Submit problems 3 and 6 on Wednesday, 14 March by 17:00.

1. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ be a submersion and $a \in \mathbb{R}^{p}$, show that the level set

$$
M_{a}=\left\{x \in \mathbb{R}^{n} \mid f(x)=a\right\}
$$

is a manifold of dimension $n-p$.
2. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a submersion and $a \in \mathbb{R}$, show that

$$
H_{a}=\left\{x \in \mathbb{R}^{n} \mid f(x) \geq a\right\}
$$

is an n dimensional manifold with boundary. What is ∂H_{a} ?
3. Show that the ellipsoid

$$
E=\left\{(x, y, z) \in \mathbb{R}^{3} \left\lvert\, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1\right.\right\}
$$

is a manifold of dimension 2 in \mathbb{R}^{3}. Give an explicit atlas for E.
4. Show that the following sets are not manifolds.
(a) The union of the x and y axes, $A=\left\{(x, y) \in \mathbb{R}^{2} \mid x=0\right.$ or $\left.y=0\right\}$. (Hint. Let U be a connected open neighbourhood of $(0,0)$ in A, then $U \backslash\{(0,0)\}$ has 4 connected components.)
(b) The square $S=\left\{(x, y) \in \mathbb{R}^{2}| | x|+|y|=1\}\right.$
(c) The surface $\Sigma=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z^{2}=x^{3}\right\}$.
5. The n-sphere $S^{n}=\left\{x \in \mathbb{R}^{n+1} \mid\|x\|=1\right\}$ is a manifold of dimension n. Show that the following is an atlas for $S^{n}:\left\{\left(U_{1}, \phi_{1}\right),\left(U_{2}, \phi_{2}\right)\right\}$ where $U_{1}=U_{2}=\mathbb{R}^{n}$,

$$
\phi_{1}(x)=\frac{1}{\|x\|^{2}+1}\left(2 x_{1}, \ldots, 2 x_{n},\|x\|^{2}-1\right) \quad \text { and } \quad \phi_{2}(x)=\frac{1}{1+\|x\|^{2}}\left(2 x_{1}, \ldots, 2 x_{n}, 1-\|x\|^{2}\right) .
$$

6. The space of $n \times n$ matrices $\mathrm{M}_{n}(\mathbb{R})$ can be identified with \mathbb{R}^{N} where $N=n^{2}$. Show that the subset of orthogonal matrices $\mathrm{O}_{n}(\mathbb{R})=\left\{A \in \mathrm{M}_{n}(\mathbb{R}) \mid A A^{t}=I\right\}$ is a compact manifold and find its dimension. (Here A^{t} denotes the transpose of A, and I is the identity matrix.)
7. Show that the upper hemisphere $M=\left\{x \in \mathbb{R}^{n+1} \mid\|x\|=1\right.$ and $\left.x_{n} \geq 0\right\}$ is an n dimensional manifold with boundary. What is ∂M ?
8. Let $M \subset \mathbb{R}^{n}$ be a manifold with boundary of dimension k show that ∂M is a manifold of dimension $k-1$.
9. Suppose $M \subset \mathbb{R}^{m}$ and $N \subset \mathbb{R}^{n}$ are manifolds of dimension k and ℓ respectively. Show that $M \times N \subset$ \mathbb{R}^{m+n} is a manifold of dimension $k+\ell$. Is the result true if M and N are manifolds with boundary?
10. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a \mathcal{C}^{1} function. Show that the graph of f denoted by Γ_{f}

$$
\Gamma_{f}=\left\{(x, f(x)) \mid x \in \mathbb{R}^{n}\right\} \subset \mathbb{R}^{n+m}
$$

is a manifold of dimension n.

