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Algebraic Curves

An algebraic curve is a smooth projective variety of dimension 1. Over C
an Algebraic curve is just a compact Riemann Surface (one dimensional
complex manifold).
Genus of a Riemann Surface X is half its first betti number.

g(X ) =
1

2
dim H1(X )

Examples are P1, elliptic curves ...

Genus = 2 Genus =1
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The Moduli of n pointed genus g Curves

As usual in a moduli problem we want a parameter space Mg ,n for
isomorphism classes of algebraic curves of genus g with n distinct marked
points.

Two such curves (C , p1, . . . , pn) and (C ′, p′1, . . . , p
′
n) are isomorphic if

there is an isomorphism f : C → C ′, such that f (pi ) = p′i . (We require
2g − 2 + n > 0, so that there are only finitely many automorphisms of a
curve fixing its marked points.)

Further we ask that there be a universal family Tg ,n → Mg ,n, such that for
any family of n pointed genus g curves C → B (smooth flat morphism
with n disjoint sections, such that the geometric fibers are smooth n
pointed genus g curves), there exits a map B → Mg ,n under which C is a
pull back of Tg ,n.
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So we should have a fibre square

C //

��

Tg ,n

��

B // Mg ,n

There is no solution for the moduli problem in the category of schemes,
but a fine moduli space exists as a Deligne-Mumford stack (analogue of
orbifold in Algebraic Geometry).

Underlying the stack there is a coarse moduli space which is an algebraic
variety usually denoted Mg ,n, where as the stack will be denoted Mg ,n .
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Deligne-Mumford compactification

Mg ,n is not a complete variety. The reason being, there can be singular
curves in the limit of smooth curves as they vary in families.

Deligne and Mumford gave a compactification of Mg ,n, by enlarging the
moduli problem to include certain singular curves.

It turns out that the class of curves that can arise as limits of smooth
curves are curves with only nodal singularities. The main ingredient here is
the stable reduction theorem for curves.
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Stable Curves

A stable curve C of genus g , and n marked points {p1, . . . , pn}, is a
projective curve with the following properties:

1 dim H1(C ,OC ) = g , where OC is the structure sheaf.

2 The singularities of C are all nodes.

3 {p1, . . . , pn} are distinct smooth points of the curve.

4 C sm \ {p1, . . . , pn} (the smooth locus with the marked points
removed) has negative Euler characteristic.

1 2

3

3

0

2

Analytic space Algebraic  Curve

21

1
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Properties

Some properties of the moduli space:

1 Mg ,n, is an irreducible, smooth, projective, Deligne-Mumford stack of
dimension 3g − 3 + n.

2 Mg ,n+1 along with the natural map Mg ,n+1 →Mg ,n is the universal
family.

3 Mg ,n is an irreducible, projective variety, of dimension 3g − 3 + n, and
has only mild singularties (finite quotient).

4 Mg ,n is an open dense subvariety of Mg ,n and the complement is a
divisor with normal crossings.

5 When g = 0, M0,n and M0,n are smooth varieties and fine moduli
spaces for their moduli problems.
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Elementary examples

M0,3 is a point.

M0,4
∼= P1\{0, 1,∞} and M0,4

∼= P1

M0,5 can be realised as P1 × P1 blown up at (0, 0), (1, 1) and
(∞,∞), this is a Del-pezzo surface of degree 5.

In general M0,n+1 can be inductively constructed as a blow up of
M0,n × P1.

M1,1
∼= M0,4/S3 and M1,1

∼= M0,4/S3
∼= P1/S3.

M2
∼= M0,6/S6.
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Operad
An Operad (of vector spaces) is a sequence of vector spaces

{V(n) | n ≥ 0}

with an action of the symmetric group Sn on V(n) and bilinear operations

◦i : V(n)⊗ V(m)→ V(m + n − 1)

for 1 ≤ i ≤ n satisfying certain axioms of associativity and equivariance.

Intuitively an element a of V(n) can be thought of as a rooted tree with n
input leaves, and one output leaf which is the root.
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The product a ◦i b then corresponds to grafting of trees as follows:

The equivariance and associativity axioms ensure that we can form the
products unambiguously.
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Example: Little Disks Operad
An elementary example is the little disks operad. This is an operad of
topological spaces. Let D = {z ∈ C | |z | < 1}. Let O(n) be the
topological space

O(n) =

{(
z1, . . . , zn
r1, . . . , rn

)
∈ Dn × Rn

+ | disks riD + zi are disjoint subsets of D

}

Sn acts on O(n) by permuting disks. There is a natural operad structure
on O by gluing of disks. If a =

(w1,...,wm

s1,...,sm

)
and b =

(z1,...,zn
r1,...,rn

)
then

a ◦i b =

(
w1, . . . ,wi−1,wi + siz1, . . . ,wi + sizn,wi+1, . . . ,wm

s1, . . . , si−1, si r1, . . . , si rn, si+1, . . . , sm

)

Let
E2(n) = H•(O(n))

then E2 is an operad in graded vector spaces by the virtue of being the
homology of an operad in topological spaces.
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Product in little disks operad
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Operads and Moduli of Curves

There are two operads that are closely related to the Moduli of Curves.

