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We shall work over the complex numbers.

2. Moduli of Curves

2.1. Algebraic Curves. An algebraic curve is a 1 dimensional smooth projective variety. Said differently it is a
compact Riemann surface. Examples are P1, elliptic curves and higher genus curves. Figures

The genus of a Rimann surface X is half its first Betti number:

g(X) =
1

2
dimH1(X)

An n pointed curve will be an algebraic curve C, with n distinct numbered points p1, . . . , pn ∈ C. Two such curves
(C; p1, . . . , pn) and (C ′; p′1, . . . , p

′
n) are isomorphic if there is an isomorphism C → C ′ taking pi 7→ p′i.

2.2. Moduli Problem. The moduli problem for algebraic curves is to find a “space” Mg,n, parameterizing isomor-
phism classes of n pointed genus g curves. It should have the following properties:

(1) Points of Mg,nshould be in bijecton with isomorphism classes of n pointed curves.
(2) There should be a universal Tg,n → Mg,n such that any family of n pointed curves C → B is a pull back of

the universal family.

If such a “space” exists it is called the fine moduli space. It is well known that no such moduli space exits in the
category of schemes. The obstruction comes from existence of non-trivial automorphisms of curves.

Never the less, the obstruction is not very serious and a fine moduli space can be constructed as a Deligne-Mumford
stack, which we shall denote Mg,n. These stacks are analogues of orbifolds in the realm of algebraic geometry.

Underlying the moduli stack there is a coarse moduli space which is an algebraic variety. This we shall denote by
Mg,n. It satisfies property (1) above but not (2). Although whenever we have a family of curves C → B, there exists
a unique map B →Mg,n.
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The moduli space Mg,n is not a complete variety. The reason being, there can be singular curves in the limit of smooth
curves as they vary in families. (More precisely, if we have a family of smooth curves over C× = C \ {0}, then we may
not be able to extend this family to C, even after a base change.)

2.3. Deligne Mumford Compactification. To compactify the moduli space Deligne and Mumford considered a
more general moduli problem by including certain singular curves but only the necessary ones. It turns out that the
class of curves that can arise as limits of smooth curves are curves with only nodal singularities. The main ingredient
here is the stable reduction theorem for curves.

Stable Curves: A stable curve C of genus g, with n marked points {p1, . . . , pn}, is a projective curve with the
following properties:

(1) dimH1(C,OC) = g, where OC is the structure sheaf.
(2) The singularities of C are all nodes.
(3) {p1, . . . , pn} are distinct smooth points of the curve.
(4) Csm \ {p1, . . . , pn} (the smooth locus with the marked points removed) has negative Euler characteristic.

Examples: Figures

Again the fine moduli space of stable n pointed genus g curves exits as a Deligne-Mumford stack, we denote this
by Mg,n. There is a corresponding coarse moduli space Mg,n which is an algerbaic variety. For the most part, our
discussion will involve the course moduli space.

Some properties of the moduli space are:

(1) Mg,n, is an irreducible, smooth, projective, Deligne-Mumford stack of dimension 3g − 3 + n.

(2) Mg,n+1 along with the natural map Mg,n+1 →Mg,n is the universal family.

(3) Mg,n is an irreducible, projective variety, of dimension 3g − 3 + n, and has only mild singularties (finite
quotient).

(4) Mg,n is an open dense subvariety of Mg,n and the complement is a divisor with normal crossings.

(5) When g = 0, M0,n and M0,n are smooth varieties and fine moduli spaces for their moduli problems.

2.4. Elementary examples.

• M0,3 is a point.
For any three distinct points p1, p2, p3 on P1 there is an element of PGL(2,C) sending them to 0, 1,∞ respec-
tively.

• M0,4
∼= P1 \ {0, 1,∞} and M0,4

∼= P1.

