Submit problems 2 and 7 on Monday, February 12. Reading Munkres chapter 3.

1. Show that the function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $g(x, y)=(\cos (x+2 y), \sin (x+2 y), 2 x+4 y)$ is not an immersion. Write g as a composition of a submersion and an immersion.
2. Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be defined by $g(x)=\|x\|^{2} x$. Show that g is \mathcal{C}^{1} and a bijection on \mathbb{R}^{n} however g^{-1} is not differentiable at 0 .
3. Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $g(x, y)=\left(2 y e^{x}, x e^{y}\right)$ and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by $f(x, y)=\left(3 x-y^{2}, 2 x+y, x y+y^{3}\right)$.
(a) Show that g maps an open neighbourhood U of $(0,1)$ bijectively onto an open neighbourhood V of $(2,0)$.
(b) Show that $f \circ g^{-1}$ is differentiable on V and calculate $D\left(f \circ g^{-1}\right)(2,0)$.
(c) Show that $f \circ g^{-1}$ is an immersion in an open neighbourhood of $(2,0)$.
4. Show that the following sets have measure 0
(a) The cantor set $C \subset[0,1]$. Recall that C is uncountable.
(b) The subset $A=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{n}=0\right\} \subset \mathbb{R}^{n}$.
(c) The set of rational numbers in \mathbb{R}.
5. Show that the following sets do not have measure 0 .
(a) The closed annulus $A=\left\{x \in \mathbb{R}^{2} \mid 1 \leq\|x\| \leq 2\right\} \subset \mathbb{R}^{n}$.
(b) The set of irrational numbers in $[0,1]$ inside \mathbb{R}.
6. Show that the following functions are integrable.
(a) $f:[0,1] \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}1 / q & x=\frac{p}{q} \text { where } p, q \text { are coprime integers } \\ 0 & \text { otherwise }\end{cases}
$$

Show that f is integrable on $[0,1]$ and evaluate the integral. (Hint. What is the set of discontinuities of f ?)
(b) If $f, g:[0,1] \rightarrow \mathbb{R}$ are increasing functions then show that the function $h(x, y)=f(x) g(y)$ on $[0,1] \times[0,1]$ is integrable.
7. Let $f: A \rightarrow \mathbb{R}$ be an integrable function where $A \subset \mathbb{R}^{n}$ is a closed rectangle. If $\int_{A} f=0$ and $f(x) \geq 0$ for all $x \in A$ show that the set $\{x \in A \mid f(x)>0\}$ has measure 0 . (We say f vanishes almost everywhere.) In the other direction show that if $g: A \rightarrow \mathbb{R}$ vanishes almost everywhere and g is integrable on A then $\int_{A} g=0$.
8. Let A be a closed rectangle in \mathbb{R}^{n} and $f: A \rightarrow \mathbb{R}$ a bounded function. Let $B \subset A$ be a closed rectangle such that $f(x)=0$ if $x \in A \backslash B$. Show that f is integrable on A if and only if f is integrable on B and that the integrals over the two rectangles are the same.

Let $S \subset \mathbb{R}^{n}$ be bounded and $f: S \rightarrow \mathbb{R}$ be an integrable function. Show that the integral of f on S is well defined, i.e. it does not depend on the rectangle $A \supset S$.
9. Show that any continuous function is integrable on a Jordan domain.
10. Let $f: A \rightarrow \mathbb{R}$ be a bounded function and A a closed rectangle in \mathbb{R}^{n}. If f vanishes outside a closed set of measure 0 , show that f is integrable on A and $\int_{A} f=0$.
11. Show that the fat cantor set is not a Jordan domain. For reference see http://en.wikipedia.org/wiki/ Smith-Volterra-Cantor_set\#Other_fat_Cantor_sets. This is an example of a compact set which is not a Jordan domain.
12. Note that $A=(\mathbb{Q} \times \mathbb{Q}) \cup((0,1) \times(0,1))$ is countable. Number the points of A as a_{1}, a_{2}, \ldots. Let T_{k} be an open rectangle such that $a_{k} \in T_{k} \subset(0,1) \times(0,1)$ and $v\left(T_{k}\right) \leq 1 / 4^{k}$. Let $T=\cup_{i=1}^{\infty} T_{k}$, then show that T is a bounded open set which is not a Jordan domain.

