Concepts covered: Separable extensions, automorphism groups and fixed fields. Reading: Lang.

- 1. Let E/F be a finite extension of fields. Let \overline{F} be the algebraic closure of F. The separable degree of E over F denoted by $[E:F]_s$ is the number of embeddings of E in \overline{F} .
 - (a) If $E = F(\alpha)$ is a simple extension, show that $[E:F]_s$ divides [E:F] if α is separable over F.
 - (b) Prove in general that $[E:F]_s$ divides [E:F] and equality holds if E is a separable extension of F.
- 2. Show that E/F is a finite separable extension if and only if $E = F(\alpha_1, \ldots, \alpha_n)$ where each α_i is separable over F.
- 3. Suppose E/F is a finite extension then show that E is a normal and separable extension of F if and only if E is the splitting field of a separable polynomial in F[x].
- 4. State and prove analogous statements as in Problem 3 for arbitrary extensions (not necessarily finite).
- 5. Show that $\alpha = 2 \cos \frac{2\pi}{7}$ is a root of $x^3 + x^2 2x 1$ and the other two roots are $\alpha^2 2$ and $\alpha^3 3\alpha$. Prove that $\mathbb{Q}(\alpha)$ is a degree 3 Galois extension of \mathbb{Q} which is not generated by a cube root. (Check out https://en.wikipedia.org/wiki/Casus_irreducibilis.)
- 6. Show that any algebraically closed field is perfect.
- 7. Let $\zeta_7 = e^{2\pi i/7}$ be the primitive 7th root of unity. Find a generator for Aut($\mathbb{Q}(\zeta_7)$) and show that it is cyclic. If we number $\alpha_i = \zeta_7^i$, $i = 1, \ldots, 6$ what is the sub-group of S_6 that Aut($\mathbb{Q}(\zeta_7)$) maps to?
- 8. What are Aut $(\mathbb{Q}(\sqrt{3}+\sqrt{5}))$ and Aut $(\mathbb{Q}(\sqrt{3}+\sqrt{5})/\mathbb{Q}(\sqrt{3}))$?
- 9. Let K be the splitting field of $x^3 2 \in \mathbb{Q}[x]$, list all the subgroups of Aut(K) and their fixed fields.
- 10. Let K be the splitting field of $x^7 1 \in \mathbb{Q}[x]$, list all the subgroups of Aut(K) and their fixed fields.