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Abstract

This thesis hopes to elucidate results needed to understand the Hodge

Decomposition for Compact Kahler Manifolds and discuss the Hodge diamond

associated with some interesting examples. We will start from the basics ,

introducing what a complex manifold is and move on to discuss Hodge Theory

on Compact Kahler Manifolds.
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Chapter 1

Introduction

Broadly speaking, Complex Geometry is concerned with spaces (analytic varieties)

and their geometric objects which are modelled on the complex plane.Complex

Geometry sits at the intersection of Algebraic Geometry, Differential Geometry,

and Complex Analysis, and uses tools from all three areas. We will be closely

following [1] ( with occasional references to [2] as our main reference).

Basic Definition of a Complex Manifold

To begin defining a Complex Manifold, we first need to look at what a Smooth

manifold is.

Definition 1.0.1. A Smooth (n) Manifold M is a Hausdorff, Second Countable

Topological space with the property that it has a collection of homeomorphisms

{ ϕi : Ui → ϕi(Ui) ⊆ Rn } with the properties {Ui} is a cover of M and the

transition maps ie: ϕi ◦ ϕ−1
j is a smooth map whenever Ui ∩ Uj ̸= ∅.

Remark 1.0.2. • This collection of these special maps (commonly called charts)

satisfying all the above properties is known as a smooth atlas.

• It is common practice to denote the charts as a tuple (ϕi,Ui) .

• Any pair of atlases { (ϕi, Ui) } and {(ψk, Vk) } are equivalent if the

maps ϕi ◦ ψ−1
k is smooth whenever Ui ∩ Vk ̸= ∅

Definition 1.0.3. A Complex (n) Manifold X is a Smooth (2n) Manifold with

a holomorphic atlas ie: collection of homeomorphisms { ϕi : Ui → ϕi(Ui) ⊆ Cn }
with the properties {Ui} is a cover of X and the transition maps ie: ϕi ◦ ϕ−1

j is are

holomorphic whenever Ui ∩ Uj ̸= ∅.

3



Definition 1.0.4. Given two complex Manifolds X and Y then, a continuous map

f : X → Y is holomorphic if for each p ∈ X ; ∃ are charts (ψj, Uj) and , (ϕi, Vi) :

p ∈ Uj ⊆ f−1(Vi) ⊆ X Vi ⊆ Y

ψj(Uj) ϕi(Vi)
ϕi◦f◦ψ−1

j

ϕi

f

ψj

Remark 1.0.5. • f = (f1, ..., fn) : U ⊆ Cm → V ⊆ Cn is holomorphic if each fi
is holomorphic in each variable

ie:
∂fi
∂z̄j

≡ 0 ; j = 1 , ... , m i = 1 , ... ,n

• Homeomorphisms ϕi (described in definition 0.3) are known as Holomor-

phic charts and it is common practice to denote the charts as a tuple

(ϕi,Ui).

• A holomorphic function on a Complex Manifold X, if a holomorphic

function f: X→ C and, the space of all holomorphic functions on open subset

U ⊆ X is given by OX(U) (or) Γ(U,OX)

• OX is the sheaf of all Holomorphic functions. O∗
X is the sheaf of all non

-vanishing Holomorphic functions ( Function is always non-zero).

• Any pair of holomorphic atlases { (ϕi, Ui) } and {(ψk, Vk) } are

equivalent if the maps ϕi ◦ ψ−1
k is holomorphic whenever Ui ∩ Vk ̸= ∅

• It is interesting to note that the definitions of Smooth and Complex mani-

folds differ only on the holomorphicity or smoothness condition on their atlas.

However, this simple change makes a huge difference. For Example, Holo-

morphicity of these charts implies that Complex Manifolds are orientable

unlike Smooth Manifold counterparts like RP2
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Examples of Complex Manifolds and Holomorphic

Functions

Let us try to understand more about Complex manifolds and Holomorphic Maps

between these spaces using some non-trivial examples.

1.1 Affine Hyper-surfaces

An Affine Hypersurface X is the zero set of a holomorphic function f : Cn → C.
Then, as a consequence Holomorphic Implicit function theorem ( If f: U ⊂ Cn

→ C holomorphic whose Jacobian has maximal rank at p ∈ U .Then, ∃ a neigh-

bourhood V in U and g: V → V’ ⊂ C biholomorphic such that f(g(z1, ..., zn)) =

z1 ∀(z1, ..., zn) ∈ V.) We have a atlas (Ui, gi) of X , gi : Ui → Cn−1 and gi ◦ g−1
j is

holomorphic and
⋃
i Ui = X

1.2 Complex Projective Spaces

Pn := (Cn+1 \ {0})/ ∼ C∗

where z ∼ λ z ∀z ∈ Cn+1 \ {0}and, λ ∈ C∗

Each element of Pn is represented by [z0 : : ... : zn]

Then, the standard cover of Pn is {Ui|0 ≤ i ≤ n} where Ui := {[z0 : ... : zn]|zi ̸= 0}
We define charts ϕi : Ui → Cn where, ϕi([z0 : ... : zn]) = (z0/zi, ..., ˆzi/zi, ..., zn/zi)

[Hat coordinate is excluded in the map]

ϕij = ϕi ◦ ϕ−1
j : ϕj(Ui ∩ Uj) ⊂ Cn → ϕi(Ui ∩ Uj) ⊂ Cn

ϕij(z1, ..., zn) = (z1/zi, ..., zj−1/zi, 1/zi, zj/zi, ..., zn/zi)

which is holomorphic for points in the domain as , 1/z is holomorphic when z ̸= 0

5



1.3 Smooth Projective Varieties

Let f be a homogeneous polynomial in n + 1 variables z0 , . . . , zn.

Assume that 0 ∈ C is a regular value for the induced holomorphic map

f : Cn+l \ {0} → C

.

By the previous example of Affine Hypersurfaces, we know that f−1(0) = V(f) is a

complex manifold. X is covered by the open subset X ∩ Ui , where the Ui are the

standard charts of Pn. Using the charts ϕi defined previously, the set X ∩ Ui is

identified with the fibre over 0 ∈ C of the map

fi : (w1...wn) → f(w1, ..., wi−1, 1, wi, ..., wn)

1.4 Veronese and Segre Embedding

The degree d Veronese Embedding is given by,

vn,d : P
n → P (

n+d
d ) vn,d([z0 : ... : zn]) = [zd0 : zd−1

0 z1 : ... : z
d
n] each of the components

are degree d polynomials in each of the n + 1 variables.

Locally on the chart where z0 ̸= 0 We have,

ϕ0◦vn,d◦ϕ−1
0 (z1, ..., zn) = ϕ0◦vn,d[1 : z1 : ... : zn] = ϕ0[1 : z1 : ... : z

d
n] = (z1, z2, ..., z

d
n)

which is a smooth immersion and it is easy to check it is a homeomorphism onto

its image.

The Segre Embedding is given by

sn,m : Pn × Pm → P(n+1)(m+1)−1

sn,m([z0 : ... : zn], [w0 : ... : wm]) = [z0w0 : znwm]

This map is in fact an embedding and verifies that the product of projective

spaces is a closed smooth manifold in a higher dimensional projective space.

1.5 Hopf (n -) Manifold

Let Z act Cn \ {0} by (z1, ..., zn) → (λkz1, ..., λ
kzn) for k ∈ Z.

For 0 <λ< 1 the action is free and discrete.

6



Using the result (Let G×X → X be the proper and free action of a Complex

Lie group G on a Complex manifold X . Then the quotient X / G is a Complex

manifold in a natural way and the quotient map π : X → X/G is holomorphic.)

The quotient complex manifold X is called the Hopf Manifold.

The map ϕ : S2n−1 × S1 →X

ϕ(t, x1, ..., x2n) → [λt(x1 + ix2, ..., x2n−1 + ix2n)]

defines an diffeomorphism onto the Hopf Manifold X.

Remark 1.5.1. For n ≥ 2 , we know that H2(S
2n−1 × S1) = 0 .

Hence by Poincare Duality , we have that Hopf n-Manifolds are class of examples

of Non - Kahler Complex Manifold.

