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1. Differentiation

1.1. Differentiability. Let U ⊂ Rn be open and f : U → Rm be a function. f is differentiable at x ∈ U
if there exists a linear transformation A : Rn → Rm such that

lim
y→x

||f(y)− f(x)−A(y − x)||
||y − x||

= 0 .

Intuitively, if we denote ∆x = y − x (change in x) and ∆f(x) = f(y)− f(x) (change in f), then A∆x is
a good approximation of ∆f(x) (the best possible by a linear function).

∆f(x) ≈ A∆x

The linear transformation A is unique and we denote it by D f(x). This is the derivative of f at x.

Note that:

• Unlike the single variable case the derivative can not be expressed as a limit. It is a linear
transformation which approximates change in the function in terms of change in the argument.
• If f is differentiable at x, then it is continuous at x.

1.2. Partial derivatives. Let f : U → R where U ⊂ Rn open. Let {e1, . . . , en} be the standard basis
of Rn (ei is the vector whose i-th coordinate is 1 and all other coordinates are 0). Then the i-th partial
derivative of f at x is defined as

∂if(x) := lim
t→0

f(x+ tei)− f(x)

t
.

The partial derivative exists if the above limit exists.

If x = (x1, . . . , xn), then there is another commonly used notation for partial derivatives.

∂f

∂xi
(x) = ∂if(x)

Here we are converting the function f to a single variable function by keeping all the coordinates of
the argument fixed except the i-th coordinate and then taking the derivative with respect to the i-th
coordinate.

If f : U → Rm is differentiable at a ∈ U and f(x) = (f1(x), . . . , fm(x)), then all the partial derivatives
∂ifj(a) exist. More over the matrix of the linear transformation D f(a) also denoted by D f(a) is given
by

D f(a)i,j = ∂jfi(a) .

Thus the derivative matrix of f at a is an m× n matrix whose i-th row consists of all the partials of fi
at a and the j-th column consists of the j-th partials of f1, . . . , fm at a.

Theorem 1. If all the partials ∂ifj exist and are continuous in an open neighbourhood of a, then f is
differentiable at a. Such a function is called continuously differentiable at a.

Note that:

• Existence of partial derivatives ∂ifj(a) does not guarantee differentiability of f at a.
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• If f is differentiable at a then all the partials of the coordinate functions exist at a, but this does
not guarantee they exist is some open neighbourhood of a.

1.3. Directional derivatives. Let f : U → R where U ⊂ Rn is open. For any vector u ∈ Rn the
directional derivative of f along u at a is defined as

∂uf(a) = lim
t→0

f(a+ tu)− f(a)

t
.

The directional derivative exists if the above limit exists.

If f is differentiable at a then all the directional derivatives of f exist at a and

∂uf(a) = D f(a)u

D f(a) is a linear transformation from Rn to R and u ∈ Rn so D f(a)u is a number.

Note that:

• Even if all the directional derivatives of a function exist at a point the function may not be
differentiable at that point.

• Even if a function is differentiable at a point, all its directional derivatives will not be equal at
that point.

1.4. Higher derivatives. Let U ⊂ Rn be open and f : U → Rm. Suppose f is continuously differentiable
on U that is the functions ∂ifj : U → R exist and are continuous on all of U .

Then we can take partial derivatives of ∂ifj at a point in U if they exists. The derivatives ∂i∂jfk(x) are
called the second order derivatives of fk. Similarly if these functions are differentiable on U we can take
the third order derivatives and so on.

We say the function is C1 if it is continuously differentiable. It is called C2 if all the second order
derivatives of the coordinate functions exist and are continuous. It is Ck if all the k-th order derivatives
of the coordinate functions exist and are continuous.

All the k-th order derivatives of all the coordinate functions of f collectively are called the higher deriva-
tives of f . If all the higher derivatives of f exist and are continuous then the function is called C∞.

Continuous functions on the other hand are denoted by C0.

We shall also denote by Ck the set of all Ck functions. It is easy to check that Ck functions from Rn to
Rm is a vector space.

We have the following inclusions C0 ⊃ C1 ⊃ C2 ⊃ . . . ⊃ C∞.

Theorem 2. Let f : U → R where U ⊂ Rn is open and ∂i∂jf and ∂j∂if exist and are continuous in an
open neighbourhood of a ∈ U , then

∂i∂jf(a) = ∂j∂if(a)

Similar result holds for other higher derivatives regarding changing the order of differentiation.

In different set of notations the higher derivatives are written as follows.

