Submit problems 3 and 6 on Wednesday, 14 March by 17:00.

1. Let $f : \mathbb{R}^n \to \mathbb{R}^p$ be a submersion and $a \in \mathbb{R}^p$, show that the level set

$$M_a = \{ x \in \mathbb{R}^n \mid f(x) = a \}$$

is a manifold of dimension n - p.

2. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a submersion and $a \in \mathbb{R}$, show that

$$H_a = \{ x \in \mathbb{R}^n \mid f(x) \ge a \}$$

is an n dimensional manifold with boundary. What is ∂H_a ?

3. Show that the ellipsoid

$$E = \left\{ (x, y, z) \in \mathbb{R}^3 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \right\}$$

is a manifold of dimension 2 in \mathbb{R}^3 . Give an explicit atlas for E.

- 4. Show that the following sets are not manifolds.
 - (a) The union of the x and y axes, $A = \{(x, y) \in \mathbb{R}^2 \mid x = 0 \text{ or } y = 0\}$. (Hint. Let U be a connected open neighbourhood of (0, 0) in A, then $U \setminus \{(0, 0)\}$ has 4 connected components.)
 - (b) The square $S = \{(x, y) \in \mathbb{R}^2 \mid |x| + |y| = 1\}$
 - (c) The surface $\Sigma = \{(x, y, z) \in \mathbb{R}^3 \mid z^2 = x^3\}.$
- 5. The *n*-sphere $S^n = \{x \in \mathbb{R}^{n+1} \mid ||x|| = 1\}$ is a manifold of dimension *n*. Show that the following is an atlas for S^n : $\{(U_1, \phi_1), (U_2, \phi_2)\}$ where $U_1 = U_2 = \mathbb{R}^n$,

$$\phi_1(x) = \frac{1}{||x||^2 + 1} (2x_1, \dots, 2x_n, ||x||^2 - 1) \quad \text{and} \quad \phi_2(x) = \frac{1}{1 + ||x||^2} (2x_1, \dots, 2x_n, 1 - ||x||^2).$$

- 6. The space of $n \times n$ matrices $M_n(\mathbb{R})$ can be identified with \mathbb{R}^N where $N = n^2$. Show that the subset of orthogonal matrices $O_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) \mid AA^t = I\}$ is a compact manifold and find its dimension. (Here A^t denotes the transpose of A, and I is the identity matrix.)
- 7. Show that the upper hemisphere $M = \{x \in \mathbb{R}^{n+1} \mid ||x|| = 1 \text{ and } x_n \ge 0\}$ is an *n* dimensional manifold with boundary. What is ∂M ?
- 8. Let $M \subset \mathbb{R}^n$ be a manifold with boundary of dimension k show that ∂M is a manifold of dimension k-1.
- 9. Suppose $M \subset \mathbb{R}^m$ and $N \subset \mathbb{R}^n$ are manifolds of dimension k and ℓ respectively. Show that $M \times N \subset \mathbb{R}^{m+n}$ is a manifold of dimension $k + \ell$. Is the result true if M and N are manifolds with boundary?
- 10. Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a \mathcal{C}^1 function. Show that the graph of f denoted by Γ_f

$$\Gamma_f = \{ (x, f(x)) \mid x \in \mathbb{R}^n \} \subset \mathbb{R}^{n+m}$$

is a manifold of dimension n.