Submit problems 5 and 9 on Wed, Jan 24. Reading Chapter 2 of Spivak.

- 1. (Norm of a linear transformation) Let $\lambda : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Define its norm by $||\lambda|| = \sup \{||\lambda(x)|| \mid x \in \mathbb{R}^n, ||x|| = 1\}$
 - (a) If A is the matrix for λ with respect to the standard bases, show that $||\lambda|| \leq \sqrt{\sum_{i,j} A_{i,j}^2}$ and $|A_{i,j}| \leq ||\lambda||$ for any i, j.
 - (b) Show that $||\lambda(x)|| \le ||\lambda|| \times ||x||$.
- 2. Let $G : \mathbb{R}^2 \to \mathbb{R}^2$ be given by $G(x_1, x_2) = (\sin(x_1 x_2), \cos(x_1 + x_2))$. Calculate all the second order derivatives and show that G is \mathcal{C}^2 . Calculate $\frac{\partial^3 G_1}{\partial^2 x_1 \partial x_2}$.
- 3. Let $F : \mathbb{R}^n \to \mathbb{R}^m$ where n < m be continuously differentiable. Let $a \in \mathbb{R}^n$ be such that DF(a) has rank n. Show that there is an open neighborhood V of F(a) and a differentiable function $G : V \to \mathbb{R}^n$ such that G(F(x)) = x for any $x \in F^{-1}(V)$. What goes wrong if n > m?

(Hint. Cook up a function $H : \mathbb{R}^m \to \mathbb{R}^m$ of the form $H(x_1, \ldots, x_m) = F(x_1, \ldots, x_n) + A(x_{n+1}, \ldots, x_m)$ such that you can use inverse function theorem for H, and would give the result in this case.)

- 4. Let $U \subset \mathbb{R}^n$ be open and $f: U \to \mathbb{R}^n$ be \mathcal{C}^1 and $\det D f(x) \neq 0$ for all $x \in U$. Show that f(A) is open for any $A \subset U$ open.
- 5. Consider the function $g: \mathbb{R}^2 \to \mathbb{R}^2$ given by $g(x, y) = (e^x \cos y, e^x \sin y)$.
 - (a) Show that det $D q(x, y) \neq 0$ for all (x, y) and infer that q is an open mapping.
 - (b) Show that q is not injective or surjective hence there is no global inverse function.
 - (c) Note that g(0,0) = (1,0) find open neighborhoods V and W of (0,0) and (1,0) such that $g: V \to W$ is a bijection and expicitly write down an inverse $g^{-1}: W \to V$.
- 6. Let $A \subset \mathbb{R}^n$ be open and $f: A \to \mathbb{R}^m$ be \mathcal{C}^1 with m < n, we will show that f can not be injective.
 - (a) If n = 2 and m = 1, let $\partial_1 f(a) \neq 0$ at some point $a \in A$ show that the function F(x, y) = (f(x, y), y) is \mathcal{C}^1 and has invertible derivative at a, infer that f can not be injective near a.
 - (b) Now generalise the proof for arbitrary m < n.
- 7. * Let $A \subset \mathbb{R}^n$ be open and $f: A \to \mathbb{R}^m$ be \mathcal{C}^1 with m > n. Show that f(A) can not contain an open set.
- 8. Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be \mathcal{C}^1 and invertible. Suppose det D F(a) = 0, show that F^{-1} is not differentiable at F(a).
- 9. Consider the function $f : \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} \frac{x}{2} + x^2 \sin \frac{1}{x} & x \neq 0, \\ 0 & x = 0 \end{cases}$$

Show that f is differentiable at 0 and $f'(0) \neq 0$. Show also that there is no open neighborhood of 0 on which f is injective. Why can we not apply the inverse function theorem?

10. Let $f : \mathbb{R} \to \mathbb{R}$ be given by

$$f(t) = \begin{cases} e^{-1/t} & x > 0, \\ 0 & x \le 0 \end{cases}$$

- (a) Show that f is \mathcal{C}^{∞} and all the derivatives vanish at 0.
- (b) Let $\gamma : \mathbb{R} \to \mathbb{R}^2$ be given by $\gamma(t) = (f(t), f(-t))$. Plot the image of γ . What is $D\gamma(0)$?
- (c) Show that there can not be a \mathcal{C}^1 parametrization $\phi : \mathbb{R} \to \mathbb{R}^2$ such that $\phi(\mathbb{R}) = \gamma(\mathbb{R}), \phi(a) = 0$ and $D\phi(a) \neq 0$.