
Math 322 Assignment 6 March 26, 2018

Submit problems 3 and 5 on Tuesday, 27 March.

1. Let A ⊂ R2 be the rectangle [−1/2, 1/2]× [0, 2π] and f : A→ R3 be given by

f(s, t) =
(
t cos(s/2) + 1

)
u(s) + t sin(s/2)v

where u(s) =
(

cos(s), sin(s), 0
)

and v = (0, 0, 1). Show that M = f(A) is a manifold with boundary
of dimension 2. What is ∂M?

2. Consider the cylinder C = {(x, y, z) ∈ R3 | x2 + y2 = 1, −1/2 ≤ z ≤ 1/2}. Show that C is a manifold
with boundary of dimension 2. What is ∂M?

3. Let U ⊂ Rn be open and f : U → Rk be a submersion. Let a ∈ f(U) and

M = {x ∈ U | f(x) = a} .

(a) Let p ∈ M and (V, φ) a chart for M at p, such that φ(x) = p for x ∈ V . Show that f∗ ◦ φ∗ :
TxRn−k → TaRk is the zero map of vector spaces.

(b) Show that TpM = ker(f∗ : TpRn → TaRk).

4. Let f : R2 → R be a C1 function and Γf ⊂ R3 be the graph of f as in problem 10 of assignment 9.
Then Γf is a manifold.
(a) Find the tangent space to Γf at p = (0, 0, f(0, 0)).

(b) Now let f(x, y) =
cos(x2 + y2)

1 + x2 + y2
graph this function and repeat part (a) for this function.

5. Consider the following primitive model for a solar system. A star is located at the origin O = (0, 0, 0),
and is stationary. A planet P is revolving around the star at distance 10r (at constant speed) along the
x-y plane. A satellite S of P is revolving around P at a distance r from P (with constant speed) and
is always in the plane containing the z-axis and P . During one complete revolution of P , S revolves
10 times around P . Initially P is at (10r, 0, 0) and S at (11r, 0, 0).
(a) Show that the trajectory of S is a manifold of dimension 1 and give an atlas for it.

(b) Find the tangent spaces at the points where the three bodies are collinear.

Multilinear Algebra.

Let V be a vector space and Tk(V ) denote the space of k tensors over V . Λk(V ) ⊂ Tk(V ) is the subset
of all alternating k tensors.

1. Show that Tk(V ) forms a vector space and Λk(V ) is a vector subspace.

2. Recall the tensor product; if S ∈ Tk(V ) and T ∈ T`(V ) then S ⊗ T ∈ Tk+`(V ) is defined by

(S ⊗ T )(v1, . . . , vk+`) = S(v1, . . . , vk)T (vk+1, . . . , vk+`).

Show that the tensor product satisfies the following properties:
(a) (associativity) S ⊗ (T ⊗ U) = (S ⊗ T )⊗ U ;

(b) (distributivity) S ⊗ (T1 + T2) = S ⊗ T1 + S ⊗ T2 and (S1 + S2)⊗ T = S1 ⊗ T + S2 ⊗ T ;

(c) (homogeneity) (cS)⊗ T = S ⊗ (cT ) = c(S ⊗ T ) for any c ∈ R.
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(d) Give an example where S ⊗ T 6= T ⊗ S (so commutativity fails).

Let the dimension of V be n and v1, . . . , vn be a basis of V . If φ1, . . . , φn is the dual basis for V ∗ = T1(V ).
Then

φi1 ⊗ · · · ⊗ φik , 1 ≤ i1, . . . , ik ≤ n
is a basis for Tk(V ). Hence Tk(V ) has dimension nk.

3. Recall that a tensor T ∈ T2(V ) is called an inner product if T (v, w) = T (w, v) for all v, w ∈ V and
T (v, v) > 0 for all v ∈ V and v 6= 0. Show that there is a basis v1, . . . , vn of V such that

T (vi, vj) =

{
1 i = j,
0 otherwise.

Such a basis is called an orthonormal basis for T .

(a) Let w1, . . . , wn be any basis of V . Define w′1 = w1, w′2 = w2 −
T (w′1, w2)

T (w′1, w
′
1)
w′1,

w′3 = w3 −
T (w′1, w3)

T (w′1, w
′
1)
w′1 −

T (w′2, w3)

T (w′2, w
′
2)
w′2 and so on. Then show that T (w′i, w

′
j) = 0 if i 6= j.

(b) Let vi =
1√

T (w′i, w
′
i)
w′i then show that v1, . . . , vn is an orthonormal basis for T .

