Submit problems 1, 2, 3 by Monday, November 13.

1. Show that the following two statements of the Lindemann-Weirstrass theorem are equivalent.
A. If $a_{1}, \ldots, a_{n} \in \mathbb{C}$ are distinct algebraic numbers then $e^{a_{1}}, \ldots, e^{a_{n}}$ are linearly independent over \mathbb{Q}.
B. If $a_{1}, \ldots, a_{n} \in \mathbb{C}$ are algebraic numbers, linearly independent over \mathbb{Q} then $e^{a_{1}}, \ldots, e^{a_{n}}$ are algebraically independent over \mathbb{Q}.
2. L / K is an extension of fields. Show that $a_{1}, \ldots, a_{n} \in L$ are algebraically independent over K if and only if a_{1} is transcendental over K and a_{i} is transcendental over $K\left(a_{1}, \ldots, a_{i-1}\right)$ for $2 \leq i \leq n$.
3. Let $K\left(x_{1}, \ldots, x_{n}\right)$ be the field of rational functions in n variables over a field K. Let $A \in M_{n}(K)$ be an $n \times n$ matrix over K with entries $a_{i, j}$. Let

$$
y_{i}=\sum_{j=1}^{n} a_{i, j} x_{j} .
$$

Show that y_{1}, \ldots, y_{n} is a transcendence basis for $K\left(x_{1}, \ldots, x_{n}\right)$ if and only if A is invertible.
4. Prove that with ruler and compass we can not draw a square whose area is the same as a circle with unit radius.
5. Using the Lindemann-Weirstrass theorem show that if u is a non-zero algebraic number then $\sin u, \cos u$ and $\tan u$ are transcendental. Moreover if $u \neq 1$ then show that any complex value of $\log u$ is also transcendental.
6. Look up Schanuel's conjecture: https://en.wikipedia.org/wiki/Schanuel\'s_conjecture. Prove that the conjecture implies that e, π are algebraically independent over \mathbb{Q}.
7. Let K / F have finite transcendence degree and L_{1} and L_{2} be sub-fields of K containing F, show that

$$
\operatorname{trdeg}_{F} L_{1} L_{2} \leq \operatorname{trdeg}_{F} L_{1}+\operatorname{trdeg}_{F} L_{2}
$$

Give an example where the inequality is strict.
8. Let L / K be a field extension with $\alpha, t \in L$ such that α is algebraic over K but t is transcendental over K, show that

$$
m_{\alpha, K}(x)=m_{\alpha, K(t)}(x)
$$

9. If L / K and K / F are field extensions such that L is finitely generated over F, prove that K is finitely generated over F.
10. Let K be an algebraically closed field and F a sub-field such that $\operatorname{trdeg}_{F} K<\infty$. Suppose $\phi: K \rightarrow K$ is an embedding such that $\left.\phi\right|_{F}$ is identity. Show that ϕ is surjective, that is it is an automorphism of K.
11. Let $K=\mathbb{R}(x)$ and $p(t)=t^{2}-x^{2}-1, q(t)=t^{2}+x^{2}+1 \in K[t]$. Let L_{1} and L_{2} be the splitting fields of p and q over K. Show there is $t \in L_{1}$ such that $L_{1}=\mathbb{R}(t)$, but this is not true for L_{2}. What are the transcendence degrees of L_{1} and L_{2} over \mathbb{R} ?
12. Prove that $x_{1}^{r_{1}}, \ldots, x_{n}^{r_{n}}$ forms a transcendence basis of the field of rational functions $K\left(x_{1}, \ldots, x_{n}\right)$ over K.
13. Let $\mathbb{C}(x)$ be the field of rational functions over \mathbb{C}. If K is its algebraic closure, show that $K \cong \mathbb{C}$.
