Submission time 10:00, Friday 1 September. All problems are worth 20 points. You may work with one other person but please mention her/his name on your paper.

- 1. Let $p, q \in \mathbb{Z}$ be primes. Suppose E and F are finite fields with $|E| = q^m$ and $|F| = p^n$. If there is an embedding of E in F show that p = q and m divides n.
- 2. Find the splitting field K of $(x^4 1)(x^4 + 2)$ over \mathbb{Q} . What is $[K : \mathbb{Q}]$? Find an element $\alpha \in K$ such that $K = \mathbb{Q}(\alpha)$. $(\mathbf{6+6+8})$
- 3. Let L/K be a field extension.
 - (a) If char $K \neq 2$ and [L:K] = 2 show that $L = K(\alpha)$ where $\alpha^2 \in K$. (8)
 - (b) Let $K = \mathbb{Q}$ and $L = \mathbb{Q}(\alpha)$ where $\alpha \in \mathbb{C}$ and $\alpha^3 5\alpha + 1 = 0$. Show that [L : K] = 3 and that there is no $\beta \in L$ such that $L = \mathbb{Q}(\beta)$ and $\beta^3 \in \mathbb{Q}$. (Hence the previous assertion is not true in general for degree 3.) (12)
- 4. Let K be a field and \overline{K} be its algebraic closure:
 - (a) What are all the prime ideals in $\overline{K}[x]$. (5)
 - (b) If $\alpha \in \overline{K}$ and $m_{\alpha,K}$ the irreducible polynomial for α over K then how many embeddings $\sigma: K(\alpha) \to \overline{K}$ are there so that $\sigma|_K = \mathrm{Id}_K$. (15).
- 5. Let L/K be a finite, normal extension. Let $f(x) \in K[x]$ be an irreducible polynomial. Let $g(x), h(x) \in L[x]$ be two monic irreducible factors of f in L[x]. Show that there is an automorphism $\sigma \in \operatorname{Aut}(L/K)$ such that $\sigma^*(g) = h$. Give a counterexample to this fact when L/K is not normal. (15 + 5)