1. Vector Fields

1. Show that S^{1} has a non-vanishing vector field. Obtain a non-vanishing 1-form on S^{1}. (Even dimensional spheres have no non-vanishing vector fields.)
2. Let $C \subset \mathbb{R}^{3}$ be a curve, that is a smooth one dimensional manifold with chart $(\gamma,(a, b))$ where $(a, b) \subset \mathbb{R}$ is an open interval. What is $\gamma_{*} E_{1}$ where E_{1} is the standard vector field of $(a, b) \subset \mathbb{R}$. Now compute it for the cycloid

$$
h:(0,2 \pi) \rightarrow \mathbb{R}^{2}, \quad h(t)=(r(t-\sin t), r(1-\cos t)) .
$$

3. Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be \mathcal{C}^{∞}. Γ_{f}, the graph of f is a manifold. Consider the chart $\left(\mathbb{R}^{2}, \phi\right)$ of Γ_{f}, where $\phi\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}, f\left(x_{1}, x_{2}\right)\right)$. Calculate the vector fields $X_{1}=\phi_{*} E_{1}$ and $X_{2}=\phi_{*} E_{2}$. Show that there is a non-vanishing 2 -form on Γ_{f}.
4. Suppose $U \subset \mathbb{R}^{2}$ is open and X is a \mathcal{C}^{1} vector field on U. Suppose $\gamma:(a, b) \rightarrow U$ is \mathcal{C}^{1}, where (a, b) is an open interval in \mathbb{R}, further assume that $\gamma_{*}\left(t, e_{1}\right)=X(\gamma(t))$ (i.e. the tangent vectors to the curve are given by the vector field at each point).
(a) Write down a differential equation satisfied by γ.
(b) What can you say about the existence and uniqueness of the solution to the differential equation?

In fact such a curve always exists. Through each point of U there is a unique such curve. These curves are called the integral curves of X (Seehttp://en.wikipedia.org/wiki/Vector_field\#Flow_ curves).
5. Let $f: U \rightarrow \mathbb{R}^{m}$ be a differentiable map where $U \subset \mathbb{R}^{n}$ is open, and let $f(p)=q$.
(a) If E_{1}, \ldots, E_{n} are the standard vector fields on U and E_{1}, \ldots, E_{n} the standard vector fields on \mathbb{R}^{m}, show that

$$
\left(f_{*} E_{i}\right)(q)=\sum_{j=1}^{m} \partial_{i} f_{j}(p) E_{i}(q)
$$

(b) If $v=\sum_{i=1}^{n} v_{i} E_{i}(p) \in T_{p} \mathbb{R}^{n}$ find $f_{*}(v)$.
6. Let $M \subset \mathbb{R}^{n}$ be a \mathcal{C}^{∞} manifold of dimension k. Show that the tangent bundle

$$
T M=\left\{T_{p} M\right\}_{p \in M} \subset \mathbb{R}^{n} \times \mathbb{R}^{n}
$$

is a \mathcal{C}^{∞} manifold of dimension $2 k$. (Hint. If (U, ϕ) is a chart for M, then $\left(U \times \mathbb{R}^{k}, \Phi\right)$ is a chart for $T M$, where $\Phi(x, y)=(\phi(x), D \phi(x) \cdot y))$.

There is a map $T M \rightarrow M$ which sends a tangent vector at a point of M to the point of M. The fibers of this map are all vector spaces (tangent spaces).