7



Chapter 2

Holomorphic Vector Bundles

In general, A vector bundle is a topological construction that makes precise the

idea of a family of vector spaces parametrized by another space X which we use

to generalise vector valued functions.

In our cases this space X, is a Complex Manifold and we will see that there are

certain holomorphicity conditions that are imposed.

We will see shortly that hypersurfaces in X and holomorphic line bundles on X are

related.

Definition 2.0.1. A holomorphic vector Bundle of rank r on a Complex Man-

ifold X is a Complex Manifold E with a holomorphic map π : E → X (commonly

called projection map) such that each fibre E(x) := π−1({x}) is a r - dimensional

C vector space.In addition, there is an open cover { Ui } and biholomorphisms

ψi : π
−1(Ui) → Ui×Cr such that first component, πUi

◦ψi = π|Ui
and the induced

map on each fibre E(x) is C - Linear isomorphism (such a map ψi is called a local

trivialization).

What the definition basically encodes is that there is a surjective holomorphic

projection from E to X such that locally, E is of the form U × Cr

Remark 2.0.2. • A holomorphic line Bundle is a holomorphic vector bundle of

rank one

• The induced transition functions ψij : Ui∩Uj → {Invertible C - Linear Maps of Rank r}
ψij(x):= ψi ◦ ψ−1

j (x, ) : Cr → Cr is a holomorphic map.

• We think of this induced transitions function as, ψij : Ui ∩ Uj → GLr(C)

8



• A holomorphic vector bundle should not be confused with a Complex vector

bundle. Complex Vector Bundle is a smooth vector bundle whose

fibers are C spaces and the transition maps are C linear ie: the local trivial-

izations are diffeomorphism not just biholomorphisms.

Definition 2.0.3. Given two holomorphic vector bundles E and F on X with pro-

jection maps πE and πF respectively. A vector bundle homomorphism from

E to F of rank k is a holomorphic map ϕ : E → F such that πF ◦ ϕ = πE and

the induced map between fibers ϕ : E(x) → F (x) is a rank k C- linear map ∀x ∈ X

Remark 2.0.4. We say that two vector bundles E and F are isomorphic if ∃ bijective

vector bundle homomorphism ϕ : E → F

2.1 Tautological Line Bundle O(-1)

An important example that will come up later on is the Line Bundle.

O(−1) := {(l, z)|z ∈ [l]} ⊂ Pn × Cn+1 called the Tautological line bundle on Pn
The projection map π : O(−1) → Pn taking (l,z) 7→ l .

Thus, O(−1)(l) = {l} × [ l ] ⊂ P n × Cn+1 is a C vector space of rank 1 ∀ l ∈ Pn.
Using the standard open charts {Ui}, Ui := {[w0, ..., wn] | wi ̸= 0 } ⊂ Pn
We get the local trivializations ϕi : π

−1(Ui) → Ui×C , ([w0, ..., wn], z) 7→ ([w0, ..., wn], ziwi)

where, z = (z0, ..., zn) = zi(w0/wi, ..., wi−1/wi, 1, wi+1/wi, ..., wn/wi)

The transition functions are ϕij(z) is given by the matrix [zi/zj]

2.2 Operations on Vector Bundles

Similair to Smooth Vector Bundles, holomorphic Vector Bundles have a corre-

sponding result.

Theorem 2.2.1. Meta Theorem for Holomorphic Vector Bundles Given any canon-

ical construction in linear algebra gives rise to a geometric version for holomorphic

vector bundles. (In category theoretic language this result reads as, Given any

functor between the category of vector spaces there is an associated functor be-

tween the category of holomorphic vector bundles)

This result is important as it helps ensures that the following operations in fact

give rise to holomorphic vector bundles.

Given two holomorphic vector bundles E and F on X, with local trivializations

{ϕi : π−1
E (Ui) → Ui ×Ck } and {φj : π−1

F (Vj) → Vj ×Cl } respectively. For ease of

9



calculation let Ai = πCk ◦ ϕi and Bj = πCl ◦ φj

1. Direct sum: E ⊕ F is the holomorphic vector bundle over X with fibres

isomorphic to E(x) ⊕ F(x)

For a simple construction,

E ⊕ F := { (p, v) | p ∈ X, v ∈ E(p)⊕ F (p)}
π : E ⊕ F → X π(p, v) 7→ p is the projection map

ψ(i,j) : π
−1(Ui ∩ Vj) → (Ui ∩ Vj)× Ck+l are all trivialisations of E ⊕ F

ψ(i,j)(p, x) 7→ (p, (Ai(u), Bj(v))) ∈ (Ui ∩ Vj)× Ck+l

where, u ∈ E(p) v ∈ F (p) u+ v = x

(It is easy to check that this map is well defined and satisfies all the required

conditions as a transition function)

From simple computation of transition functions gives that,

ψ(i,j)(i′,j′)(p) =

ï
ϕ(i,i′)(p) 0

0 φ(j,j′)(p)

ò
∀p ∈ Ui ∩ Ui′ ∩ Vj ∩ Vj′

2. Tensor Product: E ⊗ F is the holomorphic vector bundle over X with fibres

isomorphic E(x) ⊗ F(x)

For a simple construction,

E ⊕ F := { (p, v) | p ∈ X, v ∈ E(p)⊗ F (p)}
π : E ⊗ F → X π(p, v) 7→ p is the projection map

ψ(i,j) : π
−1(Ui ∩ Vj) → (Ui ∩ Vj)× Ckl are all trivialisations of E ⊕ F

ψ(i,j)(p, x) 7→ (p, (Ai(u)⊗Bj(v))) ∈ (Ui ∩ Vj)× Ckl

for, u ∈ E(p), v ∈ F (p) x = u⊗ v

(It is easy to check that this map is well defined and satisfies all the required

conditions as a transition function)

From simple computation of transition functions gives that,

ψ(i,j)(i′,j′)(p) = ϕ(i,i′)(p)⊗ φ(j,j′)(p) ∀p ∈ Ui ∩ Ui′ ∩ Vj ∩ Vj′
( A ⊗ B is the tensor product for matrices)

3. Dual Bundle : E∗ is the the holomorphic vector bundles over X with fibres

isomorphic to E(x)∗

4. ith Symmetric Power: SiE is the holomorphic vector bundle with fibres iso-

morphic to SiE(x)

10



5. ith Exterior Power: ∧iE is the holomorphic vector bundle with fibres iso-

morphic to ∧iE(x)

6. Determinant Line Bundle: If E is holomorphic vector bundle of rank k then,

det(E) := ∧kE is a holomorphic line bundle.

7. If ϕ : E → F is a vector bundle homomorphism then, Ker(ϕ) and Coker(ϕ)

with fibres isomorphic to Ker(ϕ(x) : E(x) → F (x)) and Coker(ϕ(x) : E(x) →
F (x)) respectively.

Proposition 2.2.2. If 0 → E
f−→ F

g−→ G −→ 0 is a short exact sequence of vector

bundle homomorphisms. We have, det(F ) ∼= det(E)⊗ det(G)

Proof. We have from the exactness of the vector bundle homomorphisms that f is

injective , g is a surjective vector bundle homomorphism with Coker(f) ∼= G and

E ∼= Image(f) = f(E) ∼= Ker(g)

Then we have ψ : E → Ker(g) and ϕ : G→ Coker(g) be these vector bundle

isomorphisms

This gives vector bundle isomorphisms,

det(ψ) : det(E) → det(Ker(g)) and det(ϕ) : det(G) → det(Coker(g))

det(ψ)(v1, ..., vm) 7→ det(ψ(v1), ..., ψ(vm))

det(ϕ)(v1, ..., vm) 7→ det(ϕ(v1), ..., ϕ(vm))

φ : det(E)⊗ det(G) → det(Ker(g))⊕ Coker(g)) ∼= det(F )

φ(v ⊗ w) 7→ det(ψ)(v). det(ϕ)(w) which we view as an element of det(F).

This is the required isomorphism and completes the proof.

2.2.1 Relation Between Transition Functions and Vector

Bundles

It is interesting to note the correspondence between transition functions and Vec-

tor Bundles.

