Submit problems 3 and 5 on Tuesday, 27 March.

1. Let $A \subset \mathbb{R}^2$ be the rectangle $[-1/2, 1/2] \times [0, 2\pi]$ and $f : A \to \mathbb{R}^3$ be given by

$$f(s,t) = (t\cos(s/2) + 1)u(s) + t\sin(s/2)v$$

where $u(s) = (\cos(s), \sin(s), 0)$ and v = (0, 0, 1). Show that M = f(A) is a manifold with boundary of dimension 2. What is ∂M ?

- 2. Consider the cylinder $C = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1, -1/2 \le z \le 1/2\}$. Show that C is a manifold with boundary of dimension 2. What is ∂M ?
- 3. Let $U \subset \mathbb{R}^n$ be open and $f: U \to \mathbb{R}^k$ be a submersion. Let $a \in f(U)$ and

$$M = \{x \in U \mid f(x) = a\}$$
.

- (a) Let $p \in M$ and (V, ϕ) a chart for M at p, such that $\phi(x) = p$ for $x \in V$. Show that $f_* \circ \phi_* : T_x \mathbb{R}^{n-k} \to T_a \mathbb{R}^k$ is the zero map of vector spaces.
- (b) Show that $T_pM = \ker(f_*: T_p\mathbb{R}^n \to T_a\mathbb{R}^k)$.
- 4. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a \mathcal{C}^1 function and $\Gamma_f \subset \mathbb{R}^3$ be the graph of f as in problem 10 of assignment 9. Then Γ_f is a manifold.
 - (a) Find the tangent space to Γ_f at p = (0, 0, f(0, 0)).
 - (b) Now let $f(x,y) = \frac{\cos(x^2 + y^2)}{1 + x^2 + y^2}$ graph this function and repeat part (a) for this function.
- 5. Consider the following primitive model for a solar system. A star is located at the origin O = (0, 0, 0), and is stationary. A planet P is revolving around the star at distance 10r (at constant speed) along the x-y plane. A satellite S of P is revolving around P at a distance r from P (with constant speed) and is always in the plane containing the z-axis and P. During one complete revolution of P, S revolves 10 times around P. Initially P is at (10r, 0, 0) and S at (11r, 0, 0).
 - (a) Show that the trajectory of S is a manifold of dimension 1 and give an atlas for it.
 - (b) Find the tangent spaces at the points where the three bodies are collinear.

Multilinear Algebra.

Let V be a vector space and $\mathfrak{T}^k(V)$ denote the space of k tensors over V. $\Lambda^k(V) \subset \mathfrak{T}^k(V)$ is the subset of all alternating k tensors.

- 1. Show that $\mathfrak{T}^k(V)$ forms a vector space and $\Lambda^k(V)$ is a vector subspace.
- 2. Recall the tensor product; if $S \in \mathfrak{T}^k(V)$ and $T \in \mathfrak{T}^\ell(V)$ then $S \otimes T \in \mathfrak{T}^{k+\ell}(V)$ is defined by

 $(S \otimes T)(v_1, \ldots, v_{k+\ell}) = S(v_1, \ldots, v_k)T(v_{k+1}, \ldots, v_{k+\ell}).$

Show that the tensor product satisfies the following properties:

- (a) (associativity) $S \otimes (T \otimes U) = (S \otimes T) \otimes U;$
- (b) (distributivity) $S \otimes (T_1 + T_2) = S \otimes T_1 + S \otimes T_2$ and $(S_1 + S_2) \otimes T = S_1 \otimes T + S_2 \otimes T$;
- (c) (homogeneity) $(cS) \otimes T = S \otimes (cT) = c(S \otimes T)$ for any $c \in \mathbb{R}$.

(d) Give an example where $S \otimes T \neq T \otimes S$ (so commutativity fails).

Let the dimension of V be n and v_1, \ldots, v_n be a basis of V. If ϕ_1, \ldots, ϕ_n is the dual basis for $V^* = \mathfrak{T}^1(V)$. Then

$$\phi_{i_1} \otimes \cdots \otimes \phi_{i_k}, \quad 1 \le i_1, \dots, i_k \le n$$

is a basis for $\mathfrak{T}^k(V)$. Hence $\mathfrak{T}^k(V)$ has dimension n^k .

3. Recall that a tensor $T \in \mathfrak{T}^2(V)$ is called an inner product if T(v, w) = T(w, v) for all $v, w \in V$ and T(v, v) > 0 for all $v \in V$ and $v \neq 0$. Show that there is a basis v_1, \ldots, v_n of V such that

$$T(v_i, v_j) = \begin{cases} 1 & i = j, \\ 0 & \text{otherwise.} \end{cases}$$

Such a basis is called an orthonormal basis for T.

(a) Let w_1, \ldots, w_n be any basis of V. Define $w'_1 = w_1, w'_2 = w_2 - \frac{T(w'_1, w_2)}{T(w'_1, w'_1)}w'_1$,

$$w'_{3} = w_{3} - \frac{T(w'_{1}, w_{3})}{T(w'_{1}, w'_{1})}w'_{1} - \frac{T(w'_{2}, w_{3})}{T(w'_{2}, w'_{2})}w'_{2} \text{ and so on. Then show that } T(w'_{i}, w'_{j}) = 0 \text{ if } i \neq j.$$