The four distinct points (x1, x2, x3, x4) can be taken to
(

0, 1,∞, (x4−x1)(x2−x3)
(x4−x3)(x2−x1)

)
, by the automorphism of P1

given by x 7→ (x−x1)(x2−x3)
(x−x3)(x2−x1) . The number (x4−x1)(x2−x3)

(x4−x3)(x2−x1) , is called the cross ratio of (x1, x2, x3, x4). Now if two

of the points collide, we get a stable genus zero curve with two rational components joined by a single node
and each component having two marked points. In this case the cross ratio is 0,1 or ∞.
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• Using a similar argument M0,5 can be identified with the surface obtained by blowing up P1 × P1 at (0, 0),
(1, 1) and (∞,∞). It is a Del-pezzo surface of degree 5. Figure

• In general M0,n+1, can as constructed as a blow up of M0,n × P1.

• M1,1
∼= M0,4/S3

∼= (P1 \ {0, 1,∞})/S3, and M1,1
∼= M0,4/S3

∼= P1/S3 .
Any elliptic curve is a double cover of P1 ramified over 4 points. Lets say the points in P1 above which
ramification occurs are (x1, x2, x2, x4). We can take the point on the elliptic curve over x4 as the marked point.
So the point x4 becomes special, but the order of the first three points is irrelevant. Also if (x1, x2, x3, x4)
and (y1, y2, y3, y4) only differ by an automorphism of P1 then the elliptic curves ramified over the first set of
points is isomorphic to the one ramified over the second set. When two ramification points come together we
get the marked singular genus 1 curve.

• Similarly M2
∼= M0,6/S6.

2.5. Dual graph. Associated to a stable curve is its dual graph. The graph is obtained by associating a vertex to
each component of the curve, labelled by the geometric genus of the component, an edge for each node and leaf for
each marked point. Figure

The dual graphs give a decomposition of Mg,n. We call a dual graph to a stable n pointed genus g curve a stable
graph of type (g, n). Let Γ(g, n) be the set of distinct stable graphs of type (g, n).

For a graph G let MG be the subvariety of Mg,n parameterizing stable curves whose dual graph is G. Then

Mg,n = tMG

3. Affine Stratification

3.1. Affine stratification. An affine stratification of a scheme X is a finite decomposition

X =

n⊔
k=0

⊔
i

Yk,i

where Yk,i are disjoint, locally closed affine subvarieties such that Y k,i\Yk,i ⊂
n⊔

l>k,i

Yl,i. The length of the stratification

is n, and the affine stratification number asnX is the minimum of the lengths over all affine stratifications of X.

When the scheme X is equidimensional we can choose an affine stratification to be

X =

n⊔
k=0

Yk

where Yk is codimension k in X and n = asnX.

The affine stratfication number of X gives bounds on the “topological complexity” of X. Here are a few properties it
satisfies.
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(1) asnX = 0 if and only if X is affine.
(2) asn(X × Y ) ≤ asnX + asnY .
(3) asnX ≤ dimX, if one of the top dimenstional components of X is proper then equality holds.
(4) If D is an effective Cartier divisor of X, then asn(X −D) ≤ asnX.
(5) If F is a quasi-coherent sheaf on X, then Hi(X,F) = 0 for i > asnX.
(6) If Y → X is an affine morphism then asnY ≤ asnX.
(7) If Y ⊂ X is a proper closed subscheme of X, then dimY ≤ asnX.

Examples:

• The first non-trivial example is A2 \ {(0, 0)}, and an affine stratification is

(A2 \ {x− axis}) t (x− axis \ (0, 0))

Hence asn(A2 \ {(0, 0)}) = 1.

• Any value between 0 and dimX is possible: Consider X = Pn \ {(n− k − 1)− plane}, then

Hk(X,OX) 6= 0

hence asnX ≥ k. On the other hand X = An t . . . t An−k is an affine stratification of length k. Thus
asnX = k.