2. Differential Forms

7. A differential form ω is called closed if $d \omega=0$. Let $\omega=P d x+Q d y$ be a 1 form on \mathbb{R}^{2}, calculate $d \omega$ and find conditions on P, Q for which ω is closed.
8. A differential r form η is called exact if $\eta=d \omega$ for some $r-1$ form ω. Since $d^{2}=0$ it follows that any exact form is closed. Show that the 1 form $\eta=3 x^{2} y d x+\left(x^{3}+2 y\right) d y$ on \mathbb{R}^{2} is closed and exact.
9. * Consider smooth functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$, then these define the pull back maps $f^{*}: \Omega^{r}\left(\mathbb{R}^{k}\right) \rightarrow \Omega^{r}\left(\mathbb{R}^{m}\right)$ and $g^{*}: \Omega^{r}\left(\mathbb{R}^{m}\right) \rightarrow \Omega^{r}\left(\mathbb{R}^{n}\right)$. Show that $(g \circ f)^{*}=f^{*} \circ g^{*}$.
10. Let $U \subset \mathbb{R}^{n}$ be open and $f, g: U \rightarrow \mathbb{R}$ be a smooth functions then show that
(a) $d f=\partial_{1} f d x_{1}+\ldots \partial_{n} f d x_{n}$ (Hint. What is $d f(p)\left(\left(p, e_{i}\right)\right)$ for $p \in U$?)
(b) $d(f g)=g d f+f d g$.
11. Let $U=\mathbb{R}^{2}-\{(0,0)\}$, and ω be the differential 1 form on U defined by

$$
\omega(x, y)=\frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y
$$

(a) Show that $d \omega=0$.
(b) Show that there is no function $f: U \rightarrow \mathbb{R}$ such that $\omega=d f$. Thus ω is closed but not exact.
12. Let $U \subset \mathbb{R}^{n}$ be open and $\phi: U \rightarrow \mathbb{R}^{m}$ be a smooth function, then show that
(a) $\phi^{*}\left(d x_{j}\right)=\sum_{i=1}^{n} \partial_{i} \phi_{j} d x_{i}$;
(b) $\phi^{*}\left(\sum_{j=1}^{m} g_{j} d x_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m}\left(g_{j} \circ \phi\right) \partial_{i} \phi_{j} d x_{i}$
(c) If $m=n$ show that $\phi^{*}\left(h d x_{1} \wedge \cdots \wedge d x_{n}\right)=(h \circ \phi) \operatorname{det}(D \phi) d x_{1} \wedge \cdots \wedge d x_{n}$.

3. Orientation

13. * Let $M \subset \mathbb{R}^{n}$ be a connected smooth manifold of dimension 1 . Then show that M is orientable.
14. Let $M \subset \mathbb{R}^{n}$ be an oriented manifold of dimension $n-1$.
(a) Let $p \in M$. Show that there is a unique vector $N(p) \in T_{p} \mathbb{R}^{n}$ of norm 1 such that for any positively oriented basis v_{1}, \ldots, v_{n-1} of $T_{p} M$ the basis $N(p), v_{1}, \ldots, v_{n-1}$ of $T_{p} \mathbb{R}^{n}$ is positively oriented with respect to the standard orientation of \mathbb{R}^{n}.
(b) * Let $N(p)=(p, n(p)) \in T_{p} \mathbb{R}^{n}$. Show that $p \mapsto n(p)$ is a smooth function on M. In fact since $\|n(p)\|=1$ we actually get a map $n: M \rightarrow S^{n-1}$. This is called the Gauss Map. $n(p)$ is called the unit normal at p. (See Lemma 38.3 of Munkres.)
(c) Show that the Möbius strip is not orientable, by demonstrating that there can not be a smooth function $n(p)$ as above.
15. Show that a connected orientable manifold $M \subset \mathbb{R}^{n}$ can have two possible orientations. If M has dimension $n-1$ how are the Gauss maps for the two different orientations related. Show that fixing the unit normal at a point of the manifold determines the orientation.
16. Compute the Gauss map for the following oriented 2-manifolds in \mathbb{R}^{3}.
(a) S^{2} with the unit normal at $(1,0,0)$ being $(-1,0,0)$.
(b) The cylinder $C=\left\{(x, y, z) \mid x^{2}+y^{2}=1\right\}$ with the unit normal at $(1,0,0)$ being $(1,0,0)$.
(c) The ellipsoid $E=\left\{(x, y, z) \left\lvert\, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1\right.\right\}$ unit normal at ($\left.a, 0,0\right)$ being $(1,0,0)$.
(d) * Can you calculate the Gauss map for the torus oriented outward (We described this as a surface of revolution.)
The Gauss map is deeply related to the geometry of the surfaces. For instance it says a lot about the curvature and total curvature of a surface.