Let M(n) = M0,n+1. There is an action of Sn on M(n), by permuting the
first n marked points of M0,n.

Further the operations ◦i :M(n)×M(k) is obtained through the
embeddings

M0,n+1 ×M0,k+1 → M0,n+k+1

01

2

3

0

1

2

3

4 0

1

2

3

1

2

3
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Thus M is an operad in topological spaces. Taking homology we get an
operad in the category of graded vector spaces called the
Hypercommutative operad.

Hycom(n) =

{
H•(M0,n+1) n ≥ 2
0 n < 2

Similarly taking the homology of M0,n and suitably suspending we get the
Gravity operad.

Grav(n) =

{
Σ2−nsgnn ⊗ H•(M0,n+1) n ≥ 2
0 n < 2

It is a little more involved to see the operad structure of Grav.

The operads Grav and Hycom are Koszul dual to each other.
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A Filtration
There is a filtration on Mg ,n given by the number of rational components
of a curve.

Let M
6k
g ,n be the open set in Mg ,n parametrizing stable curves with at most

k rational components (components of geometric genus 0).

1

1

1

0

0

C

0
2

D

Curve C has 2 rational components where as D has just 1. We have

M
60
g ,n ⊂ M

61
g ,n ⊂ . . . ⊂ M

62g−2+n
g ,n = Mg ,n
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Constructible Cohomological Dimension

Let X be a complex variety. Recall that an abelian sheaf F on X is said to
be constructible if there exists a locally finite partition of X into subsets
that are locally closed for the Zariski topology such that the restriction of
F to each member of that partition is locally constant for the Euclidean
topology (its stalks may be arbitrary).

Constructible cohomological dimension, ccd(X ), of a variety X is the
smallest integer d with the property that

Hn(X ,F) = 0 for n > d

for every constructible sheaf F on X .
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Cohomological Excess

The cohomological excess of a non-empty variety X, denoted ce(X ), is

ce(X ) = max{ccd(W )− dim W |W closed subvariety of X}

It can be easily seen that

0 ≤ ce(X ) ≤ dim X

If X is affine ce(X ) = 0, and when projective ce(X ) = dim X .

The cohomological excess has several good properties, for example if
ce(X ) = a, then X is homotopy equivalent to a CW complex of dimension
a or less.
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My research was inspired by a conjecture by Looijenga which dates back to
1990.

Conjecture (Looijenga)

Mg can be covered by g − 1 open affine subvarieties.

Fontanari and Pascolutti recently proved this for genus up to 5.

Later Looijenga introduced cohomological excess and made a weaker
conjecture that ce(Mg ) ≤ g − 2.

There is a generalization of Looijenga’s conjecture due to Roth and Vakil.

Conjecture (Roth and Vakil)

ce M
6k
g ,n ≤ g − 1 + k for g > 0, k ≥ 0

Sharpness of these bounds are not known.

I studied analogous questions for the hyperelliptic locus.
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Hyperelliptic Locus

Let Hg ⊂ Mg be the hyperelliptic locus, that is the subspace parametrizing
isomorphism classes of hyperelliptic curves. A hyper-elliptic curve of genus
g is a double cover of P1, ramified over 2g + 2 points. Let Hg be the
closure of Hg in Mg .

There is the filtration on Hg , induced by the filtration on Mg .

H
6k
g = Hg ∩M

6k
g

We are interested in the affine stratification number and cohomological

excess of the varieties H
6k
g .
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Results

We show Looijenga’s bounds hold for these varieties.

Theorem (C)

asn H
6k
g ≤ g − 1 + k for all g , k

This provides evidence towards the actual conjecture of Roth and Vakil.
The effectiveness of the bound is not known, but when k = 0, we show

Theorem (C)

ce(H
60
g ) ≥ g − 1 for g ≥ 2

This proves

1 asn H
60
g = ce(H

60
g ) = g − 1.

