(η) = ⟨Tα1 , ..., Tαm , Tβ1T

−1
γ1 , ..., TβnT

−1
γn ⟩.

In particular, if no connected component of S
′ − S is an open annulus,

an open disk, or an open once-marked disk, then η is injective.
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Proof of the lemma

Let f ∈ ker(η) and let ϕ ∈ Homeo+(S, ∂S) be a representative.
We may extend ϕ by the identity in order to obtain
ϕ̂ ∈ Homeo+(S

′
, ∂S

′
).

By definition, ϕ̂ represents η(f).
Therefore, ϕ̂ lies in the connected component of the identity in
Homeo+(S

′
, ∂S

′
)
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Proof of the Lemma (continues)

Let δ be an arbitrary oriented simple closed curve in S. Since ϕ̂ is
isotopic to the identity, we have that ϕ̂(δ) is isotopic to δ in S

′
.

Since ϕ̂ agrees with ϕ on S, we have that ϕ(δ) is isotopic to δ in S
′
.

By the previous lemma and the assumption on S
′ − S, we have that

ϕ(δ) is isotopic to δ in S.
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Proof of the Lemma (continues)

We can choose a collection of simple closed curvesδ1, ..., δk in S that
satisfy the three properties in the statement of the Alexander method
(pairwise minimal position, pairwise nonisotopic, no triple
intersections)
and so that the surface obtained from S by cutting along ∪δi is a
collection of disks, once-punctured disks, and closed annular
neighborhoods Ni of the boundary components.
Moreover, we can choose δi so that any homeomorphism that fixes
∪δi ∪ ∂S necessarily preserves the complementary regions.
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Proof of the Lemma (continues)

■ By the first statement of the Alexander method, ϕ is isotopic (in
S) to a homeomorphism of S that fixes ∪δi ∪ ∂S.
■ Since Mod(D2) = 1 and Mod(D2 − point) = 1, it follows that f has
a representative that is supported in the Ni.
■ We know Mod(Annulus) = Z
■ So, it follows that f is a product of Dehn twists about boundary
components.
■ Property of Dehn Twists:
Let a1, ..., am be a collection of distinct nontrivial isotopy classes of
simple closed curves in a surface S and assume that i(ai, aj) = 0∀i, j.
Let b1, ..., bn be another such collection. Let pi, qi ∈ Z0.
If T p1

a1 T
p2
a2 T

pm
am = T q1

b1
T q2
b2
T qm
bm

in Mod(S), then m = n and the sets T pi
ai and T

pi
ai are equal. ( The

mapping class ΠT pi
ai is called a multitwist.

■ So, f must be a trivial multitwist and hence of the required form.
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Proof(G0
v is finitely presented)

■ By the above lemma, ker(η) is generated by the Dehn Twists
about the components of the boundary of the cut surface Sα

■ Since each PMod(Ri) is finitely presented, their product is as well.

■ By first isomorphism theorem,
G0

v/ker(η)
∼= ΠPMod(Ri)

■ So, G0
v is finitely presentable.
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Proof(Edge stabilizers are finitely Generated)
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Proof(Edge stabilizers are finitely Generated)

■ Two vertices of A′
(Sg, n) are connected by an edge if and only if the

corresponding simplices of A′
(Sg, n) share a containment relation (i.e.,

one is contained in the other).
■ It follows that the stabilizer of an edge in A′

(Sg, n) is a finite-index
subgroup of the larger of the two stabilizers of its vertices.
■ Thus edge stabilizers are finitely presented, and in particular they
are finitely generated. [WM66]

SMS NISER MCG 26/04/23 92 / 95



Proof That The Mapping Class Group Is Finitely
Presentable

We thus have that Mod(Sg, n) acts on the contractible simplicial
complex A(Sg, n) without rotations, with finitely presented vertex
stabilizers and finitely generated edge stabilizers. Applying the second
thorem that we mentioned, to this action gives that Mod(Sg, n) is
finitely presented.
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Thank You
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