Submit problems 1, 3 and 9 by Thursday, August 10. Concepts covered: Polynomial rings over fields. Reading: Rotman section on Polynomial Rings over Fields.

- 1. Let A be your student id. If $17 \nmid A$ let a = A otherwise let a be the smallest prime greater than A. Find the multiplicative inverse of [a] in $\mathbb{Z}/17\mathbb{Z}$.
- 2. Show that $p(x) = x^2 + 1$ is irreducible in $\mathbb{R}[x]$. Show that $\mathbb{C} \cong \mathbb{R}[x]/(p)$. Factorize p in $\mathbb{C}[x]$.
- 3. Let R be a ring.
 - (a) Show that $R^R = \{f : R \to R\}$, the set of functions from R to R is a ring. If R is an integral domain is R^R also a domain?
 - (b) Show that the map $\Phi: R[x] \to R^R$ which sends a formal polynomial to the function associated to the polynomial is a ring homomorphism.
 - (c) If R is a finite field prove that Φ is not injective. Demonstrate a non-trivial element in ker Φ .
 - (d) If R is an infinite field prove that Φ is injective.
 - (e) If $R = \mathbb{Z}/2\mathbb{Z}$ find ker Φ and show that $R[x]/\ker \Phi \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
 - (f) (Bonus) Prove an analogous statement for $\mathbb{Z}/p\mathbb{Z}$ for p > 2.
- 4. Let F be a field. $p \in F[x]$ is called irreducible if deg p > 0 and p can not be factored as p = fgwhere deg f > 0 and deg g > 0. Prove that (p) is a prime ideal if and only if p is irreducible, hence show that E = F[x]/(p) is a field. Show that if deg p = 1 then p is irreducible and $F[x]/(p) \cong F$.
- 5. Let F be a field and $a, b \in F[x]$ non-zero polynomials. The greatest common divisor, gcd of a and b a monic polynomial d which divides both a and b and any polynomial which divides a and b also divides d.
 - (a) Show that the gcd exists and can be expressed as d = ap + bq for some $p, q \in F[x]$. Show that d is unique.
 - (b) Prove that if a is irreducible then gcd(a, b) = 1.
- 6. Prove that there are domains R containing a pair of elements having no gcd. (Problem 40, page 30 Rotman)
- 7. Problem 43, page 31 Rotman.
- 8. Problem 44, page 31 Rotman.
- 9. Problem 45, page 31 Rotman.
- 10. Problem 46, page 31 Rotman.
- 11. Problem 47, page 31 Rotman.
- 12. Problem 48, page 31 Rotman.

- **43.** In the ring $R = \mathbb{Z}[x]$, show that x and 2 are relatively prime, but there are no polynomials f(x) and $g(x) \in \mathbb{Z}[x]$ with 1 = xf(x) + 2g(x).
- 44. Let $f(x) = \prod (x-a_i) \in F[x]$, where F is a field and $a_i \in F$ for all i. Show that f(x) has **no repeated roots** [i.e., f(x) is not a multiple of $(x a)^2$ for any $a \in F$] if and only if (f(x), f'(x)) = 1, where f'(x) is the derivative of f(x).
- 45. Find the gcd of $x^3 2x^2 + 1$ and $x^2 x 3$ in $\mathbb{Q}[x]$ and express it as a linear combination.
- 46. Prove that $\mathbb{Z}_2[x]/I$ is a field, where $p(x) = x^3 + x + 1 \in \mathbb{Z}_2[x]$ and I = (p(x)).
- 47. If R is a ring and $a \in R$, let $e_a : R[x] \to R$ be evaluation at a. Prove that ker e_a consists of all the polynomials over R having a as a root, and so ker $e_a = (x a)$, the principal ideal generated by x a.
- **48.** Let F be a field, and let $f(x), g(x) \in F[x]$. Prove that if $\partial(f) \leq \partial(g) = n$ and if f(a) = g(a) for n + 1 elements $a \in F$, then f(x) = g(x).

Prime Ideals and Maximal Ideals

The notion of prime number can be generalized to polynomials.

Definition. Let F be a field. A nonzero polynomial $p(x) \in F[x]$ is *irre*ducible⁴over F if $\partial(p) \ge 1$ and there is no factorization p(x) = f(x)g(x)in F[x] with $\partial(f) < \partial(p)$ and $\partial(g) < \partial(p)$.

Notice that irreducibility does depend on the coefficient field F. For example, $x^2 + 1$ is irreducible over \mathbb{R} , but it factors over \mathbb{C} . It is easy to see that linear polynomials (degree 1) are irreducible over any field F for which they are defined. It follows from Corollary 21 that irreducible polynomials of degree ≥ 2 over a field F have no roots in F. The converse is false, however, for $f(x) = x^4 + 2x^2 + 1 = (x^2 + 1)^2$ factors over \mathbb{R} , but it has no real roots.

⁴This notion can be generalized to any ring R. A nonzero element $r \in R$ is called *ir*reducible if r is not a unit and, in every factorization r = st in R, either s or t is a unit. If F is a field and R = F[x], then this notion coincides with our definition of irreducible polynomial. In $\mathbb{Z}[x]$, however, 2x + 2 = 2(x + 1) is not irreducible, yet it does not factor into polynomials each of which has smaller degree.