2 ce(M
60
g ) ≥ g − 1 (assuming Looijenga’s upperbound).
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Reduction to questions on M0,n

We have a surjection,

π : Hurg ,2 ∼= M0,2g+2 → Hg

Here π is the quotient map under the action of the symmetric group S2g+2

which acts by permuting the fixed points. Hence we have

Hg
∼= M0,2g+2/S2g+2

Let
M

(k)
0,2g+2 = π−1H

6k
g

An affine stratification of M
(k)
0,2g+2 gives an affine stratification of H

6k
g of

the same length.
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Dual Graphs of Stable curves
The dual graph of a marked stable curve is obtained by placing a vertex
for each component, an edge for each node and a leg for each marked
point. Further the vertices are labelled by the geometric genus of the
component it represents.

We denote the set of isomorphism classes of dual graphs of genus g , with
n marked points by Γ(g , n).

The genus of the curve can be obtained by the formula

g =
∑

v∈ vertices of G

gv + b1(G )

For a graph G , denote by MG , the locus of curves whose dual graph is G ,
and by MG its closure. Then

Mg ,n =
⋃

G∈Γ(g ,n)

MG

MG is a subvariety of codimension equal to the number of edges of G .
C. Chaudhuri (Northwestern University) ISI Bangalore August 1, 2013 23 / 40



Examples of Dual Graphs

2 0

1

2
0

0

0

0

1 2

0

0

0

0

2 0

1
2

3
4

5 6

1

2

3

4

5
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1 1

Stable Curve Dual Graph
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Coloring of graphs
We define parity of graph T of type (0, 2k).

Legs of T are odd.

Edges are odd if deleting it produces two trees each with odd number
of marked points otherwise even.

Let the ramification number of a vertex v of T be the number of legs and
odd edges of the vertex. We denote it by ρ(v).

We call a vertex of a graph internal if it has more than one edge.

If a graph is not-stable we can stabilize it by suitably deleting the unstable
vertexes.

Even Odd

external internal external

external

external

external

internal
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Going between strata

We have a stratification of the Moduli of curves by dual graphs. To go
between the strata of M0,2g+2 and that of Hg , we describe the following
algorithm.

Algorithm

Given a tree T corresponding to a curve C in M0,2g+2, the dual graph of
π([C ]) ∈ Mg is the stabilization of the graph G defined as follows.

There are two edges in G for each even edge of T , and one edge in G
for each odd edge of T . (The leaves of T do not contribute flags to
G .)

A vertex v of T contributes a single vertex to G, of genus
(ρ(v)− 2)/2, unless ρ(v) = 0, in which case it contributes two
vertices of genus 0.
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Illustration

0 0 2 0 2

1

0

0

0 0

1

0 0

Here the even edges are drawn in red, where as the legs and the odd edges
are drawn in black.
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Strata in M
(k)
0,2g+2

To determine which strata are contained in M
(k)
0,2g+2, we have the following

lemma, which follows easily from the Algorithm we described.

Lemma

Let C be a curve in M0,2g+2 with corresponding dual graph G . Then the
image π([C ]) ∈ Hg has a rational component if and only if G has an
internal vertex v with ρ(v) ≤ 2.
Furthermore the number of rational components of π([C ]) is given by

2×#{v ∈ V (G ) | ρ(v) = 0}+ #{v ∈ V (G ) | v internal and ρ(v) = 2}

Hence a curve in M0,2g+2 belongs to M
(0)
0,2g+2 if its dual graph has only

internal vertexes of ramification 4 or more. We call such graphs good
graphs.
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Examples of good trees
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Sharpness for k = 0

Consider the constant sheaf C on M
(0)
0,2g+2, and let L = π∗C. Then L is a

constructible sheaf on H
60
g . Note that

H i (H
60
g ,L) ∼= H i (M

(0)
0,2g+2,C)

Since dim H
60
g = 2g − 1 if we can show that

H3g−2(H
60
g ,L) ∼= H3g−2(M

(0)
0,2g+2,C) 6= 0

that would imply ce
(

H
60
g

)
is at least g − 1.

Lemma (C)

The cohomology group H3g−2(M
(0)
0,2g+2,C) is non-zero and has a pure

Hodge structure of weight 2(2g − 1) and Hk(M
(0)
0,2g+2) = 0 for k > 3g − 2.
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A Spectral Sequence

Let Γp(0, n) be the set of dual graphs of stable curves of genus 0, with n
marked points and p nodes. Then we have the spectral sequence.

nEp,q
1 =

⊕
[T ]∈Γ−p(0,n)

Hp+q
c (MT )

This spectral sequence converges to Hp+q(M0,n). In fact the spectral
sequence is in the category of mixed Hodge structures, and by a purity
argument for the cohomology of M0,n, it can be seen that

H2i (M0,n) ∼= nE
−(n−3−i),n−3+i
2

and nEp,q
2 = 0 if p + q 6= 2(n − 3).
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M0,8 example (8E
•,•
1 )

