- 1. Determine the Galois groups of the following polynomials:
 - (a) $x^3 x^2 4$,
 - (b) $x^3 x + 1$,
- 2. Determine the Galois group of $x^4 + 8x + 12$.
- 3. Determine the Galois group of $x^4 + 2x^2 + x + 3$.
- 4. Show that $\mathbb{Q}(\sqrt[3]{2})$ is not a sub-field of any cyclotomic extension of \mathbb{Q} .
- 5. Let $\pm \alpha, \pm \beta$ be the roots of $f(x) = x^4 + ax^2 + b \in \mathbb{Z}[x]$. Prove that f(x) is irreducible if and only if $\alpha^2, \alpha \pm \beta \notin \mathbb{Q}$. If f(x) is irreducible and G is the Galois group of the splitting field of f over \mathbb{Q} then show that
 - (a) $G \cong V$ the Klein 4 group if and only if $\alpha \beta \in \mathbb{Q}$,
 - (b) $G \cong \mathbb{Z}/4\mathbb{Z}$ if and only if $b(a^2 4b)$ is a square in \mathbb{Q} ,
 - (c) $G \cong D_8$ the dihedral group if and only if b and $b(a^2 4b)$ are not squares in \mathbb{Q} .
- 6. Prove that $x^4 + px + p \in \mathbb{Q}[x]$ is irreducible for all primes $p \in \mathbb{Z}$. If $p \neq 3, 5$ then show that the Galois group G of the splitting field over \mathbb{Q} is S_4 . For p = 3 show that $G \cong D_8$ and when p = 5, $G \cong \mathbb{Z}/4\mathbb{Z}$.
- 7. Show that any finite extension of \mathbb{F}_{p^n} is Galois. What is the Galois group?
- 8. Find all the monic irreducible poynomials of degree 4 over \mathbb{F}_2 .