4. Integration of forms

17. Show that our definition of integral of a top form on a manifold is independent of the choice of an atlas and a partition of unity.
18. Show that any smooth top form is integrable on a compact manifold. (Hint. There is a finite atlas.) Similarly show that if a top form has compact support (i.e. it vanishes outside a compact subset of the manifold), then it is integrable.
19. Let $M \subset \mathbb{R}^{n}$ be a compact oriented k manifold. Show that integration is a linear functional on $\Omega^{k}(M)$, i.e.

$$
\int_{M} a \omega+b \eta=a \int_{M} \omega+b \int_{M} \eta
$$

where $\omega, \eta \in \Omega^{k}(M)$ and $a, b \in \mathbb{R}$.
20. Show that the volume form on S^{1} is given by $-y d x+x d y$. Consider the function $f: S^{1} \rightarrow S^{1}$ given by $f(x, y)=\left(x^{2}-y^{2}, 2 x y\right)$. Calculate $\int_{S^{1}} f^{*} \operatorname{vol}_{S^{1}}$.
21. Let $M \subset \mathbb{R}^{n}$ be a compact oriented manifold and A be an orthogonal matrix $\operatorname{det} A=1$, such that $N=A(M)=\{A x \mid x \in M\} \subset \mathbb{R}^{n}$ is again a compact oriented manifold. Show that volume $(N)=$ volume (M).
22. Let $M \subset \mathbb{R}^{n}$ be a compact oriented manifold and $A(t)$ be an orthogonal matrix for each $t \in[a, b]$ such that $\operatorname{det} A=1$. Moreover the entries of $A(t)$ are smooth functions of $t \in[a, b] \subset \mathbb{R}$. The set $M^{\prime}=\{(A(t) x, t) \mid t \in[a, b], x \in M\} \subset \mathbb{R}^{n+1}$ is then a manifold with boundary along with a natural orientation. Express the volume of M^{\prime} in terms of the volume of M.
23. Let $M \subset \mathbb{R}^{n}$ be a compact k manifold. The centroid of M is the point $\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$ where \bar{x}_{i} is the average of the i-th coordinate of all points in M.

$$
\bar{x}_{i}=\frac{1}{\operatorname{volume}(M)} \int_{M} x_{i}
$$

Find the centroids of the following manifolds:
(a) $S^{2} \subset \mathbb{R}^{3}$.
(b) The region in \mathbb{R}^{3} bounded by the sphere of radius 1 and center $(1,0,0)$ and the sphere of radius 4 and center $(0,0,0)$.
24. The annulus $A=\left\{x \in \mathbb{R}^{2} \mid 1 \leq\|x\| \leq 2\right\}$ is a 2 manifold with boundary. Suppose the orientation on A is given by the the two form $d x_{1} \wedge d x_{2}$, that is the usual orientation of \mathbb{R}^{2}. Then what are the induced orientations on the two boundary components?
25. Let $U=(0,1) \times(0,1) \times(0,1)$ and $\phi: U \rightarrow \mathbb{R}^{4}$ be given by $f(x, y, z)=\left(x, z, y,(2 y-z)^{2}\right) . M=\phi(U) \subset$ \mathbb{R}^{4} is a manifold covered by the single chart (U, ϕ). Calculate $\int_{M} \omega$ where

$$
\omega=x_{1} d x_{1} \wedge d x_{4} \wedge d x_{3}+2 x_{2} x_{3} d x_{1} \wedge d x_{2} \wedge d x_{3}
$$