• Moduli of curves: asnMg = g − 2 for 2 ≤ g ≤ 5. This is shown in Fontanari and Looijenga. It is well known
that M2 is affine.
M3 = (M3 \ H3) t H3, where H3 is the hyperelliptic locus of genus 3, and its compliment in M3 is the

moduli of plane quartics.
A theta characteristic of an algebraic curve is a line bundle whose square is the canonical bundle. A

theta characteristic L on C is called even (correspondingly odd) if the dimension of H0(C,L) is even (respec-
tively odd). For g ≥ 3, the sub-variety in Mg parameterizing curves which possess an effective even theta
characteristic is an irreducible divisor called the Thetanull divisor and denoted M ′g.
M4 has an affine stratification

M4 = (M4 \M ′4) t (M ′4 \H4) tH4

Let Tg be the locus of trigonal curves in Mg. These are curves that admit a degree 3 map to P1. We
denote the intersection of the trigonal locus with the thetanull divisor by T ′g. Then M5 has the following affine
stratification of length 3.

M5 = (M5 \M ′5) t (M ′5 \ T ′5) t (T ′5 \H5) tH5

Another stratification can be obtained by replacing the thetanull divisor by the trigonal locus.

3.2. Cohomological excess. Let X be a complex variety and F an abelian sheaf on X. F is constructible if there
is a locally finite partition of X, into locally closed subvarieties X = tiYi such that F|Yi

is locally constant in the
Euclidean topology.

The constructible cohomological dimension (ccd) of X is the minimum integer d such that Hi(X,F) = 0 for i > d and
any constructible sheaf F on X.

It is well known that ccdX ≤ 2× dimX. We define the cohomological excess of X as follows.

Cohomological excess of X denoted ce(X) is given by

ce(X) = max{ccdW − dimW |W subvariety of X}

We have the following inequality,

ce(X) ≤ asnX
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3.3. Questions. The original question that inspired my thesis work was due to Looijenga. He conjectured that Mg

can be covered by g − 1 open sets. This was recently show for g ≤ 5 by Fontanari and Pasculotti in 2012.

Loojenga and Fontanari showed the weaker result asnMg ≤ g − 2 for g ≤ 5.

There is a filtration on Mg,n given by the number of rational components of a curve. M
6k
g,n parametrizes stable curves

with at most k rational components. Figure

This is clearly an increasing filtration.

M
60

g,n ⊂ · · · ⊂M
62g−2+n

g,n = Mg,n

Roth and Vakil extended Looijenga’s conjecture to the following

Conjecture 1. asnM
6k
g,n ≤ g − 1 + k

Recently Looijenga put up a paper on the arxiv proving the the above bounds for cohomological excess of these
varieties, but there seems to be a gap in that paper so we should take these as conjectures.

It is know that the bounds ce(Mg) ≤ g − 2 and ce(Mg,n ≤ g − 1 are sharp, due to a result of Harer. The sharpness of

the bounds on M
6k
g,n are not known.

I investigate similar questions for the hyperelliptic locus.

4. Hyperelliptic locus

4.1. Hyperelliptic curves. A hyperelliptic curve of genus g is a double cover of P1. In fancier terms it has a linear
system of rank 1 and degree 2. By Riemann-Hurwitz formula a hyerlliptic curve of genus g as a double cover of P1 is
ramified at 2g + 2 points. Any such curve can be covered by two affine open subsets one given by

y2 = f(x) degree of f is 2g+1 or 2g+2

and
w2 = v2g+2f(1/v)

with the gluing map being (x, y) 7→ (1/v, w/vg+1)

Let Hg be the subvariety of Mg parametrizing hyperelliptic curves, and let Hg be the closure in Mg.

H2 = M2 and H3 is a divisor in M3. In genral Hg is a subvariety of Mg of dimenstion 2g − 1 (codimension g-2).

We have the isomorphism Hg
∼= M0,2g+2 which we shall describe shortly.

4.2. Hurwitz spaces. Let
f : C → P1

be a ramified d sheeted covering, where C is a smooth algebraic curve of genus g. Such a covering is called simple if
every ramification point of f has index equal to 2 and no two of them lie over the same point of P1. In other words,
any point in P1 has atleast d− 1 points in the pre-image under f .

