Submit problems 4 and 10 on Thursday, March 1. Reading, chapter 4 of Munkres.

1. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable. For $a \in \mathbb{R}$ we defined the a-th level set of f to be

$$
L_{f}(a)=\left\{x \in \mathbb{R}^{n} \mid f(x)=a\right\}
$$

Suppose $D f(x) \neq 0$ for all $x \in L_{f}(a)$, then show that $L_{f}(a)$ has measure 0 .
(Hint. Use the implicit function theorem and Sard's theorem. Show first that $L_{f}(a)$ intersected with any closed rectangle has measure 0 . Then show that $L_{f}(a)$ is a countable union of measure 0 sets.)
2. Show that the following sets are Jordan domains and find their volumes.
(a) The 4 dimensional closed unit ball of radius $1 \overline{B_{1}(0)} \subset \mathbb{R}^{4}$.
(The volume of an n-dimensional unit ball goes to 0 as n goes to ∞. See http://en.wikipedia.org/ wiki/Volume_of_an_n-ball)
(b) $E \subset \mathbb{R}^{3}$ given by

$$
E=\left\{(\lambda x, \lambda y, \lambda) \mid 0 \leq \lambda \leq 1, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1\right\}
$$

3. What is the mass of a solid hemisphere or radius 1 meter centred at the origin whose mass density is $\mu(x, y, z)=\frac{1}{1+z^{2}} \mathrm{~kg} / \mathrm{m}^{3}$.
4. Evaluate the following integrals (convince yourself that the sets are Jordan domains):
(a) $\int_{D} x_{1}^{2} e^{x_{2}}$ where $D \subset \mathbb{R}^{2}$ is the triangle with vertices $(0,0),(0,2)$ and $(2,2)$;
(b) $\int_{E} x_{1}^{2}$ where $E=\left\{\left(x_{1}, x_{2}\right) \mid 1 \leq x_{1}^{2}+x_{2}^{2} \leq 2\right\} \subset \mathbb{R}^{2}$;
(c) $\int_{F} z$ where $F=\left\{(x, y, z) \mid x \geq 0, y \geq 0,0 \leq z \leq 1, x^{2}+y^{2} \leq 1\right\}$.
5. Let $V \subset \mathbb{R}^{n}$ be an open set. Show that there are compact sets C_{1}, C_{2}, \ldots such that $C_{k} \subset$ Int C_{k+1} and $\cup_{k=1}^{\infty} C_{k}=V$.
6. Let $J \subset \mathbb{R}^{2}$ be a Jordan domain such that if $(x, y) \in J$ then $x>1$. Let $E=\left\{(x, 0, y) \in \mathbb{R}^{3} \mid(x, y) \in J\right\} \subset \mathbb{R}^{3}$ and let F be the set obtained by rotating E about the z-axis. Find an expression for the volume of F in terms of the volume of J.
7. Calculate the following integrals (using a change of variables if necessary).
(a) $\int_{E} e^{x^{2}+y^{2}}$ where $E=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1, x \geq 0\right\}$.
(b) $\int_{E} \frac{1}{\sqrt{x^{2}+y^{2}}}$ in \mathbb{R}^{2} where E is the annulus $1 \leq\|x\| \leq 2$.
8. Let $V \subset \mathbb{R}^{n}$ be an open set and $\left\{\phi_{i}\right\}_{i=1}^{\infty}$ be a locally finite partition of unity on V (subordinate to some open cover). If $C \subset V$ is compact show that all but finitely many ϕ_{i} are zero on C.
9. Let $U \subset \mathbb{R}^{n}$. A function function $g: U \rightarrow \mathbb{R}^{m}$ is called Lipschitz if there is a positive real number k such that $\|g(x)-g(y)\| \leq k\|x-y\|$.
(a) Show that a Lipschitz function takes measure 0 sets to measure 0 sets.
(b) Suppose U is open and g is \mathcal{C}^{1}, show that g is Lipschitz on any closed rectangle $V \subset U$.
(c) Any diffeomorphism takes a Jordan domain to a Jordan domain.
10. Suppose $f: U \rightarrow \mathbb{R}^{n}$ is a diffeomorphism such that $v(W)=v(g(W))$ for any Jordan domain $W \subset U$, what can you say about f. Such a diffeomorphism is called volume preserving. (Hint. Think of the change of variables formula.)
11. Let $g: U \rightarrow \mathbb{R}^{n}$ be a diffeomorphism, such that for any $t \in \mathbb{R}^{n}$ and $x \in U$ we have $\|D g(x) t\|=\|t\|$. Such a diffeomorphism is called an isometry. Show that g is volume preserving.
12. (Polar Coordinates). Show that $g:(0, \infty) \times(0,2 \pi) \rightarrow \mathbb{R}^{2}$ given by $g(r, \theta)=(r \cos \theta, r \sin \theta)$ is a diffeomorphism. The pair $g^{-1}(x, y)$ is called the polar coordinates of the point in \mathbb{R}^{2} whose Cartesian coordinates are (x, y).

