1. Vector Fields

- 1. Show that S^1 has a non-vanishing vector field. Obtain a non-vanishing 1-form on S^1 . (Even dimensional spheres have no non-vanishing vector fields.)
- 2. Let $C \subset \mathbb{R}^3$ be a curve, that is a smooth one dimensional manifold with chart $(\gamma, (a, b))$ where $(a, b) \subset \mathbb{R}$ is an open interval. What is $\gamma_* E_1$ where E_1 is the standard vector field of $(a, b) \subset \mathbb{R}$. Now compute it for the cycloid

$$h: (0, 2\pi) \to \mathbb{R}^2, \qquad h(t) = (r(t - \sin t), r(1 - \cos t)).$$

- 3. Suppose $f : \mathbb{R}^2 \to \mathbb{R}$ be \mathcal{C}^{∞} . Γ_f , the graph of f is a manifold. Consider the chart (\mathbb{R}^2, ϕ) of Γ_f , where $\phi(x_1, x_2) = (x_1, x_2, f(x_1, x_2))$. Calculate the vector fields $X_1 = \phi_* E_1$ and $X_2 = \phi_* E_2$. Show that there is a non-vanishing 2-form on Γ_f .
- 4. Suppose $U \subset \mathbb{R}^2$ is open and X is a \mathcal{C}^1 vector field on U. Suppose $\gamma : (a, b) \to U$ is \mathcal{C}^1 , where (a, b) is an open interval in \mathbb{R} , further assume that $\gamma_*(t, e_1) = X(\gamma(t))$ (i.e. the tangent vectors to the curve are given by the vector field at each point).
 - (a) Write down a differential equation satisfied by γ .

(b) What can you say about the existence and uniqueness of the solution to the differential equation? In fact such a curve always exists. Through each point of U there is a unique such curve. These curves are called the integral curves of X (See http://en.wikipedia.org/wiki/Vector_field#Flow_ curves).

- 5. Let $f: U \to \mathbb{R}^m$ be a differentiable map where $U \subset \mathbb{R}^n$ is open, and let f(p) = q.
 - (a) If E_1, \ldots, E_n are the standard vector fields on U and E_1, \ldots, E_n the standard vector fields on \mathbb{R}^m , show that

$$(f_*E_i)(q) = \sum_{j=1}^m \partial_i f_j(p) E_i(q)$$

(b) If
$$v = \sum_{i=1}^{n} v_i E_i(p) \in T_p \mathbb{R}^n$$
 find $f_*(v)$.

6. Let $M \subset \mathbb{R}^n$ be a \mathcal{C}^{∞} manifold of dimension k. Show that the tangent bundle

$$TM = \{T_pM\}_{p \in M} \subset \mathbb{R}^n \times \mathbb{R}^n$$

is a \mathcal{C}^{∞} manifold of dimension 2k. (Hint. If (U, ϕ) is a chart for M, then $(U \times \mathbb{R}^k, \Phi)$ is a chart for TM, where $\Phi(x, y) = (\phi(x), D\phi(x) \cdot y)$).

There is a map $TM \to M$ which sends a tangent vector at a point of M to the point of M. The fibers of this map are all vector spaces (tangent spaces).

2. Differential Forms

- 7. A differential form ω is called **closed** if $d\omega = 0$. Let $\omega = Pdx + Qdy$ be a 1 form on \mathbb{R}^2 , calculate $d\omega$ and find conditions on P, Q for which ω is closed.
- 8. A differential r form η is called **exact** if $\eta = d\omega$ for some r 1 form ω . Since $d^2 = 0$ it follows that any exact form is closed. Show that the 1 form $\eta = 3x^2ydx + (x^3 + 2y)dy$ on \mathbb{R}^2 is closed and exact.

- 9. * Consider smooth functions $f : \mathbb{R}^n \to \mathbb{R}^m$ and $g : \mathbb{R}^m \to \mathbb{R}^k$, then these define the pull back maps $f^* : \Omega^r(\mathbb{R}^k) \to \Omega^r(\mathbb{R}^m)$ and $g^* : \Omega^r(\mathbb{R}^m) \to \Omega^r(\mathbb{R}^n)$. Show that $(g \circ f)^* = f^* \circ g^*$.
- 10. Let $U \subset \mathbb{R}^n$ be open and $f, g: U \to \mathbb{R}$ be a smooth functions then show that (a) $df = \partial_1 f dx_1 + \ldots \partial_n f dx_n$ (Hint. What is $df(p)((p, e_i))$ for $p \in U$?)
 - (b) d(fg) = gdf + fdg.
- 11. Let $U = \mathbb{R}^2 \{(0,0)\}$, and ω be the differential 1 form on U defined by

$$\omega(x,y) = \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$$

- (a) Show that $d\omega = 0$.
- (b) Show that there is no function $f: U \to \mathbb{R}$ such that $\omega = df$. Thus ω is closed but not exact.
- 12. Let $U \subset \mathbb{R}^n$ be open and $\phi: U \to \mathbb{R}^m$ be a smooth function, then show that (a) $\phi^*(dx_j) = \sum_{i=1}^n \partial_i \phi_j dx_i$;
 - (b) $\phi^*(\sum_{j=1}^m g_j dx_j) = \sum_{i=1}^n \sum_{j=1}^m (g_j \circ \phi) \partial_i \phi_j dx_i$
 - (c) If m = n show that $\phi^*(h \ dx_1 \wedge \cdots \wedge dx_n) = (h \circ \phi) \det(D\phi) \ dx_1 \wedge \cdots \wedge dx_n$.