A simple ramified covering of type (d, g) will be a d sheeted simple cover f : C → P1 branched over 2g+ 2d− 2 points
in P1, along with a numbering of the branch points.
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The Hurwitz space Hurd,g parametrizes isomorphism classes of simple ramified coverings of type (d, g). Hurd,g is a
complex and in fact a smooth algebraic variety with a finite étale morphism to φ : Hurd,g →M0,2g+2d−2.

There is also a morphism ψ : Hurd,g →Mg.

When d = 2, the image of ψ is the hyperelliptic locus and φ : Hurd,g → M0,2g+2 is an isomorphism. Thus there is a

map M0,2g+2 → Hg which is just the quotient map under the action of S2g+2.

4.3. Admissible covers and a compactification of Hurd,g. Harris and Mumford compactified the Hurwitz space
by generalizing ramified covers of P1. They allow the base now to be a stable genus zero curve.

Let B be a stable 2g + 2d− 2 pointed genus 0 curve. A d sheeted genus g admissible cover is a map

f : C → B

where C is a nodal curve such that

(1) f−1(Bsm) = Csm, and restriction of π to the open set of smooth points is simply branched over the marked
points of B and otherwise unramified.

(2) f−1(Bsing) = Csing and for every node q of B and every node r of C lying over q, the two branches over r
map to the branches near q with the same ramification index.

Figure

The curve C may not be stable but it will have arithmetic genus g. Stabilization of C will be a genus g stable curve.

There is a course moduli space Hurd,g for admissible covers which is a complete variety and contains Hurd,g as a dense
open subvariety, extending the maps φ and ψ.

Hurd,g
φ

xx

� _

��

ψ

##

M0,2g+2d−2� _

��

Mg� _

��

Hurd,g
φ

yy

ψ

""

M0,2g+2d−2 Mg

Again when d = 2, φ is an isomorphism and ψ maps to Hg. hence the isomorphism M0,2g+2/S2g+2
∼= Hg. Let

π : M0,2g+2 → Hg be the quotient map.

5. Results

Induced by the filtration on Mg we have a filtration on Hg.

H
6k
g = Hg ∩M

6k
g

We show Looijenga’s bounds hold for these varieties.
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Theorem 2 (C).

asnH
6k
g ≤ g − 1 + k for all g, k

This provides evidence towards the actual conjecture of Roth and Vakil. The effectiveness of the bound is not known,
but when k = 0, we show

Theorem 3 (C).

ce(H
60

g ) ≥ g − 1 for g ≥ 2

This proves

(1) asnH
60

g = ce(H
60

g ) = g − 1.

(2) ce(M
60

g ) ≥ g − 1.

The second result follows since H
60

g is a closed subvariety of M
60

g .

First we reduce these questions to subvarieties of M0,2g+2. Consider

M
(k)

0,2g+2 = π−1H
6k
g

To determine which stable genus zero curves are in M
(k)

0,2g+2, we first determine the dual graph of π(C) form the dual
graph of C. For that we introduce a coloring of the stable graphs of type (0, 2g + 2). Figure

The ramification number of a vertex will be the number of odd edges and legs of the vertex. Now given a dual graph
of a stable curve of type (0, 2g + 2) we can get the dual graph of the corresponding hyperelliptic curve as follows:

(1) To each vertex of rafimication number ρ ≥ 2 or higher associate a vertex of genus (ρ− 2)/2.
(2) To each vertex of ramification number 0 associate two vertices of genus 0.
(3) To each odd edge associate 1 edge and to each even edge associate 2 edges connecting the appropriate vertices.

Figure

We see that genus zero vertices come from vertices with ramification number 0 or internal vertices with ramification
number 2.

