Submit problems 1, 6, 9 by Thursday, 14 Sep. Concepts covered: Galois extensions, and Galois groups.

- 1. Let L/K be an algebraic field extension, show that any embedding $\sigma : L \to L$ such that $\sigma|_K = \text{Id}_K$ is an automorphism of L. Is it true if the extension is not algebraic?
- 2. Let L = K(x) be the field of rational functions of a field K. Investigate Aut(L/K).
- 3. Let L/K be a Galois extension and G = Gal(L/K) for any $\alpha \in L$ show that there are only finitely many conjugates of α and they are exactly the roots of the irreducible polynomial of α over K.
- 4. Demonstrate explicitly a Galois extension of \mathbb{Q} of degree 5 and write down the polynomial of which this is the splitting field.
- 5. Let $p \in \mathbb{Q}[x]$ be an irreducible degree 3 polynomial and L its splitting field. Suppose $\operatorname{Gal}(L/\mathbb{Q})$ is a cyclic group, show that p has all real roots.
- 6. Let $K = \mathbb{Q}(\sqrt{2+\sqrt{2}})$, show that K/\mathbb{Q} is a Galois extension and determine $\operatorname{Gal}(K/\mathbb{Q})$.
- 7. Find the irreducible polynomials of the following algebraic numbers over \mathbb{Q} .
 - (a) $1 + \sqrt[3]{2} + \sqrt[3]{4}$.
 - (b) $\sqrt[3]{2} + i$.
- 8. Determine the Galois group of the splitting field of $x^4 + 8$ over \mathbb{Q} .
- 9. Give an example of a tower of field extension $\mathbb{Q} \subset F_1 \subset F_2 \subset F_3$ where F_1/\mathbb{Q} and F_3/\mathbb{Q} are Galois extensions but F_2/\mathbb{Q} is not a Galois extension. Prove your assertion.