- (b) Let $v_i = \frac{1}{\sqrt{T(w'_i, w'_i)}} w'_i$ then show that v_1, \ldots, v_n is an orthonormal basis for T.
- 4. Recall that if we have a linear transformation $f: V \to W$ between vector spaces, then there is a map $f^*: \mathfrak{T}^k(W) \to \mathfrak{T}^k(V)$.
 - (a) Show that f^* is a linear transformation.
 - (b) Show that $f^*\omega \in \Lambda^k(V)$ if $\omega \in \Lambda^k(W)$, So it gives a linear transformation $f^* : \Lambda^k(W) \to \Lambda^k(V)$. (Here there is a convenient abuse of notation.)
 - (c) If f is an isomorphism then show that f^* is also an isomorphism.
 - (d) If T is an inner product on V and v_1, \ldots, v_n and orthonormal basis for T, then define the linear transformation $g: V \to \mathbb{R}^n$ given by $g(v_i) = e_i$ where e_1, \ldots, e_n is the standard basis of \mathbb{R}^n . Show that $T = f^* \langle , \rangle$, where \langle , \rangle is the standard inner product on \mathbb{R}^n .
- 5. Recall that Alt : $\mathfrak{T}^k(V) \to \mathfrak{T}^k(V)$ defined as follows, if $T \in \mathfrak{T}^k(V)$ the tensor Alt(T) does the following

Alt
$$T(v_1, \ldots, v_k) = \frac{1}{k!} \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) T(v_{\sigma(1)}, \ldots, v_{\sigma(k)}).$$

Show the following:

- (a) $Alt(T) \in \Lambda^k(V)$. (Hint. Composing a 2-cycle with a permutation changes the sign of the permutation.)
- (b) $Alt(\omega) = \omega$ if $\omega \in \Lambda^k(V)$. (Hint. Show that all the summands of Alt are the same.)
- 6. If $\omega \in \Lambda^k(V)$ and $\eta \in \Lambda^\ell(V)$ then their wedge product is defined as follows

$$\omega \wedge \eta = \frac{(k+\ell)!}{k!\ell!} \operatorname{Alt}(\omega \otimes \eta)$$

Show that the wedge product satisfies the following properties: (a) $\omega \wedge \eta = (-1)^{k\ell} \eta \wedge \omega$ (graded commutativity);

(b) $\omega \wedge (\eta_1 + \eta_2) = \omega \wedge \eta_1 + \omega \wedge \eta_2$ and $(\omega_1 + \omega_2) \wedge \eta = \omega_1 \wedge \eta + \omega_2 \wedge \eta$ (distributivity);

(c) $(a\omega) \wedge \eta = \omega \wedge (a\eta) = a(\omega \wedge \eta)$ for any $a \in \mathbb{R}$ (homogeneity);

The wedge product also satisfies associativity but it is a bit harder to prove. Refer to Theorem 4-4 on page 80 of Spivak.

Let the dimension of V be n and v_1, \ldots, v_n be a basis of V. If ϕ_1, \ldots, ϕ_n is the dual basis for $V^* = \Lambda^1(V)$. Then

$$\phi_{i_1} \wedge \dots \wedge \phi_{i_k}, \quad 1 \le i_1 < \dots < i_k \le n$$

is a basis for $\mathfrak{T}^k(V)$. Hence $\mathfrak{T}^k(V)$ has dimension $\binom{n}{k}$. In particular $\Lambda^n(V)$ is 1-dimensional and $\Lambda^k(V)$ is trivial if k > n.

7. Prove the following for the wedge product:

(a) If $\phi \Lambda^1(V)$ then $\phi \wedge \phi = 0$. (Hint. Use problem 6 (a).)

(b) If $\phi_1, \ldots, \phi_k \in \Lambda^1(V)$ then

$$\phi_1 \wedge \ldots \wedge \phi_k = \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) \phi_{\sigma(1)} \otimes \cdots \otimes \phi_{\sigma(n)}$$

Recall that any non-zero element ω of $\Lambda^n(V)$ gives an orientation of V. If v_1, \ldots, v_n is a (ordered) basis of V then it is positively oriented if $\omega(v_1, \ldots, v_n) > 0$ otherwise it is negatively oriented.

- 8. If $\omega \in \Lambda^n(V)$ is non-zero then $\omega(v_1, \ldots, v_n) \neq 0$ if and only if v_1, \ldots, v_n is a basis of V.
- 9. If e_1, \ldots, e_n is the standard basis of \mathbb{R}^n and ϕ_1, \ldots, ϕ_n is the dual basis of $\Lambda^1(\mathbb{R}^n)$, show that det = $\phi_1 \wedge \ldots \wedge \phi_n$, where det $\in \Lambda^n(\mathbb{R}^n)$ is the determinant.
- 10. det is the standard orientation of \mathbb{R}^n . Show that for \mathbb{R}^2 and \mathbb{R}^3 it gives the same definition of orientation that we have in physics.
 - (a) If v_1, v_2 is a orthornormal basis of \mathbb{R}^2 (with respect to the standard inner product on \mathbb{R}^n), then it is positively oriented if v_1 has to be rotated by an angle of $\pi/2$ in counter-clockwise direction to get v_2 .
 - (b) If v_1, v_2, v_3 is an orthonormal basis for \mathbb{R}^3 , then it is positively oriented if it satisfies the right hand cork screw rule. (Hint. Use the cross product.)
 - (c) Notice that ordering of the basis elements is quite crucial for its orientation. e_1, e_2 is a positively oriented basis of \mathbb{R}^2 where as e_2, e_1 is negatively oriented. Show that in general e_1, \ldots, e_n is always positively oriented basis for \mathbb{R}^n with respect to the standard orientation, and $e_{\sigma(1)}, \ldots, e_{\sigma(n)}$ is positively oriented if $\sigma \in S_n$ is an even permutation.