If have already seen that the induced transition function are holomorphic maps,

but it is interesting to note that under matrix composition (or composition of linear

transformations),

[ϕij].[ϕjk] = [ϕik] on Ui ∩ Uj ∩ Uk

11



This is known as the cocycle condition.

On the other hand if we have an open cover { (Ui)i∈λ} of the complex manifold

X with a collection of holomorphic maps {(gij : Ui ∩ Uj → GLn(C))} ∀i, j ∈ λ

satisfying the cocycle condition as shown above and gii = In ∀i ∈ λ

Then, the E := λ×X × Cn /∼ (i, p, v) ∼ (j, p, gij(p)v)

with projection map π : E → X and trivializations ϕi : π
−1(Ui) → Ui×Cn ∀i ∈ λ

π([i, p, v]) = p & ϕi([j, p, v]) = (p, gij(p)v) ∀i ∈ λ

forms a holomorphic rank k bundle over X with induced transition functions

ϕij = gij ∀i ̸= j ∈ λ

Definition 2.2.3. The Picard Group of a Complex Manifold X is the set of

all isomorphism classes of line bundles on X and denoted by Pic(X).

Proposition 2.2.4. Pic(X) is a group under tensor Product with the trivial bundle

(X×C) as identity and dual as the inverse map.

Theorem 2.2.5.

Pic(X) ∼= H1(X,O∗
X)((Group Isomorphism)

H1(X,O∗
X) is the space of all holomorphic cocycles upto product by a non-vanishing

global holomorphic function

Proof. From the local definition it is clear that [E] ∈ Pic(X) is determined by

a unique (Upto scaling by a global holomorphic function) collection of cocycles

{ϕij, Ui ∩ Uj}.
Conversely, given a collection {ϕij, Ui ∩ Uj} ∈ H1(X,O∗

X).

The map is clearly a group homomorphism as tensoring of line bundles correspon-

des to the product of its cocycles.

Finally, the Kernel of the homomorphism is all line bundles that are isomorphic to

the trivial line bundle. This is possible only when there is a global non-vanishing

holomorphic function from X to C

2.3 Tangent Bundle and Adjunction Formula

Tangent Bundle corresponding to the Holomorphic atlas is infact a Holomorphic

Vector Bundle. We will denote this by TX

12



The Holomorphic Tangent Bundle has cocycles { (J(ϕij) ◦ ϕj, Ui ∩ Uj ) }

Let ΩX := T ∗
X is the Holomorphic Cotangent Bundle and KX := det(ΩX) is

the canonical bundle.

Finally, If Y ⊂ X is a Complex Submanifold, Similair to the smooth case we have,

TX |Y = TY
⊕

NY/X

Where, TX |Y is the restriction of the Holomorphic Tangent Bundle of X on Y and

NY/X is the Holomorphic Normal Bundle of Y in X.

This produces an Vector Bundle exact sequence,

0 → TY
i−→ TX |Y → NY/X → 0 By our previous proposition, we get

Theorem 2.3.1. (Adjunction Formula) If Y is a Complex submanifold of a Complex

Manifold X then, KY
∼= KX |Y ⊗ det(NY/X)

13



Chapter 3

Divisors and Line Bundles

An important object that while come up often in future discussions are divisors.

In order to describe a divisor it is best that we learn a bit about analytic varieties

particularly, analytic varieties.

OCn,z := {(U, f) | f : U → C holomorphic U ⊆ Cn open } / ∼
where, (U,f) ∼ (V,g) if there is an open subset W ⊆ U ∩ V such that f = g on W

It is easy to check that under the operations (U,f) + (V,g) : = (U ∩ V , f +

g) and, (U,f).(V,g) : = (U ∩ V , f.g) is a ring.

There is an interesting class of functions in this ring that are of particular interest

to us. Weierstrass polynomials refers to the subring OCn−1,z[z1] in OCn,z .

Proposition 1.1.15 , 1.1.17 , 1.1.18 and 1.1.19 in [1] gives us that,

Proposition 3.0.1. 1. The ring OCn,z is a local Noetherian ring and a UFD.

2. Let f ∈ OCn,z and let g be a Weierstrass polynomial of degree d. Then there

exist Weierstrass polynomial of degree < d and h ∈ OCn,z, such that

f = g·h + r. The functions h and r are uniquely determined.

3. Let g OCn,z be an irreducible function. If f ∈ OCn,z vanishes on

Z(g) := { z | g(z) = 0 }, then g divides f.

This ring OCn,z is important as the zero sets of functions f ∈ OCn,z help define

an analytic subset of Cn

14



Definition 3.0.2. The germ of a set in the origin 0 ∈ Cn is given by a subset

X ⊆ Cn. Two subsets X, Y ⊆ Cn define the same germ if there exists an open

neighbourhood 0 ∈ U ⊆ Cn with U ∩ X= U ∩ Y.

Definition 3.0.3. A germ X ⊆ Cn in 0 is called analytic if there exist elements

f1, ... , fk ∈ OCn,0, such that X and Z(f1, . . . , fk) := { z | fi(z) = 0 i = 1 , ... ,

k } define the same germ.

Definition 3.0.4. Let U ⊆ Cn be an open subset.

An analytic subset of U is a closed subset X ⊆ U such that for any x ∈ X there

exists an open neighbourhood x ∈ V ⊆ U and holomorphic functions f1, ..., fk :

V → Cn such that X ∩ V = {z | f1(z) = ... = fk(z) = 0}.
Remark 3.0.5. From now on the set Z(f) denotes the zero set of the function f

(which is usually holomorphic).

Definition 3.0.6. Let X ⊆ Cn be a germ in the origin. Then I(X) denotes the set

of all elements f ∈ OCn,0 with X ⊆ Z(f).

Definition 3.0.7. An analytic germ is irreducible if the following condition is sat-

isfied:

Let X = X1 ∪X2, where X1 and X2 are analytic germs. Then X = X1 or X = X2.

Definition 3.0.8. Let U ⊆ Cn be open. A meromorphic function f on U is a

function on the complement of a nowhere dense subset S ⊂ U with the following

property:

There exist an open cover U =
⋃
i Ui and holomorphic functions gi, hi : Ui → Cn

with hi |Ui\S .fi |Ui\S= gi |Ui\S.

The set of all holomorphic functions on U is denoted by K(U).

Now we can better appreciate an analytic hypersurface.

Definition 3.0.9. An analytic hypersurface of X is an analytic subvariety Y ⊂
X of codimension one, i.e. dim(Y) = dim( X) - 1.

A hypersurface Y ⊂ X is locally given as the zero set of a non-trivial holomor-

phic function. That is, it locally defines Y ⊂ X (induces germs of codimension one

and any such germ is the zero set of a single holomorphic function

Remark 3.0.10. In general any analytic hypersurface can be expressed as a union

(which we will assume to be locally finite) of Yi is a zero set of an irreducible

function in OCn,z and such sets are called the irreducible components of the hy-

persurface.

Definition 3.0.11. An analytic hypersurface of X is an analytic subvariety Y⊂ X.A

divisor D on X is a formal Z - linear combination of [Yi] which is locally finite (ie:
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For each point x has a neighbourhood U , with finitely many Yi with non - zero Z -

coefficients ai and satisfying U∩Yi ̸= ∅) where, Yi are irreducible components of Y.

i.e. D =
∑
i

ai[Yi] ai ∈ Z

The set of divisors is given by Div(X).

Remark 3.0.12. Every hypersurface defines a divisor
∑
i

[Yi] ∈ Div(X), where Yi

are the irreducible components of Y. Conversely, to any divisor
∑
i

ai[Yi] ∈ Div(X)

with ai ̸= 0∀i one can associate the hypersurface, but this construction is clearly

not very natural.

Definition 3.0.13. A divisor D =
∑
i

ai[Yi] is called effective if ai ≥ 0∀i. In

this case, one writes D ≥ 0.

Definition 3.0.14. Let Y ⊆ X be a hypersurface and let x ∈ Y.

