1. Let $F=\mathbb{Q}\left(\zeta_{n}\right)$ and $a \in F$, let $a^{1 / n} \in \mathbb{C}$ be a root of $x^{n}-a \in F[x]$. Consider the multiplicative group F^{\times}and let $\left(F^{\times}\right)^{n}$ be the sub-group of the n-th powers of elements of F^{\times}. Show that $\operatorname{Gal}\left(F\left(a^{1 / n}\right) / F\right)$ is isomorphic to the cyclic sub-group of $F^{\times} /\left(F^{\times}\right)^{n}$ generated by a (we showed in class that it is a sub-group of $\mathbb{Z} / n \mathbb{Z})$. Determine the group $\operatorname{Gal}\left(F\left(a^{1 / n}\right) / F\right)$ when
(a) $n=12$ and $a=16$,
(b) $n=5$ and $a=4$.
2. Let K / F be a finite separable extension and L / F a finite Galois extension such that $K \subset L$. Choose a set of left coset representatives $\left\{g_{1}, \ldots, g_{n}\right\}$ for $\operatorname{Gal}(L / F) / \operatorname{Gal}(L / K)$. Show that the composite field $K^{\prime}=\left(g_{1} K\right) \cdots\left(g_{n} K\right)$ is Galois over F. Prove this is the smallest Galois extension of F in L containing K (i.e. any other such extension must contain K^{\prime}).
3. Find the roots of the following cubic polynomials over \mathbb{Q} using Cardano's formula:
(a) $x^{3}+x^{2}-2 x-1$,
(b) $x^{3}-3 x+1$.
4. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible cubic polynomial and E its splitting field over \mathbb{Q}. If D_{f} the discriminant of f is positive show that E / \mathbb{Q} is not a radical extension.
5. Show that S_{5} is generated by any 5 -cycle and any transposition.
6. Let K / F be a radical extension and $\sigma: K \rightarrow K^{\prime}$ an isomorphism, such that $\sigma(F)=F^{\prime}$ show that K^{\prime} / F^{\prime} is also a radical extension.
7. Express $\cos \frac{2 \pi}{17}$ in terms of radicals. (Hint. Dummit and Foote section on solvabity by radicals).