4. Recall that if we have a linear transformation f : V →W between vector spaces, then there is a map
f∗ : Tk(W )→ Tk(V ).
(a) Show that f∗ is a linear transformation.

(b) Show that f∗ω ∈ Λk(V ) if ω ∈ Λk(W ), So it gives a linear transformation f∗ : Λk(W ) → Λk(V ).
(Here there is a convenient abuse of notation.)

(c) If f is an isomorphism then show that f∗ is also an isomorphism.

(d) If T is an inner product on V and v1, . . . , vn and orthonormal basis for T , then define the linear
transformation g : V → Rn given by g(vi) = ei where e1, . . . , en is the standard basis of Rn. Show
that T = f∗〈 , 〉, where 〈 , 〉 is the standard inner product on Rn.

5. Recall that Alt : Tk(V )→ Tk(V ) defined as follows, if T ∈ Tk(V ) the tensor Alt(T ) does the following

AltT (v1, . . . , vk) =
1

k!

∑
σ∈Sk

sgn(σ)T (vσ(1), . . . , vσ(k)).

Show the following:
(a) Alt(T ) ∈ Λk(V ). (Hint. Composing a 2-cycle with a permutation changes the sign of the permu-

tation.)
(b) Alt(ω) = ω if ω ∈ Λk(V ). (Hint. Show that all the summands of Alt are the same.)

6. If ω ∈ Λk(V ) and η ∈ Λ`(V ) then their wedge product is defined as follows

ω ∧ η =
(k + `)!

k!`!
Alt(ω ⊗ η)

Show that the wedge product satisfies the following properties:
(a) ω ∧ η = (−1)k`η ∧ ω (graded commutativity);

(b) ω ∧ (η1 + η2) = ω ∧ η1 + ω ∧ η2 and (ω1 + ω2) ∧ η = ω1 ∧ η + ω2 ∧ η (distributivity);

(c) (aω) ∧ η = ω ∧ (aη) = a(ω ∧ η) for any a ∈ R (homogeneity);
The wedge product also satisfies associativity but it is a bit harder to prove. Refer to Theorem 4-4 on
page 80 of Spivak.
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Let the dimension of V be n and v1, . . . , vn be a basis of V . If φ1, . . . , φn is the dual basis for V ∗ = Λ1(V ).
Then

φi1 ∧ · · · ∧ φik , 1 ≤ i1 < . . . < ik ≤ n
is a basis for Tk(V ). Hence Tk(V ) has dimension

(
n
k

)
. In particular Λn(V ) is 1-dimensional and Λk(V )

is trivial if k > n.

7. Prove the following for the wedge product:
(a) If φΛ1(V ) then φ ∧ φ = 0. (Hint. Use problem 6 (a).)

(b) If φ1, . . . , φk ∈ Λ1(V ) then

φ1 ∧ . . . ∧ φk =
∑
σ∈Sk

sgn(σ)φσ(1) ⊗ · · · ⊗ φσ(n)

Recall that any non-zero element ω of Λn(V ) gives an orientation of V . If v1, . . . , vn is a (ordered) basis
of V then it is positively oriented if ω(v1, . . . , vn) > 0 otherwise it is negatively oriented.

8. If ω ∈ Λn(V ) is non-zero then ω(v1, . . . , vn) 6= 0 if and only if v1, . . . , vn is a basis of V .

9. If e1, . . . , en is the standard basis of Rn and φ1, . . . , φn is the dual basis of Λ1(Rn), show that det =
φ1 ∧ . . . ∧ φn, where det ∈ Λn(Rn) is the determinant.

10. det is the standard orientation of Rn. Show that for R2 and R3 it gives the same definition of orientation
that we have in physics.
(a) If v1, v2 is a orthornormal basis of R2 (with respect to the standard inner product on Rn), then

it is positively oriented if v1 has to be rotated by an angle of π/2 in counter-clockwise direction
to get v2.

(b) If v1, v2, v3 is an orthonormal basis for R3, then it is positively oriented if it satisfies the right
hand cork screw rule. (Hint. Use the cross product.)

(c) Notice that ordering of the basis elements is quite crucial for its orientation. e1, e2 is a positively
oriented basis of R2 where as e2, e1 is negatively oriented. Show that in general e1, . . . , en is always
positively oriented basis for Rn with respect to the standard orientation, and eσ(1), . . . , eσ(n) is
positively oriented if σ ∈ Sn is an even permutation.