Suppose that Y defines an irreducible germ in x. Hence, this germ is the zero set

of an irreducible g ∈ OX,z· If f be a meromorphic function in a neighbourhood of

z ∈ Y. Then the order ordY,x(f) (of f in x with respect to Y )is given by the

equality, f = gordY,x(f) h in OX,z

Remark 3.0.15. In fact one can show that the order does not depend on the defining

irreducible function g and locally, the order is the same for all regular points.

Definition 3.0.16. If D =
∑
i

ai[Yi] is a divisor then, we associate an element of

H0(X,K∗
X/O∗

X) (which we will think of as a locally defined meromorphic function

which agrees upto a non-vanishing holomorphic function on the intersection) with

the divisor called O(D).

Let X be covered {Uj}. Let gij ∈ O∗(Uj) be irreducible defining equation of

Yi ∩ Uj.

fj :=
∏

Yi∩Uj ̸=∅

gaiij

is Meromorphic function (which is uniquely defined upto a non vanishing holomor-

phic function which depends on the defining equation).

Then, f = [(fj, Uj)] = O(D)

16



Chapter 4

Differential Forms on a Complex

Manifold

In this section, we will try to develop some general results for Differentiable Mani-

folds with Almost Complex Structure M and observe what happens if M is replaced

by a Complex Manifold X. This section introduces several notions familiar to those

who have studied differential forms and differential operators on differentiable or

smooth manifolds.

Hermitian Structure and Almost Complex Mani-

fold

Definition 4.0.1. If M is a differentiable manifold then, an Almost Complex

Structure is a Vector Bundle Endomorphism I:TM → TM satisfying I2 = I ◦ I =

−Id|TM
Remark 4.0.2. 1. As a consequence of [ T2 = −Id|V iff dim(V) is even from

Linear Algebra ], Only even dimensional differentiable manifolds have an al-

most complex structure

2. (In this section) M refers to a Differentiable Manifold with an almost com-

plex structure I (or) an almost complex manifold.

3. (In this section) X refers to a Complex Manifold.

17



Proposition 4.0.3. If X is a Complex Manifold, Then X is an almost complex

manifold.

Proof. Let (Ui, ϕi)i be the holomorphic chart of X.

In each Uk , we will replace ϕk by the coordinates xj + iyj in Cn

Then on each Uk, define I : T (Uk) → T (Uk), I(
∂

∂xj
) =

∂

∂yj
I(

∂

∂yj
) = − ∂

∂xj
Which is infact C - linear map on each fiber . I2 = - Id and full rank real vector

bundle endomorphism

Remark 4.0.4. It is important to note that the 4 - Dimensional Sphere is a smooth

manifold that has no complex structure (non-trivial result) but, has an almost

complex structure. Hence, Almost Complex Structure alone does not guarantee

smooth manifold has a holomorphic atlas.

Let M be an almost complex manifold. then, we can define a complexification

of the tangent bundle TCM := TM ⊗R C which is a complex vector bundle (not

necessarily holomorphic)

π : TCM →M

π(v ⊗ λ) = p = πTM(v) ie: v ∈ TpM

φi : π
−1(Ui → Ui × C

φi(v ⊗ λ) = (πTM(v), λ) is C - Linear on each fiber and φij ∼= J(ϕi ◦ ϕ−1
j ) ◦ ϕj

Proposition 4.0.5. Let X be an almost complex manifold. Then the following two

conditions are equivalent:

i) dα = ∂(α) + ∂̄(α) for all α ∈ A∗(X).

ii) On A1,0(X) one has Π0,2 ◦ d = 0.

Both conditions hold true if X is a complex manifold.

Proof. The last assertion is easily proved by reducing to the local situation .

The implication i) ⇒ ii) is trivial, since d = ∂ + ∂̄ clearly implies Π0,2 ◦ d = 0

on A1,0(X).

Conversely, d = ∂ + ∂̄ holds on Ap,q(X) if and only if dα ∈ Ap+1,q(X)⊕
Ap,q+1(X) for all α ∈ Ap,q(X). Locally, α ∈ Ap,q(X) can be written as a sum of

terms of the form fwi1 ∧ . . . ∧ wip ∧ w′
j1
∧ . . . ∧ w′

jq with wi ∈ A1,0(X) and w′
j ∈

A0,1(X). Using Leibniz rule the exterior differential of such a form is computed in

terms of df, dwik , and dw
′
jℓ∗
. Clearly, df ∈ A1,0(X)⊕A0,1(X) and by assumption

dwi ∈ A2,0(X) ⊕ A1,1(X), and dw′
j = dw̄′

j ∈ A1,1(X) ⊕ A0,2(X). For the latter

we use that complex conjugating ii) yields Π2,0 ◦ d = 0 on A0,1. Thus, dα ∈
Ap+1,q(X)⊕Ap,q+1(X).

18



Definition 4.0.6. An almost complex structure I on X is called integrable if the

condition i) or, equivalently, ii) in Proposition 0.33 is satisfied.

Here is another characterization of integrable almost complex structures.

Proposition 4.0.7. An almost complex structure I is integrable if and only if the

Lie bracket of vector fields preserves T 0,1
X , i.e.

î
T 0,1
X , T 0,1

X

ó
⊂ T 0,1

X .

Proof. Let α be a (1, 0)-form and let v, w be sections of T 0,1. Then, using the

standard formula for the exterior differential (cf. Appendix A) and the fact that

α vanishes on T 0,1, one finds

(dα)(v, w) = v(α(w))− w(α(v))− α([v, w]) = −α([v, w]).

Thus, dα has no component of type (0, 2) for all α if and only if [v, w] is of type

(0, 1) for all v, w of type (0, 1).

Corollary 4.0.8. If I is an integrable almost complex structure, then ∂2 = ∂̄2 = 0

and ∂∂̄ = −∂̄∂. Conversely, if ∂̄2 = 0, then I is integrable.

Proof. The first assertion follows directly from d = ∂ + ∂̄ (Proposition 2.6.15),

d2 = 0, and the bidegree decomposition.

Conversely, if ∂̄2 = 0 we show that
î
T 0,1
X , T 0,1

X

ó
⊂ T 0,1

X . For v, w local sections

of T 0,1
X we use again the formula (dα)(v, w) = v(α(w)) − w(α(v))− α([v, w]), but

this time for a (0, 1)-form α. Hence, (dα)(v, w) = (∂̄α)(v, w). If applied to α = ∂̄f

we obtain

0 =
(
∂̄2f
)
(v, w) = v((∂̄f)(w))− w((∂̄f)(v))− (∂̄f)([v, w])

= v((df)(w))− w((df)(v))− (∂̄f)([v, w]), since v, w ∈ T 0,1
X

=
(
d2f
)
(v, w) + (df)([v, w])− (∂̄f)([v, w])

= 0 + (∂f)([v, w]), since d = ∂ + ∂̄ on A0

Corollary 4.0.9. There exists a natural direct sum decomposition

k∧
C

X =
⊕
p+q=k

p,q∧
X and Ak

X,C =
⊕
p+q=k

Ap,q
X

Moreover, Λp,qX = Λq,pX and Ap,q
X = Aq,p

X
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Definition 4.0.10. Let X be an almost complex manifold. If d : Ak
X,C → Ak+1

X,C is

the C-linear extension of the exterior differential, then we can define

∂ := Πp+1,q ◦ d : Ap,q
X −→ Ap+1,q

X , ∂̄ := Πp,q+1 ◦ d : Ap,q
X −→ Ap,q+1

X

The Leibniz rule for the exterior differential d implies the Leibniz rule for ∂

and ∂̄, e.g. ∂(α ∧ β) = ∂(α) ∧ β + (−1)p+qα ∧ ∂(β) for α ∈ Ap,q(X)

Proposition 4.0.11. Let f : X → Y be a holomorphic map between complex

manifolds. Then the pull-back of differential forms respects the above decom

positions, i.e. it induces natural C-linear maps f ∗ : Ap,q(Y ) → Ap,q(X). These

maps are compatible with ∂ and ∂̄.

Proof. As for any differentiable map f : X → Y there exists the natural pull-back

map f ∗ : Ak(Y ) → Ak(X) which satisfies f ∗ ◦ dY = dX ◦ f ∗.

