INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCH (IISER), PUNE

(An Autonomous Institution, Ministry of Human Resource Development, Govt. of India)
Dr Homi Bhabha Road, Pune 411008
SPRING 2018

Mid-Semester Examination

Course name: Calculus on Manifolds
Course Code: MTH322
Total marks: 60
Date: 19 February 2018
Time: 10 AM - 12 Noon

Instructions: Please answer all questions. All problems are worth 10 points.

1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given

$$
f(x)=\left\{\begin{array}{cl}
\frac{x_{1}\left|x_{2}\right|}{\sqrt{x_{1}^{2}+x_{2}^{2}},} & \left(x_{1}, x_{2}\right) \neq(0,0) \\
0, & \left(x_{1}, x_{2}\right)=(0,0)
\end{array}\right.
$$

Show that f has all directional derivatives at $(0,0)$ but is not differentiable at the origin.
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)=x^{3}+y^{3}-3 x y$, show that there are open intervals $U \ni 3 / 2$ and $V \ni 3 / 2$ and a differentiable function $g: U \rightarrow V$ with $g(3 / 2)=3 / 2$ such that in $U \times V$ all solutions of $f(x, y)=0$ are of the form $(x, g(x))$. Find $g^{\prime}(3 / 2)$.
3. Find the volume of the region $D=\left\{(x, y, z) \in \mathbb{R}^{3} \left\lvert\, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq z \leq h\right.\right\} \subset \mathbb{R}^{3}$.
4. Let v_{1}, \ldots, v_{n} be a basis of \mathbb{R}^{n}. Find the volume of the n-parallepiped

$$
\mathcal{P}=\left\{c_{1} v_{1}+\cdots+c_{n} v_{n} \mid 0 \leq c_{i} \leq 1\right\} \subset \mathbb{R}^{n} .
$$

5. Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a continuously differentiable function and $m>n$, such that $D f(x)$ has rank n for all $x \in \mathbb{R}^{m}$. Show for any open set $U \subset \mathbb{R}^{m}, f(U)$ is also open in \mathbb{R}^{n}.
6. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be \mathcal{C}^{2}. Show that for any $a \in \mathbb{R}^{2}, \partial_{1,2} f(a)=\partial_{2,1} f(a)$, that is the order in which we take the double derivative doesn't matter. (Hint. If they are unequal at a then they are unequal in a rectangle containing a. Now use Fubini's theorem).
