Submit problems 4 and 10 on Thursday, March 1. Reading, chapter 4 of Munkres.

1. Let $f: \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable. For $a \in \mathbb{R}$ we defined the a-th level set of f to be

$$L_f(a) = \{ x \in \mathbb{R}^n \mid f(x) = a \}$$

Suppose $Df(x) \neq 0$ for all $x \in L_f(a)$, then show that $L_f(a)$ has measure 0. (Hint. Use the implicit function theorem and Sard's theorem. Show first that $L_f(a)$ intersected with any closed rectangle has measure 0. Then show that $L_f(a)$ is a countable union of measure 0 sets.)

- 2. Show that the following sets are Jordan domains and find their volumes.
 - (a) The 4 dimensional closed unit ball of radius $1 B_1(0) \subset \mathbb{R}^4$.
 - (The volume of an *n*-dimensional unit ball goes to 0 as *n* goes to ∞ . See http://en.wikipedia.org/wiki/Volume_of_an_n-ball)
 - (b) $E \subset \mathbb{R}^3$ given by

$$E = \left\{ (\lambda x, \lambda y, \lambda) \mid 0 \le \lambda \le 1, \ \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \right\} \ .$$

- 3. What is the mass of a solid hemisphere or radius 1 meter centred at the origin whose mass density is $\mu(x, y, z) = \frac{1}{1 + z^2} \text{ kg/m}^3.$
- 4. Evaluate the following integrals (convince yourself that the sets are Jordan domains): (a) $\int_D x_1^2 e^{x_2}$ where $D \subset \mathbb{R}^2$ is the triangle with vertices (0,0), (0,2) and (2,2);
 - (b) $\int_E x_1^2$ where $E = \{(x_1, x_2) \mid 1 \le x_1^2 + x_2^2 \le 2\} \subset \mathbb{R}^2;$
 - (c) $\int_F z$ where $F = \{(x, y, z) \mid x \ge 0, y \ge 0, 0 \le z \le 1, x^2 + y^2 \le 1\}.$
- 5. Let $V \subset \mathbb{R}^n$ be an open set. Show that there are compact sets C_1, C_2, \ldots such that $C_k \subset \operatorname{Int} C_{k+1}$ and $\bigcup_{k=1}^{\infty} C_k = V$.
- 6. Let $J \subset \mathbb{R}^2$ be a Jordan domain such that if $(x, y) \in J$ then x > 1. Let $E = \{(x, 0, y) \in \mathbb{R}^3 \mid (x, y) \in J\} \subset \mathbb{R}^3$ and let F be the set obtained by rotating E about the z-axis. Find an expression for the volume of F in terms of the volume of J.
- 7. Calculate the following integrals (using a change of variables if necessary). (a) $\int_{E} e^{x^2+y^2}$ where $E = \{(x, y) \in \mathbb{R}^2 \mid x^2+y^2 \leq 1, x \geq 0\}$.
 - (b) $\int_E \frac{1}{\sqrt{x^2+y^2}}$ in \mathbb{R}^2 where E is the annulus $1 \le ||x|| \le 2$.
- 8. Let $V \subset \mathbb{R}^n$ be an open set and $\{\phi_i\}_{i=1}^{\infty}$ be a locally finite partition of unity on V (subordinate to some open cover). If $C \subset V$ is compact show that all but finitely many ϕ_i are zero on C.
- 9. Let $U \subset \mathbb{R}^n$. A function function $g: U \to \mathbb{R}^m$ is called Lipschitz if there is a positive real number k such that $||g(x) g(y)|| \le k||x y||$.
 - (a) Show that a Lipschitz function takes measure 0 sets to measure 0 sets.
 - (b) Suppose U is open and g is \mathcal{C}^1 , show that g is Lipschitz on any closed rectangle $V \subset U$.
 - (c) Any diffeomorphism takes a Jordan domain to a Jordan domain.
- 10. Suppose $f: U \to \mathbb{R}^n$ is a diffeomorphism such that v(W) = v(g(W)) for any Jordan domain $W \subset U$, what can you say about f. Such a diffeomorphism is called volume preserving. (Hint. Think of the change of variables formula.)
- 11. Let $g: U \to \mathbb{R}^n$ be a diffeomorphism, such that for any $t \in \mathbb{R}^n$ and $x \in U$ we have ||Dg(x)t|| = ||t||. Such a diffeomorphism is called an isometry. Show that g is volume preserving.

- $\mathbf{2}$
- 12. (Polar Coordinates). Show that $g: (0, \infty) \times (0, 2\pi) \to \mathbb{R}^2$ given by $g(r, \theta) = (r \cos \theta, r \sin \theta)$ is a diffeomorphism. The pair $g^{-1}(x, y)$ is called the polar coordinates of the point in \mathbb{R}^2 whose Cartesian coordinates are (x, y).

