- 1. Let $F = \mathbb{Q}(\zeta_n)$ and $a \in F$, let $a^{1/n} \in \mathbb{C}$ be a root of $x^n a \in F[x]$. Consider the multiplicative group F^{\times} and let $(F^{\times})^n$ be the sub-group of the *n*-th powers of elements of F^{\times} . Show that $\operatorname{Gal}(F(a^{1/n})/F)$ is isomorphic to the cyclic sub-group of $F^{\times}/(F^{\times})^n$ generated by *a* (we showed in class that it is a sub-group of $\mathbb{Z}/n\mathbb{Z}$). Determine the group $\operatorname{Gal}(F(a^{1/n})/F)$ when
 - (a) n = 12 and a = 16,
 - (b) n = 5 and a = 4.
- 2. Let K/F be a finite separable extension and L/F a finite Galois extension such that $K \subset L$. Choose a set of left coset representatives $\{g_1, \ldots, g_n\}$ for $\operatorname{Gal}(L/F)/\operatorname{Gal}(L/K)$. Show that the composite field $K' = (g_1K) \cdots (g_nK)$ is Galois over F. Prove this is the smallest Galois extension of F in Lcontaining K (i.e. any other such extension must contain K').
- 3. Find the roots of the following cubic polynomials over \mathbb{Q} using Cardano's formula:
 - (a) $x^3 + x^2 2x 1$,
 - (b) $x^3 3x + 1$.
- 4. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible cubic polynomial and E its splitting field over \mathbb{Q} . If D_f the discriminant of f is positive show that E/\mathbb{Q} is not a radical extension.
- 5. Show that S_5 is generated by any 5-cycle and any transposition.
- 6. Let K/F be a radical extension and $\sigma: K \to K'$ an isomorphism, such that $\sigma(F) = F'$ show that K'/F' is also a radical extension.
- 7. Express $\cos \frac{2\pi}{17}$ in terms of radicals. (Hint. Dummit and Foote section on solvabity by radicals).