Submit problems 5 and 9 on Wed, Jan 24. Reading Chapter 2 of Spivak.

1. (Norm of a linear transformation) Let $\lambda: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Define its norm by

$$
\|\lambda\|=\sup \left\{\|\lambda(x)\| \mid x \in \mathbb{R}^{n},\|x\|=1\right\}
$$

(a) If A is the matrix for λ with respect to the standard bases, show that $\|\lambda\| \leq \sqrt{\sum_{i, j} A_{i, j}^{2}}$ and $\left|A_{i, j}\right| \leq\|\lambda\|$ for any i, j.
(b) Show that $\|\lambda(x)\| \leq\|\lambda\| \times\|x\|$.
2. Let $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $G\left(x_{1}, x_{2}\right)=\left(\sin \left(x_{1} x_{2}\right), \cos \left(x_{1}+x_{2}\right)\right)$. Calculate all the second order derivatives and show that G is \mathcal{C}^{2}. Calculate $\frac{\partial^{3} G_{1}}{\partial^{2} x_{1} \partial x_{2}}$.
3. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ where $n<m$ be continuously differentiable. Let $a \in \mathbb{R}^{n}$ be such that $D F(a)$ has rank n. Show that there is an open neighborhood V of $F(a)$ and a differentiable function $G: V \rightarrow \mathbb{R}^{n}$ such that $G(F(x))=x$ for any $x \in F^{-1}(V)$. What goes wrong if $n>m$?
(Hint. Cook up a function $H: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ of the form $H\left(x_{1}, \ldots, x_{m}\right)=F\left(x_{1}, \ldots, x_{n}\right)+A\left(x_{n+1}, \ldots, x_{m}\right)$ such that you can use inverse function theorem for H, and would give the result in this case.)
4. Let $U \subset \mathbb{R}^{n}$ be open and $f: U \rightarrow \mathbb{R}^{n}$ be \mathcal{C}^{1} and $\operatorname{det} \mathrm{D} f(x) \neq 0$ for all $x \in U$. Show that $f(A)$ is open for any $A \subset U$ open.
5. Consider the function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $g(x, y)=\left(e^{x} \cos y, e^{x} \sin y\right)$.
(a) Show that det $\mathrm{D} g(x, y) \neq 0$ for all (x, y) and infer that g is an open mapping.
(b) Show that g is not injective or surjective hence there is no global inverse function.
(c) Note that $g(0,0)=(1,0)$ find open neighborhoods V and W of $(0,0)$ and $(1,0)$ such that $g: V \rightarrow W$ is a bijection and expicitly write down an inverse $g^{-1}: W \rightarrow V$.
6. Let $A \subset \mathbb{R}^{n}$ be open and $f: A \rightarrow \mathbb{R}^{m}$ be \mathcal{C}^{1} with $m<n$, we will show that f can not be injective.
(a) If $n=2$ and $m=1$, let $\partial_{1} f(a) \neq 0$ at some point $a \in A$ show that the function $F(x, y)=(f(x, y), y)$ is \mathcal{C}^{1} and has inveritble derivative at a, infer that f can not be injective near a.
(b) Now generalise the proof for arbitrary $m<n$.
7. * Let $A \subset \mathbb{R}^{n}$ be open and $f: A \rightarrow \mathbb{R}^{m}$ be \mathcal{C}^{1} with $m>n$. Show that $f(A)$ can not contain an open set.
8. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be \mathcal{C}^{1} and invertible. Suppose $\operatorname{det} \mathrm{D} F(a)=0$, show that F^{-1} is not differentiable at $F(a)$.
9. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}\frac{x}{2}+x^{2} \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{cases}
$$

Show that f is differentiable at 0 and $f^{\prime}(0) \neq 0$. Show also that there is no open neighborhood of 0 on which f is injective. Why can we not apply the inverse function theorem?
10. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
f(t)= \begin{cases}e^{-1 / t} & x>0 \\ 0 & x \leq 0\end{cases}
$$

(a) Show that f is \mathcal{C}^{∞} and all the derivatives vanish at 0 .
(b) Let $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be given by $\gamma(t)=(f(t), f(-t))$. Plot the image of γ. What is $D \gamma(0)$?
(c) Show that there can not be a \mathcal{C}^{1} parametrization $\phi: \mathbb{R} \rightarrow \mathbb{R}^{2}$ such that $\phi(\mathbb{R})=\gamma(\mathbb{R}), \phi(a)=0$ and $D \phi(a) \neq 0$.