If f is holomorphic, then the pull-back f ∗ satisfies,

f ∗ (Ap,q(Y )) ⊂ Ap,q(X) and Πp+1,q ◦ f ∗ = f ∗ ◦ Πp+1,q. Thus, for α ∈ Ap,q(Y ) one

has
∂X (f ∗α) = Πp+1,q (dX (f ∗(α))) = Πp+1,q (f ∗ (dY (α)))

= f ∗ (Πp+1,q (dY (α))
)
= f ∗ (∂Y (α))

Analogously, we have ∂̄X ◦ f ∗ = f ∗ ◦ ∂̄Y .
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Chapter 5

Kahler Manifolds, their identities

and Dolbeault Cohomology

This section verifies identities specific to the Kähler manifold. Many complex

manifolds, (but by far not all) possess a Kähler metric. This section also contains

a detailed discussion of the most important examples of compact Kähler manifolds.

Following the discussion in the previous section we have a Hermitian Manifold

X with a metric g compatible almost complex structure J.

Then, we can define a Fundamental form ω(α, β) := g(J(α), β)

Clearly, ω is a smooth 2 - form.

Proposition 5.0.1. ω is an alternating (1,1) - form which is locally given by
i

2

n∑
i,j=1

hijdzi∧

dz̄j in local coordinates {zi, z̄i}. Where [hij] is a hermitian positive definite matrix.

Proof. ω(v, v) = g(J(v),v) = - g(v,J(v)) = - g(v,J(v)) , =⇒ ω(v, v) = 0 ∀v ∈
Ω1(X)

It is sufficient to verify the claim locally,

h : = g - i ω ,

h is a non-degenerate hermitian metric :

(i)h(v,v) = g(v,v) ∀v ∈ Ω1(X)

(ii)h(µ v , λ w) = µλ̄ h(v,w) ∀v, w ∈ Ω1(X)

∂xi = ∂zi + ∂̄zj
Finally, - i ω(∂zi , ∂̄zj) = - i ω((∂xi , ∂xj) = g(∂xi , ∂xj)

h(∂xi , ∂xj) = - 2i ω(∂xi , ∂xj) = - 2i ω(∂zi , ∂̄zj)

The matrix associated to a hermitian metric h is hermitian positive definite.

Hence Proved
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As a consequence if proposition 0.40 the set of closed positive real (1, 1)-forms

ω ∈ A1,1(X) is the set of all Kähler forms.

Corollary 5.0.2. The set of all Kähler forms on a compact complex manifold X is

an open convex cone in the linear space {ω ∈ A1,1(X) ∩ A2(X) | dω = 0}.

Proof. The positivity of a hermitian matrix (hij(x)) is an open property and, since

X is compact, the set of forms ω ∈ A1,1(X) ∩ A2(X) that are locally of the form

ω = i
2

∑
hijdzi ∧ dz̄j with (hij) positive definite at every point is open. The dif-

ferential equation dω = 0 ensures that the metric associated to such an ω is Kähler.

In order to see that Kähler forms form a convex cone, one has to show that for

λ ∈ R>0 and Kähler forms ω1, ω2 also λ · ωi and ω1 + ω2 are Kähler forms. Both

assertion follow from the corresponding statements for positive definite hermitian

matrices.

We can now define some operators

i) The Lefschetz operator : L :
∧kX −→

∧k+2X,α 7−→ α ∧ ω is an operator of

degree two.

ii) The Hodge *-operator: ∗ :
∧kX −→

∧2n−kX is induced by the metric

g and the natural orientation of the complex manifold X. Here, 2n is the real

dimension of X.

ie: As there is a nowhere vanishing volume form.

There is a non-degenerate pairing, λkX × λ2n−kX → R

(α, β) → α ∧ β

Then, we define an inner product on Λk(X)

As inner product is a non - degenerate pairing ,

∗ : Λk(X) ∼= (Λ(2n−k)(X))∗ ∼= (Λ(2n−k)(X)) satisfying,

g(α, β)V ol = α ∧ ∗(β̄)

Locally, If e1, ..., en is an orthonormal local frame of TX

We have, ∗(ei1 ∧ ... ∧ eik) = ej1 ∧ ... ∧ ejn−k

where, Vol = (ei1 ∧ ... ∧ eik) ∧ (ej1 ∧ ... ∧ ejn−k
)

iii) The dual Lefschetz operator:

Λ := ∗−1 ◦ L ◦ ∗ :
∧kX −→

∧k−2X

is an operator of degree -2 and depends on the Kähler form ω and the metric

g (and, therefore, on the complex structure J ).
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All three operators can be extended C-linearly to the complexified bundles∧k
CX. By abuse of notation, those will again be called L, ∗, and Λ, respectively.

Proposition 5.0.3. Let (X, g) be an hermitian manifold. Then there exists a direct

sum decomposition of vector bundles

k∧
X =

⊕
i≥0

Li
(
P k−2iX

)
where P k−2iX := Ker

Ä
Λ :
∧k−2iX →

∧k−2i−2X
ä
is the bundle of primitive

forms.

P k
CX =

⊕
p+q=k

P p,qX

where, P p,qX := P p+q
C X ∩

∧p,qX.

We now define the adjoint operators ( these are infact adjoint under an inner

product which we will see later)

d∗ = (−1)m(k+1)+1 ∗ ◦d ◦ ∗ : Ak(M) −→ Ak−1(M)

and the Laplace operator is given by

∆ = d∗d+ dd∗

If the dimension of M is even, e.g. if M admits a complex structure, then

d∗ = − ∗ ◦d ◦ ∗. Analogously, one defines ∂∗ and ∂̄∗ as follows.

Definition 5.0.4. If (X, g) is an hermitian manifold, then

∂∗ := − ∗ ◦∂̄ ◦ ∗ and ∂̄∗ = − ∗ ◦∂ ◦ ∗.
Proposition 5.0.5. Hodge ∗-operator maps Ap,q(X) to An−q,n−p(X). Thus,

Ap,q(X) Ap−1,q(X)

An−p,n−q(X) An−q,n−p+1(X)

∂∗

∂̄

−∗∗
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and, similarly, ∂̄∗ (Ap,q(X)) ⊂ Ap,q−1(X).

The following Proposition is an immediate consequence of the decomposition

d = ∂+∂̄ which holds because the almost complex structure on a complex manifold

is integrable.

Lemma 5.0.1. If (X, g) is an hermitian manifold then d∗ = ∂∗ + ∂̄∗ and ∂∗2 =

∂̄∗2 = 0.

Definition 5.0.6. If (X, g) is an hermitian manifold, then the Laplacians associated

to ∂ and ∂̄, respectively, are defined as

∆∂ := ∂∗∂ + ∂∂∗ and ∆∂̄ := ∂̄∗∂̄ + ∂̄∂̄∗

∆∂,∆∂̃ : Ap,q(X) −→ Ap,q(X)

All these linear and differential operators behave especially well if a further

compatibility condition on the Riemannian metric and the complex structure is

imposed. This is the famous Kähler condition formulated for the first time by

Kähler.

Definition 5.0.7. A Kähler structure (or Kähler metric) is an hermitian structure

g for which the fundamental form ω is closed, i.e. dω = 0. In this case, the

fundamental ω form is called the Kähler form.

The complex manifold endowed with the Kähler structure is called a Kähler

manifold. However, sometimes a complex manifold X is called Kähler if there

exists a Kähler structure without actually fixing one. More accurately, one should

speak of a complex manifold of Kähler type in this case.

Remark 5.0.8. Hermitian structures exist on any complex manifold but, as we will

see shortly, Kähler structures does not always exist.

A simple example is the Hopf 2 - Manifold (As the 2nd Homology Group is

Trivial, it cannot be Kahler).