∂2f

∂xi∂xj
(a) = ∂i∂jf(a) and

∂3f

∂xi∂x2j
(a) = ∂i∂j∂jf(a)
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1.5. Chain rule. Let h : U → Rm and g : V → Rp, where U ⊂ Rn and V ⊂ Rm are open sets. Then
f = g ◦ h is defined on g−1(V ) ∩ U . Let a ∈ g−1(V ) ∩ U .

Theorem 3 (Chain rule). Suppose h is continuously differentiable in an open neighbourhood of a, and g
is differentiable at h(a). Then g ◦ h is differentiable at a and

D(g ◦ h)(a) = D g(h(a)) Dh(a) .

Let f = g ◦ h and b = h(a), then in terms of the partial derivatives this translates to the following.

∂ifj(a) =

m∑
k=1

∂kgj(b)∂ihk(a)

Written differently yet if zj = fj(x) and yk = hk(x) then

∂zj
∂xi

=

m∑
k=1

∂zj
∂yk

∂yk
∂xi

.

In this last notation you have to be careful about where the derivatives are taken.

1.6. Inverse and Implicit function theorems.

Theorem 4 (Inverse function theorem). Let U ⊂ Rn be some open set and f : U → Rn be a C1 function
such that D f(a) is invertible for some a ∈ U . Then there are open sets V ⊂ U , a ∈ V and W ⊂ Rn,
f(a) ∈W such that

• f maps V bijectively onto W ;
• the inverse function f−1 : W → Rm is C1; and

• D f−1(x) =
[
D f

(
f−1(x)

)]−1
for all x ∈W .

In fact if the function f is Ck then the inverse function is also Ck.

Theorem 5 (Implicit function theorem). Let f : Rn × Rm → Rm be C1 and (a, b) ∈ Rn × Rm such that
the sub-matrix of D f(a, b) consisting of the last m columns is an invertible m×m matrix, then there are
open sets A ⊂ Rn containing a and B ⊂ Rm containing b such that for every x ∈ A there is a unique
g(x) ∈ B satisfying f(x, g(x)) = f(a, b). The function g : A→ B is C1.

Again as before if f is Ck the function g is also Ck.

1.7. Immersions and Submersions. Let U ⊂ Rn be an open set.

If n ≤ m a function f : U → Rm is called an immersion if it is C1 and the linear transformation D f(x)
is injective for all x ∈ U , i.e. D f(x) has rank n (full rank).

We showed in class that for any a ∈ U there is an open set V ⊂ U containing a and an open set W ⊂ Rm
containing f(a) and a C1 function g : W → Rn which satisfies

g ◦ f(x) = x for all x ∈ V .

It follows that f is injective on V . So any immersion is locally injective.

If n ≥ m a function f : U → Rm is called a submersion if it is C1 and the linear transformation D f(x)
is surjective for all x ∈ U , i.e. D f(x) has rank m (full rank).

We showed that for any a ∈ U , there are open sets V ⊂ U containing a and W ⊂ Rm containing f(a)
and a C1 function g : W → Rn which satisfies

f ◦ g(y) = y for all y ∈W .
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It follows that f is an open map.

Note that:

• Immersions may not be injective globally.
• Submersions may bot be surjective globally.

2. Integration

2.1. Riemann Integral. A closed rectangle A ⊂ Rn is a product of closed intervals A = [a1, b1]× · · · ×
[an, bn] where ai < bi. We define the volume of such a rectangle as

v(A) = (b1 − a1) · · · (bn − an) .

An open rectangle B ⊂ Rn is a product of open intervals A = (a1, b1)× · · · × (an, bn) where ai < bi. We
define the volume of such a rectangle also as

v(B) = (b1 − a1) · · · (bn − an) .

If f : A→ R is a bounded function then define

mA(f) = inf{f(x) | x ∈ A} and MA(f) = sup{f(x) | x ∈ A} .

Recall that a partition of A is a collection of partitions {Pi}ni=1 of the intervals [ai, bi], i = 1, . . . , n. A
partition divides A into smaller sub-rectangles. The partition P will also denote the set of sub-rectangles
determined by P .

If f : A→ R is bounded and P a partition of A define the lower and upper sums of f over P by

L(f, P ) =
∑
R∈P

mR(f)v(R) and U(f, P ) =
∑
R∈P

MR(f)v(R)

f is integrable on A if supP L(f, P ) = infP U(f, P ). In that case we define the integral of f on A to be∫
A

f = sup
P
L(f, P ) = inf

P
U(f, P ) .

In any case let
∫
A
f = supP L(f, P ) be the lower integral and

∫
A
f = infP U(f, P ) be the upper integral.