We call a stable graph good if it does not have vertices with ramification number 0 or internal vertices with ramification
number 2. Hence we have

M
(0)

0,2g+2 =
⊔

G∈Γ(0,2g+2), G good

MG
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We get an affine stratification of length g− 1 of M
(0)

0,2g+2, by noting that MG is affine for the genus zero graphs and a
good graph of type (g, n) may have at most g − 1 edges.

5.1. Lower Bound. Consider the constant sheaf C on M
(0)

0,2g+2, and let L = π∗C. Then L is a constructible sheaf on

H
60

g . Note that

Hi(H
60

g ,L) ∼= Hi(M
(0)

0,2g+2,C)

Lemma 4. H3g−2(M
(0)

0,2g+2,C) is non-trivial and has a pure Hodge structure of weight 4g − 2.

5.2. A Spectral Sequence. Consider a compact complex manifold X with a simple normal crossings divisor D =
D1 ∪ · · · ∪DN . Then there is a filtration on X as follows

X0

Let X be a smooth projective variety over C of dimension n, and D, a simple normal crossings divisor. By that
we mean D = D1 ∪ . . . ∪ DN , where each Di is a co-dimension 1 smooth sub-variety and all intersections of Di are
transverse. Let

X = X0 ⊃ X1 ⊃ . . . ⊃ Xn ⊃ Xn+1 = ∅

be the following filtration on X: X1 = D, and

Xk =
⋃

|I|=k I⊂{1,...,N}

⋂
i∈I

Di

Let X◦k = Xk \ Xk+1. Then we have H•(Xk, Xk+1) ∼= H•c (X◦k), where H• denotes cohomology and H•c compactly
supported cohomology with complex coefficients.

Consider the spectral sequence associated to this filtration on X. We have

Ep,q1 = Hp+q(X−p, X−p+1) = Hp+q
c (X◦−p)

and the differential d1 is given by the composition of maps

Ep,q1

d1 // Ep+1,q
1

Hp+q(X−p, X−p+1)
ı // Hp+q(X−p)

δ // Hp+q+1(X−p−1, X−p)

where ı and δ are the maps in the long exact sequence of a pair W ⊂ Z as follows

· · · → H l−1(W )
δ−→ H l(Z,W )

ı−→ H l(Z)→ · · ·

Since the filtration is finite the spectral sequence converges to Hp+q(X). Moreover the vector spaces Ep,q1 carry mixed
Hodge structures and the differential is a map of mixed Hodge structures. This spectral sequence is “dual” to the
spectral sequence of Deligne for mixed Hodge theory of smooth quasi-projective varieties. The spectral sequence
converges in the E2 page and Ep,q2 = Ep,q∞ .

Now let X = M0,m and D = M0,m \M0,m; then

Xk =
⋃

[T ]∈Γk(0,m)

MT and X◦k =
⊔

[T ]∈Γk(0,m)

MT .

Hence as above we have a spectral sequence in the category of mixed Hodge structures, with

mE
p,q
1 =

⊕
[T ]∈Γ−p(0,m)

Hp+q
c (MT )

This spectral sequence tells us how to compute H•(M0,m) from the knowledge of H•(M0,l) for all l ≤ m.
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5.3. Truncation. Similarly we have a spectral sequence for M
(0)

0,2g+2.

gF
p,q
1 =

⊕
[T ]∈Γ−p(0,2g+2)0

Hp+q
c (MT )

which we call a truncated spectral sequence for the lack of a better term.

The support of this spectral sequence is shown below. Figure

It thus turns out that

Hg
c (M

(0)

0,2g+2) ∼= gF
−g+1,2g−1
∞

∼= gF
−g+1,2g−1
2

And by Poincaré duality out that H3g−2(M
(0)

0,2g+2) ∼= Hg
c (M

(0)

0,2g+2)∨.

Now the proof involves showing that there is a non-zero class coming from 2g+2E
−g,2g−1
1 in the larger spectral sequence

into gF
−g+1,2g−1
1 . This class has to e in the kernel of the differential and hence gF

−g+1,2g−1
2 6= 0.