The local version of a Kähler metric has been studied in detail in Section 1.3

of [1]. Where we see that the condition dω = 0 is equivalent to the fact that the

hermitian structure g osculates in any point to order two to the standard hermitian

structure (see Proposition 1.3 .12 in [1] for the precise statement).
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5.1 Examples of Kahler Manifolds

5.1.1 Fubini Study Metric on Projective Spaces

The Fubini-Study metric is a canonical Kähler metric on the projective space Pn.
Let Pn =

⋃n
i=0 Ui be the standard open covering and φi : Ui ∼= Cn, (z0 : . . . : zn) 7→Ä

z0
zi
, . . . , “zi

zi
, . . . , zn

zi

ä
. Then one defines

ωi :=
i

2π
∂∂̄ log

(
n∑
ℓ=0

∣∣∣∣zℓzi
∣∣∣∣2
)

∈ A1,1 (Ui)

which under φi corresponds to

i

2π
∂∂̄ log

(
n∑
k=1

|wk|2 + 1

)
Observe that ,

log

(
n∑
ℓ=0

∣∣∣∣zℓzi
∣∣∣∣2
)

= log

(∣∣∣∣zjzi
∣∣∣∣2 n∑

ℓ=0

∣∣∣∣zℓzj
∣∣∣∣2
)

= log

Ç∣∣∣∣zjzi ∣∣∣∣2å+ log

(
n∑
ℓ=0

∣∣∣∣zℓzj
∣∣∣∣2
)
.

Thus, it suffices to show that ∂∂̄ log

Å∣∣∣ zjzi ∣∣∣2ã = 0 on Ui ∩ Uj. Since
zj
zi

is the

j-th coordinate function on Ui, this follows from

∂∂̄ log |z|2 = ∂

Å
1

zz̄
∂̄(zz̄)

ã
= ∂

Å
zdz̄

zz̄

ã
= ∂

Å
dz̄

z̄

ã
= 0

Next, we observe that ωFS is a real (1, 1)-form. Indeed, ∂∂̄ = ∂̄∂ = −∂∂̄ yields

ωi = ω̄i (As Kahler Manifolds are intergrable). Moreover, ωFS is closed, as ∂ωi = 0.

It remains to show that ωFS is positive definite, i.e. that ωFS really is the

Kähler form associated to a metric. This can be verified on each Ui separately. A

straightforward computation yields

∂∂̄ log

(
1 +

n∑
i=1

|wi|2
)

=

∑
dwi ∧ dw̄i

1 +
∑

|wi|2
− (
∑
w̄idwi) ∧ (

∑
widw̄i)Ä

1 +
∑

|wi|2
ä2

=
1Ä

1 +
∑

|wi|2
ä2 ∑hijdwi ∧ dw̄j,

with hij =
Ä
1 +

∑
|wi|2
ä
δij − w̄iwj. The matrix (hij) is positive definite,

since for u ̸= 0 the Cauchy-Schwarz inequality for the standard hermitian product

(,) on Cn yields
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ut (hij) ū = (u, u) + (w,w)(u, u)− utw̄wtū

= (u, u) + (w,w)(u, u)− (u,w)(w, u)

= (u, u) + (w,w)(u, u)− (w, u)(w, u)

= (u, u) + (w,w)(u, u)− |(w, u)|2 > 0.

5.1.2 Complex Curve

ii) Any complex curve admits a Kähler structure. In fact, any hermitian metric is

Kähler, as a two-form on a complex curve is always closed.

5.2 Projective Manifolds are Kahler

Proposition 5.2.1. Let g be a Kähler metric on a complex manifold X. Then the

restriction g|Y to any complex submanifold Y ⊂ X is again Kähler.

Proof. Clearly, g|Y is again a Riemannian metric on Y . Since TxY ⊂ TxX is in-

variant under the almost complex structure I for any x ∈ Y and the restriction of it

to TxY is the almost complex structure IY on Y , the metric g|Y is compatible with

the almost complex structure on Y . Thus, g|Y defines an hermitian structure on

Y . By definition, the associated Kähler form ωY is given by ωY = g|Y (IY (), ()) =

g(I(), ())|Y = ω|Y . Therefore, dY ωY = dY (ω|Y ) = (dXω)|Y = 0

Corollary 5.2.2. Any projective manifold is Kähler.

Proof. By definition a projective manifold can be realized as a submanifold of

Pn. Restricting the Fubini-Study metric yields a Kähler metric.

The following Proposition calculates the mixed commutators of linear opera-

tors, and differential operators explicitly. The Kähler condition dω = 0 is crucial

for this.

5.3 Kahler Identities

Proposition 5.3.1 (Kähler identities). Let X be a complex manifold endowed with

a Kähler metric g. Then the following identities hold true:

i) [∂̄, L] = [∂, L] = 0 and
[
∂̄∗,Λ

]
= [∂∗,Λ] = 0.

ii)
[
∂̄∗, L

]
= i∂, [∂∗, L] = −i∂̄ and [Λ, ∂̄] = −i∂∗, [Λ, ∂] = i∂̄∗.

iii) ∆∂ = ∆∂̄ =
1
2
∆ and ∆ commutes with ∗, ∂, ∂̄, ∂∗, ∂̄∗, L, and Λ.

The theorem will be proved in terms of yet another operator dc.
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Definition 5.3.2.

dc := I−1 ◦ d ◦ I and dc∗ := − ∗ ◦dc ◦ ∗

dc is a real operator which is extended C-linearly. Equivalently, one could define

dc = −i(∂ − ∂̄)

Indeed, if α ∈ Ap,q(X) then

I(∂ − ∂̄)(α) = ip+1−q∂(α)− ip−q−1∂̄(α) = ip+1−qd(α) = id(I(α))

Also, ddc = 2i∂∂̄

Assertion ii) implies [Λ, d] = i
(
∂̄∗ − ∂∗

)
= −i ∗ (∂ − ∂̄)∗ = −dc∗. In fact, using

the bidegree decomposition one easily sees that [Λ, d] = −dc∗ is equivalent to the

assertions of ii).

Proof. Let us first prove i). By definition

[∂̄, L](α) = ∂̄(ω ∧ α)− ω ∧ ∂̄(α) = ∂̄(ω) ∧ α = 0,

for ∂̄(ω) is the (1,2)-part of dω, which is trivial by assumption.

Similairly, [∂, L](α) = ∂(ω) ∧ α = 0.

For α ∈ Ak(X) we have,

[
∂̄∗,Λ

]
(α) = − ∗ ∂ ∗ ∗−1L ∗ (α)− ∗−1L ∗ (− ∗ ∂∗)(α)

= − ∗ ∂L ∗ (α)− (−1)k ∗−1 L∂ ∗ (α) = −(∗∂L ∗ − ∗ L∂∗)(α)
= − ∗ [∂, L] ∗ (α) = 0.

Here, we used that ∗2 = (−1)ℓ on Aℓ(X).

The last assertion can be proved analogously. It can also be verified by just

complex conjugating: [∂∗,Λ] =
[
∂̄∗, Λ̄

]
=
[
∂̄∗,Λ

]
= 0, where one uses that ∗ and

Λ are C-linear extensions of real operators.

ii) Using the Lefschetz decomposition, it is enough to prove the assertion for

forms of the type Ljα with α a primitive k-form. Then dα ∈ Ak+1(X) using the

Lefschetz decomposition can be written as,

dα = α0 + Lα1 + L2α2 + . . .

with αj ∈ P k+1−2j(X). Since L commutes with d and Ln−k+1α = 0, this yields

0 = Ln−k+1α0 + Ln−k+2α1 + Ln−k+3α2 + . . .

As the Lefschetz decomposition is a direct sum decomposition, this implies
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Ln−k+j+1αj = 0, for j = 0, 1, . . ..

On the other hand, Lℓ is injective on Ai(X) for ℓ ≤ n− i.

Hence, since αj ∈ Ak+1−2j(X), one finds αj = 0 for j ≥ 2.

Thus, dα = α0 + Lα1 with Λα0 = Λα1 = 0.

Let us first compute [Λ, d] (Ljα) for α ∈ P k(X). Using [d, L] = 0,Λαi = 0,we

get,

ΛdLjα = ΛLjdα = ΛLjα0 + ΛLj+1α1

= −j(k + 1− n+ j − 1)Lj−1α0 − (j + 1)(k − 1− n+ j)Ljα1

and

dΛLjα = −j(k − n+ j − 1)Lj−1dα

= −j(k − n+ j − 1)
(
Lj−1α0 + Ljα1

)
.