Let $B_a = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le a^2\}$ and $C_a = [-a, a] \times [-a, a]$. Show that $\int_{B_a} e^{-x^2 - y^2} = \pi (1 - e^{-a^2})$

$$\int_{C_a} e^{-x^2 - y^2} = \left[\int_{-a}^a e^{-x^2} \right]^2.$$

Show that

and

$$\int_{\mathbb{R}^2} e^{-x^2 - y^2} = \lim_{a \to \infty} \int_{B_a} e^{-x^2 - y^2} = \lim_{a \to \infty} \int_{B_a} e^{-x^2 - y^2}$$

Infer that

- $\int_{\mathbb{R}} e^{-x^2} = \sqrt{\pi}.$
- 13. (Spherical Coordinates). Show that $h: (0, \infty) \times (0, 2\pi) \times (0, pi) \to \mathbb{R}^3$ given by $h(r, \theta, \phi) = (r \cos \theta \sin \phi, r \sin \theta \sin \phi, r \cos \theta \sin \phi)$ is a diffeomorphism. The triple $h^{-1}(x, y, z)$ are called the spherical coordinates of the point in \mathbb{R}^3 whose Cartesian coordinates are (x, y, z). Use these coordinates to calculate the following.

(a) Volume of the region

$$\{(x, yz) \in \mathbb{R}^3 \mid \sqrt{x^2 + y^2} \le z, \ 1 \le x^2 + y^2 + z^2 \le 2\}.$$

(b) If $R = \{(x, y, z) \in \mathbb{R}^3 \mid 0 \le x, 0 \le y, 0 \le z, x^2 + y^2 + z^2 \le 1\}$ calculate $\int_R e^{(x^2 + y^2 + z^2)^{3/2}}.$

- 14. (Cylindrical Coordinates). Show that $f: (0, \infty) \times (0, 2\pi) \times \mathbb{R} \to \mathbb{R}^3$ given by $f(r, \theta, z) = (r \cos \theta, r \sin \theta, z)$ is a diffeomorphism. The triple $f^{-1}(x, y, z)$ are called the cylindrical coordinates of the point in \mathbb{R}^3 whose Cartesian coordinates are (x, y, z). Use these coordinates to calculate the following.
 - (a) Volume of the region given by $E = \{(x, y, z) \in \mathbb{R}^3 \mid 0 \le z \le x^2 + y^2 + 1, x^2 + y^2 \le 1\}.$
 - (b) Mass of a bullet with density $2z \text{ g/cm}^3$ and shape $B = \{(x, y, z) \in \mathbb{R}^3 \mid 0 \le z \le 1 x^2 y^2\}$ where units are again in centimetres.
- 15. (Barycentric Coordinates). Let a_0, a_1, a_2, a_3 be four points in \mathbb{R}^3 not lying on a plane. Then these points determine a tetrahedron and the points of the tetrahedron have Cartesian coordinates $(t_0a_0+t_1a_1+t_2a_2+t_3a_3)$ where $t_i \geq 0$ and $t_0+t_1+t_2+t_3=1$. The triple (t_1, t_2, t_3) are the barycentric coordinates of the point. Show that $T: \mathbb{R}^3 \to \mathbb{R}^3$ given by $T(t_1, t_2, t_3) = a_0 + t_1(a_1 a_0) + t_2(a_2 a_0) + t_3(a_3 a_0)$ is a diffeomorphism. Integration of functions on the tetrahedron can be done quite easily using these coordinates. (a) Find the volume of the tetrahedron determined by the points a_0, a_1, a_2, a_3 .
 - (b) There are similar barycentric coordinates on the convex polyhedron determined by n + 1 points in \mathbb{R}^n in general positions (i.e. not contained in a hyperplane). Find the volume of such a polyhedron.
- 16. Let $f: U \to \mathbb{R}^n$ be a diffeomorphism and $0 \in U$. Let $A_t = [0,t]^n \subset \mathbb{R}^n$ be the closed rectangle which is the *n*-fold product of the closed interval [0,t]. If t is small enough then $A_t \subset U$. Let $g(t) = v(f(A_t))$ (note that $f(A_t)$ is a Jordan domain by problem 1). Show that

$$\lim_{t \to 0} \frac{g(t)}{t^n} = |\det Df(0)|.$$

17. Let v_1, v_2, \ldots, v_n be linearly independent vectors in \mathbb{R}^n . The *n*-parallelepiped $\mathcal{P}(v_1, \ldots, v_n)$ is the set

 $\{c_1v_1 + \dots + c_nv_n \mid 0 \le c_i \le 1\} \subset \mathbb{R}^n.$

Find the volume of $\mathcal{P}(v_1, \ldots, v_n)$. (Hint. Choose a suitable linear change of coordinates.)