Let $B_{a}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq a^{2}\right\}$ and $C_{a}=[-a, a] \times[-a, a]$. Show that

$$
\int_{B_{a}} e^{-x^{2}-y^{2}}=\pi\left(1-e^{-a^{2}}\right)
$$

and

$$
\int_{C_{a}} e^{-x^{2}-y^{2}}=\left[\int_{-a}^{a} e^{-x^{2}}\right]^{2}
$$

Show that

$$
\int_{\mathbb{R}^{2}} e^{-x^{2}-y^{2}}=\lim _{a \rightarrow \infty} \int_{B_{a}} e^{-x^{2}-y^{2}}=\lim _{a \rightarrow \infty} \int_{B_{a}} e^{-x^{2}-y^{2}}
$$

Infer that

$$
\int_{\mathbb{R}} e^{-x^{2}}=\sqrt{\pi}
$$

13. (Spherical Coordinates). Show that $h:(0, \infty) \times(0,2 \pi) \times(0, p i) \rightarrow \mathbb{R}^{3}$ given by $h(r, \theta, \phi)=(r \cos \theta \sin \phi, r \sin \theta \sin \phi, r \cos$ is a diffeomorphism. The triple $h^{-1}(x, y, z)$ are called the spherical coordinates of the point in \mathbb{R}^{3} whose Cartesian coordinates are (x, y, z). Use these coordinates to calculate the following.
(a) Volume of the region

$$
\left\{(x, y z) \in \mathbb{R}^{3} \mid \sqrt{x^{2}+y^{2}} \leq z, 1 \leq x^{2}+y^{2}+z^{2} \leq 2\right\}
$$

(b) If $R=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 0 \leq x, 0 \leq y, 0 \leq z, x^{2}+y^{2}+z^{2} \leq 1\right\}$ calculate

$$
\int_{R} e^{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
$$

14. (Cylindrical Coordinates). Show that $f:(0, \infty) \times(0,2 \pi) \times \mathbb{R} \rightarrow \mathbb{R}^{3}$ given by $f(r, \theta, z)=(r \cos \theta, r \sin \theta, z)$ is a diffeomorphism. The triple $f^{-1}(x, y, z)$ are called the cylindrical coordinates of the point in \mathbb{R}^{3} whose Cartesian coordinates are (x, y, z). Use these coordinates to calculate the following.
(a) Volume of the region given by $E=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 0 \leq z \leq x^{2}+y^{2}+1, x^{2}+y^{2} \leq 1\right\}$.
(b) Mass of a bullet with density $2 z \mathrm{~g} / \mathrm{cm}^{3}$ and shape $B=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 0 \leq z \leq 1-x^{2}-y^{2}\right\}$ where units are again in centimetres.
15. (Barycentric Coordinates). Let $a_{0}, a_{1}, a_{2}, a_{3}$ be four points in \mathbb{R}^{3} not lying on a plane. Then these points determine a tetrahedron and the points of the tetrahedron have Cartesian coordinates ($t_{0} a_{0}+t_{1} a_{1}+t_{2} a_{2}+t_{3} a_{3}$) where $t_{i} \geq 0$ and $t_{0}+t_{1}+t_{2}+t_{3}=1$. The triple $\left(t_{1}, t_{2}, t_{3}\right)$ are the barycentric coordinates of the point. Show that $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $T\left(t_{1}, t_{2}, t_{3}\right)=a_{0}+t_{1}\left(a_{1}-a_{0}\right)+t_{2}\left(a_{2}-a_{0}\right)+t_{3}\left(a_{3}-a_{0}\right)$ is a diffeomorphism. Integration of functions on the tetrahedron can be done quite easily using these coordinates.
(a) Find the volume of the tetrahedron determined by the points $a_{0}, a_{1}, a_{2}, a_{3}$.
(b) There are similar barycentric coordinates on the convex polyhedron determined by $n+1$ points in \mathbb{R}^{n} in general positions (i.e. not contained in a hyperplane). Find the volume of such a polyhedron.
16. Let $f: U \rightarrow \mathbb{R}^{n}$ be a diffeomorphism and $0 \in U$. Let $A_{t}=[0, t]^{n} \subset \mathbb{R}^{n}$ be the closed rectangle which is the n-fold product of the closed interval [0, $t]$. If t is small enough then $A_{t} \subset U$. Let $g(t)=v\left(f\left(A_{t}\right)\right)$ (note that $f\left(A_{t}\right)$ is a Jordan domain by problem 1). Show that

$$
\lim _{t \rightarrow 0} \frac{g(t)}{t^{n}}=|\operatorname{det} D f(0)|
$$

17. Let $v_{1}, v_{2}, \ldots, v_{n}$ be linearly independent vectors in \mathbb{R}^{n}. The n-parallelepiped $\mathcal{P}\left(v_{1}, \ldots, v_{n}\right)$ is the set

$$
\left\{c_{1} v_{1}+\cdots+c_{n} v_{n} \mid 0 \leq c_{i} \leq 1\right\} \subset \mathbb{R}^{n}
$$

Find the volume of $\mathcal{P}\left(v_{1}, \ldots, v_{n}\right)$. (Hint. Choose a suitable linear change of coordinates.)