3. ORIENTATION

- 13. * Let $M \subset \mathbb{R}^n$ be a connected smooth manifold of dimension 1. Then show that M is orientable.
- 14. Let $M \subset \mathbb{R}^n$ be an oriented manifold of dimension n-1.
 - (a) Let $p \in M$. Show that there is a unique vector $N(p) \in T_p \mathbb{R}^n$ of norm 1 such that for any positively oriented basis v_1, \ldots, v_{n-1} of $T_p M$ the basis $N(p), v_1, \ldots, v_{n-1}$ of $T_p \mathbb{R}^n$ is positively oriented with respect to the standard orientation of \mathbb{R}^n .
 - (b) * Let $N(p) = (p, n(p)) \in T_p \mathbb{R}^n$. Show that $p \mapsto n(p)$ is a smooth function on M. In fact since ||n(p)|| = 1 we actually get a map $n : M \to S^{n-1}$. This is called the Gauss Map. n(p) is called the unit normal at p. (See Lemma 38.3 of Munkres.)
 - (c) Show that the Möbius strip is not orientable, by demonstrating that there can not be a smooth function n(p) as above.
- 15. Show that a connected orientable manifold $M \subset \mathbb{R}^n$ can have two possible orientations. If M has dimension n-1 how are the Gauss maps for the two different orientations related. Show that fixing the unit normal at a point of the manifold determines the orientation.
- 16. Compute the Gauss map for the following oriented 2-manifolds in \mathbb{R}^3 .
 - (a) S^2 with the unit normal at (1,0,0) being (-1,0,0).
 - (b) The cylinder $C = \{(x, y, z) \mid x^2 + y^2 = 1\}$ with the unit normal at (1, 0, 0) being (1, 0, 0).
 - (c) The ellipsoid $E = \{(x, y, z) \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1\}$ unit normal at (a, 0, 0) being (1, 0, 0).
 - (d) * Can you calculate the Gauss map for the torus oriented outward (We described this as a surface of revolution.)

The Gauss map is deeply related to the geometry of the surfaces. For instance it says a lot about the curvature and total curvature of a surface.

- 17. Show that our definition of integral of a top form on a manifold is independent of the choice of an atlas and a partition of unity.
- 18. Show that any smooth top form is integrable on a compact manifold. (Hint. There is a finite atlas.) Similarly show that if a top form has compact support (i.e. it vanishes outside a compact subset of the manifold), then it is integrable.
- 19. Let $M \subset \mathbb{R}^n$ be a compact oriented k manifold. Show that integration is a linear functional on $\Omega^k(M)$, i.e.

$$\int_{M} a\omega + b\eta = a \int_{M} \omega + b \int_{M} \eta$$

where $\omega, \eta \in \Omega^k(M)$ and $a, b \in \mathbb{R}$.

- 20. Show that the volume form on S^1 is given by -ydx + xdy. Consider the function $f: S^1 \to S^1$ given by $f(x, y) = (x^2 y^2, 2xy)$. Calculate $\int_{S^1} f^* \operatorname{vol}_{S^1}$.
- 21. Let $M \subset \mathbb{R}^n$ be a compact oriented manifold and A be an orthogonal matrix det A = 1, such that $N = A(M) = \{Ax \mid x \in M\} \subset \mathbb{R}^n$ is again a compact oriented manifold. Show that volume(N) =volume(M).
- 22. Let $M \subset \mathbb{R}^n$ be a compact oriented manifold and A(t) be an orthogonal matrix for each $t \in [a, b]$ such that det A = 1. Moreover the entries of A(t) are smooth functions of $t \in [a, b] \subset \mathbb{R}$. The set $M' = \{(A(t)x, t) \mid t \in [a, b], x \in M\} \subset \mathbb{R}^{n+1}$ is then a manifold with boundary along with a natural orientation. Express the volume of M' in terms of the volume of M.
- 23. Let $M \subset \mathbb{R}^n$ be a compact k manifold. The centroid of M is the point $(\bar{x}_1, \ldots, \bar{x}_n)$ where \bar{x}_i is the average of the *i*-th coordinate of all points in M.

$$\bar{x}_i = \frac{1}{\text{volume}(M)} \int_M x_i$$

Find the centroids of the following manifolds: (a) $S^2 \subset \mathbb{R}^3$.

- (b) The region in \mathbb{R}^3 bounded by the sphere of radius 1 and center (1,0,0) and the sphere of radius 4 and center (0,0,0).
- 24. The annulus $A = \{x \in \mathbb{R}^2 \mid 1 \leq ||x|| \leq 2\}$ is a 2 manifold with boundary. Suppose the orientation on A is given by the two form $dx_1 \wedge dx_2$, that is the usual orientation of \mathbb{R}^2 . Then what are the induced orientations on the two boundary components?
- 25. Let $U = (0,1) \times (0,1) \times (0,1)$ and $\phi : U \to \mathbb{R}^4$ be given by $f(x,y,z) = (x,z,y,(2y-z)^2)$. $M = \phi(U) \subset \mathbb{R}^4$ is a manifold covered by the single chart (U,ϕ) . Calculate $\int_M \omega$ where

$$\omega = x_1 dx_1 \wedge dx_4 \wedge dx_3 + 2x_2 x_3 dx_1 \wedge dx_2 \wedge dx_3$$