χ p = −5 p = −4 p = −3 p = −2 p = −1 p = 0

1 0 0 0 0 0 C(5)1 q = 10

99 0 0 0 0 C(4)119 C(4)20 q = 9

715 0 0 0 C(3)1918 C(3)1358 C(3)155 q = 8

715 0 0 C(2)9450 C(2)13902 C(2)5747 C(2)580 q = 7

99 0 C(1)17325 C(1)40950 C(1)33348 C(1)10668 C(1)1044 q = 6

1 C(0)10395 C(0)34650 C(0)44100 C(0)26432 C(0)7308 C(0)720 q = 5
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Truncated Spectral Sequence
For a genus 0 graph G with 2g + 2 marked points, either MG ⊂ M

(0)
0,2g+2,

if G is good or intersection is empty.

We have a spectral sequence in compactly supported cohomology.

gF p,q
1 =

⊕
G∈Γ−p(0,2g+2)

G good

Hp+q
c (MG )

This spectral sequence converges to Hp+q
c (M

(0)
0,2g+2).The spectral

sequence has

a natural mixed Hodge structure

an action of S2g+2

We use this spectral sequence to show Hg
c (M

(0)
0,2g+2) is non-trivial and use

Poincaré duality.

Hg
c (M

(0)
0,2g+2) ∼= H3g−2(M

(0)
0,2g+2)∨
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The spectral sequence

Figure: Support of gF •,•
1

p = −1 p = 0

q = 6 0 s6

q = 5 2s6 + 2s4,2 + s5,1 s4,2

q = 4 s3,3 + 3s4,2 + 2s5,1 + s2,2,2 + 3s3,2,1 + 2s4,1,1 s4,1,1 + s3,2,1

q = 3 s5,1 + 2s3,3 + s4,2 + 3s3,2,1 + s4,1,1 + 2s2,2,1,1 + s3,1,1,1 s3,3 + s4,1,1 + s2,2,1,1

Table: Genus 2, 2F •,•
1
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First Proof

From the Spectral Sequence it is clear that

Hg
c (M

(0)
0,2g+2) ∼= gF−g+1,2g−1

∞
∼= gF−g+1,2g−1

2

In the first proof which is computational we analyze the S2g+2 action

gF p,q
1 .

Ezra Getzler calculated the Sn equivariant cohomology of M0,n an M0,n.

Using those techniques we can decompose the vector spaces into
irreducible representations of S2g+2.

The differential is S2g+2 equivariant, and counting dimensions of the

isotypic components for the standard representation, of gF−g+1,2g−1
1 and

gF−g+2,2g−1
1 we infer that gF−g+1,2g−1

2 6= 0. The computations work only
up to genus 5.
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Tables

p = −2 p = −1 p = 0
q = 5 4 1 0

Table: 3F p,q
1 , multiplicities of s7,1

p = −3 p = −2 p = −1 p = 0
q = 7 11 6 1 0

Table: 4F p,q
1 , multiplicities of s9,1

p = −4 p = −3 p = −2 p = −1 p = 0
q = 9 37 36 10 1 0

Table: 5F p,q
1 , multiplicities of s11,1
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Second Proof
This proof came out of carefully analyzing the results of the computations
in the first proof and works for all genus. Consider the following trees Tl ,g .

v0

v1 v2 vl

1 2 2l-1 2l

2l+1 2g+2

Clearly
Aut(Tl ,g ) ∼= S2g−2l+1 × (Sl o S2) ⊂ S2g+1.

Let
Wl ,g = H2g−1−l

c (MTl,g
) for l = 0, . . . , g + 1.

and
Vl ,g = (Wl ,g )Aut(Tl,g )
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Second proof cont.

We have the following commutative diagram,

2g+2E−g ,2g−1
1

d1 //
2g+2E−g+1,2g−1

1

d1 //
2g+2E−g+2,2g−1

1

Vg ,g

?�

OO

d1 // Vg−1,g

?�

OO

d1 //

_�

��

Vg−2,g

?�

OO

_�

��

gF−g+1,2g−1
1

d1 //
gF−g+2,2g−1

1

The proof then concludes by showing that dim Vg ,g = 1 and
d1 : Vg ,g → Vg−1,g is non-zero, hence the kernel of d1 : Vg−1,g → Vg−2,g

is non-trivial.

To know more about all of this please read my thesis.

C. Chaudhuri (Northwestern University) ISI Bangalore August 1, 2013 38 / 40



Further Research

Investigate similar questions about trigonal or tetragonal locus, and
other Brill-Noether loci.

See whether there are similar operadic interpretation of the
(co)homology as in the hyper-elliptic case.
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Thank You !
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