Therefore,

[Λ, d]
(
Ljα

)
= −jLj−1α0 − (k − n+ j − 1)Ljα1

On the other hand we have,

− dc∗Ljα = ∗I−1dI ∗ Ljα

= ∗I−1dI

Å
(−1)

k(k+1)
2

j!

(n− k − j)!
· Ln−k−jI(α)

ã
= (−1)

k(k+1)
2

+k j!

(n− k − j)!
·
(
I−1 ∗ Ln−k−jdα

)
using I2

∣∣
Λk = (−1)k

= (−1)
k(k+1)

2
+k j!

(n− k − j)!
·
(
I−1
(
∗Ln−k−jα0 + ∗Ln−k−j+1α1

))
= (−1)

k(k+1)
2

+k+
(k+1)(k+2)

2 j ·
(
Lj−1α0

)
+ (−1)

k(k+1)
2

+k+
k(k−1)

2 (n− k − j + 1) ·
(
Ljα1

)
= −jLj−1α0 − (k − n+ j − 1)Ljα1.

This yields [Λ, d] = −dc∗ .
iii) We first show that ∂∂̄∗ + ∂̄∗∂ = 0. Indeed, assertion ii) yields i

(
∂∂̄∗+ ∂̄∗∂

)
=

∂[Λ, ∂] + [Λ, ∂]∂ = ∂Λ∂ − ∂Λ∂ = 0. Next,
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∆∂ = ∂∗∂ + ∂∂∗

= i[Λ, ∂̄]∂ + i∂[Λ, ∂̄]

= i(Λ∂̄∂ − ∂̄Λ∂ + ∂Λ∂̄ − ∂∂̄Λ)

= i(Λ∂̄∂ − (∂̄[Λ, ∂] + ∂̄∂Λ) + ([∂,Λ]∂̄ + Λ∂∂̄)− ∂∂̄Λ)

= i
(
Λ∂̄∂ − i∂̄∂̄∗ − ∂̄∂Λ− i∂̄∗∂̄ + Λ∂∂̄ − ∂∂̄Λ

)
= ∆∂̄.

In order to compare ∆ with ∆∂, write

∆ = (∂ + ∂̄)
(
∂∗ + ∂̄∗

)
+
(
∂∗ + ∂̄∗

)
(∂ + ∂̄)

= ∆∂ +∆∂̄ +
(
∂∂̄∗ + ∂̄∗∂

)
+
(
∂∂̄∗ + ∂̄∗∂

)
= ∆∂ +∆∂̄ + 0 + 0

= 2∆∂.

Using ddc = 2i∂∂̄ = −dcd, one computes Λ∆ = Λdd∗+Λd∗d = dΛd∗− idc∗d∗+

d∗Λd = dd∗Λ + id∗dc
∗
+ d∗dΛ− id∗dc

∗
= ∆Λ.

5.4 Dolbeault Cohomology

X is a Complex Manifold. The (p,q) - Dolbeault Cohomology is given by:

H(p,q)(X) :=
Ker(∂̄ : A(p,q)(X) → A(p,q+1)(X))

Im(∂̄ : A(p,q−1)(X) → A(p,q)(X))

The Dolbeault cohomology of X computes the cohomology of the sheaf,

H(p,q)(X) = Hq(X,Ωp
X)
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Chapter 6

Hodge Theory on Kähler

Manifolds

In this chapter we will focus on Compact hermitian and Kähler manifolds. The

compactness allows us to apply Hodge theory, or the theory of elliptic operators

on compact manifolds.

If X is a complex manifold with an hermitian structure g, we denote the her-

mitian extension of the Riemannian metric g by gC. It naturally induces hermitian

products on all form bundles.

Definition 6.0.1. Let (X, g) be a compact hermitian manifold. Then one defines

an hermitian product on A∗
C(X) by

(α, β) :=

∫
X

gC(α, β) ∗ 1.

Lemma 6.0.1. Let X be a compact hermitian manifold. Then with respect to the

hermitian product (,) the operators ∂∗ and ∂̄∗ are the formal adjoints of ∂ and ∂̄,

respectively.

Proof. The proof is similar for ∂ and ∂̄ .

Let α ∈ Ap−1,q(X) and β ∈ Ap,q(X).

By definition,

(∂α, β) =

∫
X

gC(∂α, β) ∗ 1 =

∫
X

∂α ∧ ∗β̄

=

∫
X

∂(α ∧ ∗β̄)− (−1)p+q−1

∫
X

α ∧ ∂(∗β̄).

The first integral of the last line vanishes due to Stokes’ theorem, as α ∧ ∗β̄ is a

(p− 1, q) + (n− p, n− q) = (n− 1, n) form and, therefore, ∂(α∧ ∗β̄) = d(α∧ ∗β̄).
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The second integral is computed using ∗2 = (−1)k on Ak(X):∫
X

α ∧ ∂(∗β̄) = (−1)p+q+1 ·
∫
X

gC(α, ∗(∂̄(∗β))) ∗ 1

= (−1)p+q+1 ·
∫
X

gC (α,−∂∗β) ∗ 1

= (−1)p+q+2 · (α, ∂∗β)

Hk(X, g) denotes the space of (d-)harmonic k-forms. Analogously, one defines

Hp,q(X, g) as the space of (d− )harmonic (p, q)-forms. When the metric is fixed,

one often drops g in the notation.

Definition 6.0.2. Let (X, g) be an hermitian complex manifold. A form α ∈ Ak(X)

is called ∂̄-harmonic if ∆∂(α) = 0. Moreover,

Hk
∂(X, g) :=

{
α ∈ Ak

C(X) | ∆∂̄(α) = 0
}

and

Hp,q

∂̄
(X, g) := {α ∈ Ap,q

C (X) | ∆∂̄(α) = 0}

Analogously, one defines ∂-harmonic forms and the spacesHk
∂(X, g) andHp,q

∂ (X, g)

Lemma 6.0.2. Let (X, g) be a compact hermitian manifold (X, g). A form α is

∂̄-harmonic (resp. ∂-harmonic) if and only if ∂̄α = ∂̄∗α = 0 (resp. ∂α = ∂∗α = 0)

Proof. The assertion follows from

(∆∂̄(α), α) =
∥∥∂̄∗(α)∥∥2 + ∥∂̄(α)∥2.

Thus, ∆∂̄(α) = 0 implies the vanishing of both terms on the right hand side, i.e.

∂̄(α) = ∂̄∗(α) = 0. The converse is clear. A similar argument proves the assertion

for ∆∂.

Proposition 6.0.3. Let (X, g) be an hermitian manifold, not necessarily compact.

Then i) Hk
∂(X, g) =

⊕
p+q=kH

p,q
∂ (X, g) and Hk

∂(X, g) =
⊕

p+q=kH
p,q
∂ (X, g).

ii) If (X, g) is Kähler then both decompositions coincide
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6.1 Serre Duality

As X is a Compact Kahler Manifold, Observe that there is a non-degenerate pair-

ing ,

H
(p,q)
∂ (X)×H

(n−p,n−q)
∂ (X) → C

α, β →
∫
X

α ∧ β = (α, ∗β̄)

The pairing is non-degenerate for

∗β̄ = α

Hence, H
(p,q)
∂ (X) ∼= (H

(n−p,n−q)
∂ (X))∗

6.2 Conjugation Isomorphism

We know that ∂(ᾱ) = ∂̄(α) and ∗(ᾱ) = ¯∗(α) Hence, α ∈ H
(p,q)
∂ (X) iff α ∈ H

(q,p)

∂̄
(X)

H
(p,q)
∂ (X) ∼= H

(q,p)
∂ (X) by the Complex Conjugation Isomorphism.