Clearly ∫
A

f ≤
∫
A

f

Theorem 6. Let A be a closed rectangle in Rn and f : A → R a bounded function, then f is integrable
on A if and only if for any ε > 0 there is a partition P of A such that U(f, P )− L(f, P ) < ε.

If S ⊂ Rn is a bounded set then define χS : Rn → R the characteristic (or indicator) function of S by

χS(x) =

{
1 x ∈ S
0 x /∈ S

A bounded function f : S → R is integrable on S if for some closed rectangle A containing S, fχS is
integrable on A. In that case define ∫

S

f =

∫
A

fχS .

Similarly define the lower and upper integrals over S.
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2.2. Measure zero sets. S ⊂ Rn has measure 0 if for every ε > 0, there are countably many closed
rectangles {Ri}∞i=1 such that S ⊂ ∪∞i=1Ri and

∑∞
i=1 v(Ri) < ε.

Theorem 7. S ⊂ Rn has measure 0 if and only if for every ε > 0, there are countably many open
rectangles {Ri}∞i=1 such that S ⊂ ∪∞i=1Ri and

∑∞
i=1 v(Ri) < ε.

Theorem 8. (1) If S ⊂ T ⊂ Rn and T has measure 0, then S also has measure 0.
(2) If S ⊂ Rn contains a closed rectangle then S does not have measure 0.
(3) Union of countably many measure 0 sets has measure 0.

It is a useful fact that any countable set has measure 0 where as a closed rectangle does not have measure
0.

Theorem 9 (Sard’s theorem). Let f : U → Rn be C1, where U is an open subset of Rn. Define the set
of critical points of f to be

D = {x ∈ U | det D f(x) = 0} .
Then f(D) has measure 0.

We have the following two corollaries.

Corollary 10. If f : U → Rm is C1, where U is an open subset of Rn and n < m, then f(U) has measure
0.

Corollary 11. Let f : Rn → Rm be C1 and n ≥ m. For any a ∈ Rm define

Lf (a) = {x ∈ Rn | f(x) = a} = f−1({a}) .
Suppose D f(x) 6= 0 for any x ∈ Lf (a), then Lf (a) has measure 0.

2.3. Jordan domains. A bounded set S ⊂ Rn is a Jordan domain if the constant function 1 is integrable
on S. In that case the volume of S is

v(S) =

∫
S

1

Theorem 12. S is a Jordan domain if and only if BdS the boundary of S has measure 0.

If S1 and S2 are Jordan domains then S1 ∪ S2, S1 ∩ S2 and S1\S2 are also Jordan domains.

Jordan domains are important because of the following result.

Proposition 13. A bounded set S is a Jordan domain if and only if any continuous bounded function
f : S → R is integrable on S.

Note that:

• Not every measure 0 set is a Jordan domain.
• If a measure 0 set is a Jordan domain then its volume is 0.
• Not every bounded set which is closed (hence compact) or open is a Jordan domain.

2.4. Evaluating integrals. The following theorem is an essential tool in calculating integrals of func-
tions.

Theorem 14. (1) If f, g : S → R are integrable functions on S ⊂ Rn bounded, and a, b ∈ R then
af + bg is also integrable on S and

∫
S
af + bg = a

∫
S
f + b

∫
S
g.

(2) If f, g : S → R are integrable functions on S ⊂ Rn bounded, and f(x) ≥ g(x) for all x ∈ A, then∫
S
f ≥

∫
S
g. It follows that |f | is also integrable on S and

∫
S
|f | ≥ |

∫
S
f |.

(3) If S ⊂ Rn is bounded, T ⊂ S and f : S → R is a non-negative function integrable on S and T
then

∫
T
f ≤

∫
S
f .
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(4) Let S1, S2 be bounded subsets of Rn and f : Rn → R is integrable on both S1 and S2 then f is
integrable on S1 ∪ S2 and S1 ∩ S2 and∫

S1∪S2

f =

∫
S1

f +

∫
S2

f −
∫
S1∩S2

f .

In single variable integration theory the following theorem is the main tool for calculating integrals.

Theorem 15 (Fundamental theorem of Calculus). If f : [a, b]→ R is continuous then:

(1) F : [a, b]→ R defined by F (x) =
∫ x
a
f is continuously differentiable on (a, b) and F ′(x) = f(x).

(2) If G : [a, b]→ R is continuous and G′(x) = f(x) for x ∈ (a, b) then
∫ b
a
f = G(b)−G(a).

In higher dimensions Fubini’s theorem gives us a recipe to calculate integrals as iterated integrals.

