1. Determine the Galois groups of the folowing polynomials:
(a) $x^{3}-x^{2}-4$,
(b) $x^{3}-x+1$,
2. Determine the Galois group of $x^{4}+8 x+12$.
3. Determine the Galois group of $x^{4}+2 x^{2}+x+3$.
4. Show that $\mathbb{Q}(\sqrt[3]{2})$ is not a sub-field of any cyclotomic extension of \mathbb{Q}.
5. Let $\pm \alpha, \pm \beta$ be the roots of $f(x)=x^{4}+a x^{2}+b \in \mathbb{Z}[x]$. Prove that $f(x)$ is irreducible if and only if $\alpha^{2}, \alpha \pm \beta \notin \mathbb{Q}$. If $f(x)$ is irreducible and G is the Galois group of the splitting field of f over \mathbb{Q} then show that
(a) $G \cong V$ the Klein 4 group if and only if $\alpha \beta \in \mathbb{Q}$,
(b) $G \cong \mathbb{Z} / 4 \mathbb{Z}$ if and only if $b\left(a^{2}-4 b\right)$ is a square in \mathbb{Q},
(c) $G \cong D_{8}$ the dihedral group if and only if b and $b\left(a^{2}-4 b\right)$ are not squares in \mathbb{Q}.
6. Prove that $x^{4}+p x+p \in \mathbb{Q}[x]$ is irreducible for all primes $p \in \mathbb{Z}$. If $p \neq 3,5$ then show that the Galois group G of the splitting field over \mathbb{Q} is S_{4}. For $p=3$ show that $G \cong D_{8}$ and when $p=5$, $G \cong \mathbb{Z} / 4 \mathbb{Z}$.
7. Show that any finite extension of $\mathbb{F}_{p^{n}}$ is Galois. What is the Galois group?
8. Find all the monic irreducible poynomials of degree 4 over \mathbb{F}_{2}.