6.3 Hodge Decomposition Theorem

We have,

Theorem 6.3.1. (Hodge decomposition) Let (X, g) be a compact hermitian mani-

fold. Then there exist two natural orthogonal decompositions

Ap,q(X) = ∂Ap−1,q(X)⊕Hp,q
∂ (X, g)⊕ ∂∗Ap+1,q(X)

and

Ap,q(X) = ∂̄Ap,q−1(X)⊕Hp,q
∂ (X, g)⊕ ∂̄∗Ap,q+1(X)

The spaces Hp,q(X, g) are finite-dimensional. If (X, g) is assumed to be Kähler

then Hp,q
∂ (X, g) = Hp,q

∂ (X, g).

The orthogonality of the decomposition is easy to verify.The crucial fact is the

existence of the direct sum decomposition which is analogous to the proof of Hodge

Decomposition theorem in [5].
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Corollary 6.3.2. Let (X, g) be a compact hermitian manifold. Then the canonical

projection Hp,q
∂ (X, g) → Hp,q(X) is an isomorphism.

Proof. Since any α ∈ Hp,q
∂ (X, g) is ∂̄-closed, mapping α to its Dolbeault coho-

mology class [α] ∈ Hp,q(X) defines a map Hp,q
∂ (X, g) → Hp,q(X).

Moreover, Ker
(
∂̄ : Ap,q(X) → Ap,q+1(X)

)
= ∂̄ (Ap,q−1(X)) ⊕ Hp,q

∂̄
(X, g), as

∂̄∂̄∗β = 0 if and only if ∂̄∗β = 0. Indeed, ∂̄∂̄∗β = 0 implies 0 =
(
∂̄∂̄∗β, β

)
=∥∥∂̄∗β∥∥2. Thus, Hp,q

∂ (X, g) → Hp,q(X) is an isomorphism.

Corollary 6.3.3. Let (X,g) be a Compact Kahler Manifold then, Hk(X,C) =

⊕p+q=kH
(p,q)X

Proof.

Hk(X,C) = ⊕p+q=kH(p,q)(X, g) = ⊕p+q=kH
(p,q)(X)
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Chapter 7

Hodge Diamond of Compact

Kahler Manifolds

Finally, we are in a position to compute the Hodge Diamond of certain varieties of

Compact Kahler Manifolds.The Hodge Diamond is an elegant way to encode the

Hodge numbers h(p,q)(X) = DimC(H
(p,q)) of a Compact Kahler Manifold X.

From the previous few sections we have,

• h(p,q)(X) = h(n−p,n−q)(X) (Serre Duality)

• h(p,q)(X) = h(q,p)(X) (Conjugation Isomorphism)

h0,0

h0,1

h0,2

h0,n

h1,0

h2,0

hn,0

hn,n−2

hn,n−1

hn,n

hn−2,n

hn−1,n

h1,1

hn−1,n−1

. . .

. . .

. . . . . .

...

...

↶
Serre

↔
conjugation

↕ Hodge

b0

b1

b2

...

bn

...

b2n−2

b2n−1

b2n
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Let us now discuss the Hodge Diamond for 3 cases of Compact Kahler Manifolds.

7.1 Compact Complex Curve

Recall that, any Compact Connected 1-Dimensional Complex Manifold X is a

Compact Kahler Manifold. So, We have that h(0,0)(X) = 1 and this gives the

Hodge Diamond,
1

g g

1

Where g is the geometric genus of X. (Geometric genus of Complex n - manifold

is the value of h(n,0) )

7.2 K - 3 Surfaces

We will in particular workout the case of a Quartic Hypersurface in P3

For this case, we will need a result from [1] known as the Weak Lefschetz theorem.

Theorem 7.2.1. Let X be a Compact Kahler manifold of dimension n and let Y

⊂ X be a smooth hypersurface (such that the induced line bundle O(Y) is positive).

Then, the canonical restriction map ,

Hk(X,C) → HK(Y,C)

is bijective for k ≤ n - 2 and injective for k ≤ n - 1 .

We will need the Euler Characteristic of a Hypersurface in Pn given in [4]

Theorem 7.2.2. Let V ⊂ Pn+1 be a degree d smooth Complex projective hyper-

surface. Then, the Euler characteristic of V is given by the formula:

χ(V ) = (n+ 2)− 1

d
{1 + (−1)n+1(d− 1)n+2}.

• Since, P3 is connected and has 1 cell for every even number from 1 to 2n.

H1(X,C) is trivial and H0(X,C) ∼= C (Weak Lefschetz)

• By Serre Duality, we have h(1,0) = h(0,1) = h(3,0) = h(0,3) = 0
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• By the Adjunction Formula, Ω2(X) ∼= OX .

Hence, H(2,0)(X,C) ∼= H0(X,Ω2(X)) ∼= H0(X,OX) ∼= C
( Holomorphic functions on a Compact Connected Complex Manifold are

constant)

• h(2,0) = h(0,2) = 1 (Conjugation Isomorphism )

• Euler Characteristic for Quartic Surface in P3 is 24 .

Hence, h(1,1) = 20

This gives the Hodge Diamond,

1

0 0

1 20 1

0 0

1

Remark 7.2.1. It is important to note here that there exists K - 3 Surfaces that are

not biholomorphic to the Quartic Hypersurface in P3 but, have the same Hodge

Diamond. In this case, the subspace H(p,q) are distinct but, isomorphic Hence,

they have the same Hodge Diamond.

7.3 Quintic 3 - Fold

Quintic 3 - fold, Y can be embedded as a Quintic Hypersurface in P4.

We will look at a Quintic Hypersurface in P4

• Since, P3 is connected and has 1 cell for every even number from 1 to 2n.

H1(X,C) is trivial and H0(X,C) ∼= C . By Weak Lefschetz theorem ,H1(Y,C)
is trivial and H2(Y, C) ∼= C , H0(Y,C) ∼= C

• By Serre Duality, h(1,0) = h(0,1) = h(5,0) = h(0,5) = 0

• By Weak Lefschetz Theorem, H2(Y,C) ∼= C and Y is Kahler.

We have, h(1,1) = 1 and, h(2,0) = h(0,2) = 0

• By Serre Duality, h(4,4) = h(1,1) = 1

36



• By Adjunction Formula, Ω3(Y ) ∼= OY .

Hence, H(3,0)(Y,C) ∼= H0(Y,Ω3(Y )) ∼= H0(Y,OY ) ∼= C
( Holomorphic functions on a Compact Connected Complex Manifold are

constant)

• By Conjugation Isomorphism, h(3,0) = h(0,3) = 1

• Finally, Euler Characteristic for Quintic hypersurface in P4 is - 200.

Hence, h(2,1) = 101 = h(1,2)

This gives the Hodge Diamond as follows,

1

0 0

0 1 0

1 101 101 1

0 1 0

0 0

1

37



Bibliography

[1] Huybrechts, D. (2005). Complex Geometry: An Introduction. Germany:

Springer Berlin Heidelberg.

[2] Griffiths and Harris, Principles of Algebraic Geometry,

[3] https://people.math.osu.edu/george.924/Ehresmann%20Theorem

[4] https://people.math.wisc.edu/ lmaxim/CIMPA-Lectures.pdf

[5] Warner, F.W., Foundations of Differentiable Manifolds and Lie

Groups,Graduate Texts in Mathematics,Springer

38


	Contents
	Introduction
	Affine Hyper-surfaces
	Complex Projective Spaces
	Smooth Projective Varieties
	Veronese and Segre Embedding
	Hopf (n -) Manifold

	Holomorphic Vector Bundles
	Tautological Line Bundle O(-1)
	Operations on Vector Bundles
	Relation Between Transition Functions and Vector Bundles

	Tangent Bundle and Adjunction Formula

	Divisors and Line Bundles
	Differential Forms on a Complex Manifold
	Kahler Manifolds, their identities and Dolbeault Cohomology
	Examples of Kahler Manifolds
	Fubini Study Metric on Projective Spaces
	Complex Curve

	Projective Manifolds are Kahler
	Kahler Identities
	Dolbeault Cohomology

	 Hodge Theory on Kähler Manifolds
	Serre Duality
	Conjugation Isomorphism
	Hodge Decomposition Theorem

	Hodge Diamond of Compact Kahler Manifolds
	Compact Complex Curve
	K - 3 Surfaces
	Quintic 3 - Fold

	Bibliography

