No problems to be submitted this week. Concepts covered: Splitting Fields, Normal extensions Algebraic closure.

- 1. Let L/K be a degree 2 extension and char $K \neq 2$. Show that L is generated by a square root, that is $L = K(\alpha)$ where $\alpha^2 \in K$ but $\alpha \notin K$.
- 2. Let K/\mathbb{Q} be the splitting field of $x^p 2$ where p > 2 is a prime, find the group of automorphisms of K.
- 3. What are all the field automorphisms of \mathbb{Q} and $\mathbb{Z}/p\mathbb{Z}$?
- 4. (*Galois Theory, D. J. H Garling*) Find the splitting field K/\mathbb{Q} for each of the following polynomials, determine $[K : \mathbb{Q}]$ and find $\alpha \in K$ such that $K = \mathbb{Q}(\alpha)$.
 - (a) $x^4 5x^2 + 6$,
 - (b) $x^4 + 5x^2 + 6$,
 - (c) $x^4 + 5$,
 - (d) $x^4 + 1$,
 - (e) $x^4 + 4$,
 - (f) $(x^4 + 1)(x^4 + 4)$.
- 5. (Garling) Let L/K be the splitting field of a degree n polynomial over K. Show that [L:K] divides n!.
- 6. (Garling) If L/K is algebraic show that an algebraic closure of L is also an algebraic closure of K.
- 7. (Garling) Show that any algebraically closed field has to be infinite.
- 8. (Algebra, Serge Lang) Let F be a field and F(x) the field of rational functions over F. Show that if y = f(x)/g(x) with $f, g \in F[x]$ co-prime and $n = \max(\deg g, \deg f)$ then [F(x) : F(y)] = n.
- 9. (Lang) (**Bonus**) Let k be a finite field with char k = p and k(x, y) the field of rational functions over k of 2 variables. Show that $[k(x, y) : k(x^p, y^p)] = p^2$, but there are infinitely many fields between k(x, y) and $k(x^p, y^p)$.
- 10. (Bonus) If F is a finite field show that for any $a \in F$ there are $b, c \in F$ such that $a = b^2 + c^2$.