Theorem 16 (Fubini’s theorem). Let A × B ⊂ Rm+n be a closed rectangle where A and B are closed
rectangles in Rm and Rn respectively. Let f : A × B → R be integrable on A × B. For each x ∈ A let
gx : B → R be the function gx(y) = f(x, y). Define the functions L,U : A→ R by

L(x) =

∫
B

gx and U(x) =

∫
B

gx .

Then L and U are integrable on A and ∫
A×B

f =

∫
A

L =

∫
A

U .

Note that in case gx is integrable on B for each x ∈ A, the upper and lower integrals are equal to the
integral of gx. In that case we write this result as∫

A×B
f =

∫
A

∫
B

fdydx

where x ∈ A and y ∈ B.

If f : A→ R is continuous and A = [a1, b1]× · · · × [an, bn] is a closed rectangle in Rn, then∫
A

f =

∫ bn

an

· · ·
∫ b1

a1

fdx1 . . . dxn .

Of course we can integrate in any different order and the integral will be the same by the previous
theorem.

2.5. Improper integral on open sets. As we saw not all open sets are Jordan domains, which means
continuous functions may not be integrable on even bounded open sets. In order to extend the theory of
Riemann integration to arbitrary open sets we shall use partitions of unity.

Theorem 17 (Partitions of unity). Given any open set U ⊂ Rn and {Uα}α∈A a collection of open sets
such that ∪α∈AUα = U we have a countable collection of C∞ functions {φ1, φ2, . . .} such that

(1) φi : Rn → R and φi(x) ≥ 0;
(2) for each φi there is some Uα such that φi = 0 outside a compact subset of Uα;
(3) each x ∈ U has an open neighbourhood on which all but finitely many φi are 0;
(4)

∑∞
i=1 φi(x) = 1 for each x ∈ U .

Such a collection {φ1, φ2, . . .} is called a partition of unity subordinate to the open cover {Uα}α∈A.
Condition 3 is called local finiteness.

Let U ⊂ Rn be an open set and f : U → R be locally bounded. This means each x ∈ U has an open
neighbourhood on which f is bounded. Let further the set of discontinuities of f have measure 0.
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Let {φ1, φ2, . . .} be a partition of unity for U subordinate to some open cover of U . Note that |f |φi is
integrable on any closed rectangle. Choose a closed rectangle Ai outside which φi = 0 (possible since φi
vanishes outside a compact set). We say that f is integrable (in the extended sense) on U if the series∑∞
i=1

∫
Ai
|f |φi converges.

Note that in this case
∞∑
i=1

|
∫
Ai

fφi| ≤
∞∑
i=1

∫
Ai

|f |φi

which shows that the series
∑∞
i=1

∫
Ai
fφi is absolutely convergent and we define∫

U

f =

∞∑
i=1

∫
Ai

fφi .

It can be shown that this definition is independent of the choice of a partition of unity. If f and U are
both bounded the integral exists, and if U is a Jordan domain and f is integrable on U in the usual sense
and the two integrals are the same.

Whenever we deal with open sets we shall always consider this extended or improper integral.

There is another way of defining improper integrals for continuous functions which is more useful for
computations. If f : U → R is continuous and f(x) ≥ 0 for all x ∈ U . We define∫

U

f = sup{
∫
C

f | C ⊂ U compact Jordan domain}

provided the supremum exists. For any continuous function f : U → R define f+ = max{f, 0} and
f− = max{−f, 0} we say f is integrable on U if both f+, f− are integrable on U and define∫

U

f =

∫
U

f+ −
∫
U

f− .

Both these definitions for improper integrals for continuous functions match and give the same integration
value. Moreover we have the following result.

Theorem 18. Suppose U ⊂ Rn is open and f : U → R is continuous. If C1, C2, . . . be compact subsets
of U which are Jordan domains, Ck ⊂ IntCk+1 and U = ∪∞k=1Ck then f is integrable on U if and only
if
∫
Ck
|f | is a bounded sequence and in that case∫

U

f = lim
k→∞

∫
Ck

f .

2.6. Change of variables. LetA ⊂ Rn be open then a function f : A→ Rn is called a C1 diffeomorphism
if f is C1 and injective and D f(x) is invertible for every x ∈ A. Note that this forces f(A) to be an open
set.

Theorem 19 (Change of variables). If g : A→ Rn is a C1 diffeomorphism and f : g(A)→ R is integrable
then (f ◦ g)|det D g| is integrable on A and∫

g(A)

f =

∫
A

(f ◦ g)|det D g| .

In this theorem the condition that g is a diffeomorphism can be relaxed. In fact if it is only the case that
g is C1 and injective and g(A) is open then the statement of the theorem still holds (since the image of
the set where det D g vanishes has measure 0).

Note that: The above theorem fails when g is not injective.


