Indian Institute of Science Education and Research, Pune

MID SEMESTER EXAMINATION, FALL 2017

Course name: Galois Theory Date: 21 September, 2017 Instructor: Chitrabhanu Chaudhuri Course code: MTH 410 Duration: 2 hrs Total points: 100

Instructions: Answer all questions. Each question is worth 20 points. Prove all statements that have not been proven in class.

- 1. Let K be the splitting field over \mathbb{Q} of $x^5 7$. What is $[K : \mathbb{Q}]$? Find all sub fields of K which are Galois extensions of \mathbb{Q} . (Justify why those are all.)
- 2. Let F be an infinite field of characteristic p for some prime number p. Let L = F(x, y) be the field of rational functions in 2 variables over F. Let $K \subset L$ be the subfield $F(x^p, y^p)$. What is [L:K]? For $c \in F$ what is the degree of K(x+cy) over K? Is L/K a simple extension? (Justify all your answers.)
- 3. Let E/F be a finite extension of fields. Let $f(x) \in F[x]$ be a separable polynomial. Suppose K is the splitting field of f over F and K' the splitting field of f over E. If |Gal(K/F)| and [E:F] are co-prime integers, what can you say about Gal(K'/E)? (Justify.) Is K'/F necessarily a Galois extension, prove or give a counter-example.
- 4. Let $F = \mathbb{C}(t)$ and $\tau \in \operatorname{Aut}(F)$ be given by $\tau(f(t)) = f(\frac{1}{1-t})$. Show that $\tau^3 = \operatorname{Id}_F$. Let $\langle \tau \rangle$ be the cyclic group generated by τ . Show that the fixed field $F^{\langle \tau \rangle}$ is $\mathbb{C}(s)$ where $s = t + \frac{1}{1-t} + \frac{t-1}{t}$.
- 5. Let $\zeta_p = e^{2\pi i/p}$ be the primitive *p*-th root of 1 in \mathbb{C} . Show that $\mathbb{Q}(\zeta_5, \zeta_7 + \zeta_7^{-1})$ is a Galois extension of \mathbb{Q} and compute the Galois group.