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1. Manifold

A subset M ⊂ Rn is Cr a manifold of dimension k if for any point p ∈ M , there is an open set U ⊂ Rk
and a Cr function φ : U → Rn, such that

(1) φ is injective and φ(U) ⊂M is an open subset of M containing p;
(2) φ−1 : φ(U)→ U is continuous;
(3) Dφ(x) has rank k for every x ∈ U .

Such a pair (U, φ) is called a chart of M . An atlas for M is a collection of charts {(Ui, φi)}i∈I such that⋃
i∈I

φi(Ui) = M

(that is the images of φi cover M). (In some texts, like Spivak, the pair (φ(U), φ−1) is called a chart or
a coordinate system.)

We shall mostly study C∞ manifolds since they avoid any difficulty arising from the degree of differen-
tiability. We shall also use the word smooth to mean C∞.

If we have an explicit atlas for a manifold then it becomes quite easy to deal with the manifold. Otherwise
one can use the following theorem to find examples of manifolds.

Theorem 1 (Regular value theorem). Let U ⊂ Rn be open and f : U → Rk be a Cr function. Let a ∈ Rk
and

Ma = {x ∈ U | f(x) = a} = f−1(a).

The value a is called a regular value of f if f is a submersion on Ma; that is for any x ∈Ma, D f(x) has
rank k. Then Ma is a Cr manifold of dimension n− k.

The set Ma is called a level set of f ; thus any level set of a regular value of f is a manifold. The proof of
this theorem easily follows from the implicit function theorem. See PS5 for some examples of manifolds.

If (U, φ) and (V, ψ) are two charts of M and φ(U) ∩ ψ(V ) 6= ∅ then the function

ψ−1 ◦ φ : φ−1(ψ(V ))→ V

is a diffeomorphism. It is called a transition function between the two charts.

2. Manifold with Boundary

Let Hk = {(x1, . . . , xk) ∈ Rk | xk ≥ 0} be the upper half space in Rk. Note that the boundary of Hk as
a subset of Rk is the set BdHk = {(x1, . . . , xk) ∈ Rk | xk = 0} = Rk−1 × {0}.

A subset M ⊂ Rn is a Cr manifold with boundary of dimension k if for any point p ∈ M , there is an
open set U ⊂ Hk or U ⊂ Rk and a Cr function1 φ : U → Rn, such that

(1) φ is injective and φ(U) ⊂M is an open subset of M containing p;
(2) φ−1 : φ(U)→ U is continuous;
(3) Dφ(x) has rank k for every x ∈ U .

1 Recall that if S ⊂ Rm is an arbitrary subset then we say f : S → Rp is Cr if there is an open set V ⊃ S and a Cr
function g : V → Rp such that f(x) = g(x) for all x ∈ S.

1



2

Again the pair (U, φ) is called a chart for M , and a collection of charts which cover M is called an atlas.
Note that a chart (U, φ) for a manifold with boundary is defined in the exact same way as a chart for a
manifold (without boundary), however now the open set can come from Hk.

Let M ⊂ Rn be a k-dimensional manifold with boundary. Then p ∈ M is an interior point if there is a
chart (U, φ) of M with U ⊂ Rk open and p ∈ φ(U).

Any point of M which is not an interior point is called a boundary point and the set of all boundary
points of M denoted by ∂M . In fact ∂M ⊂ Rn is a manifold (without boundary) of dimension k−1 (one
less than dimension of M).

A point p ∈ M is in ∂M if there is a chart (U, φ) where U ⊂ Hk is open and p = φ(x) for some
x ∈ U ∩ BdHk (i.e. if x = (x1, . . . , xk) then xk = 0).

Notice that the concept of boundary of a manifold M in Rn denoted ∂M is different from the concept
of the boundary of a subset S of Rn denoted BdS. Similarly the interior of M namely M − ∂M is a
different concept to the interior of a set S denoted IntS.

One can generalise Theorem 1 as follows:

Theorem 2. Let U ⊂ Rn be open and f : U → Rk be a Cr submersion, then

M = {x ∈ U | f1(x) = . . . = fk−1(x) = 0, fk(x) ≥ 0}

is a Cr manifold with boundary of dimension n− k + 1 and

∂M = {x ∈ U | f(x) = 0}.

3. Maps between Manifolds

Let M ⊂ Rm and N ⊂ Rn be C∞ manifolds, and f : M → N a function. f is differentiable if for any
two charts (U, φ) of M and (V, ψ) of N , the composite function ψ−1 ◦ f ◦ φ is differentiable. f is smooth
if all the composite functions are smooth.

f : M → N is a diffeomorphism if f is smooth and there is a smooth function g : N → M for which
f ◦ g = IdN and g ◦ f = IdM .

Proposition 3. f : M → N is a diffeomorphism if and only if f is a smooth bijection and for any
for any two charts (U, φ) of M and (V, ψ) of N , the derivative of the composite function ψ−1 ◦ f ◦ φ is
invertible at every point.

This proposition follows easily from the inverse function theorem which will say that the inverse of f is
also smooth.

For manifolds with boundary the definitions are completely analogous. It is easy to see that in that case
a diffeomorphism takes boundary of domain manifold to the boundary of the range manifold and induces
a diffeomorphism of the two boundaries.

See assignment 10 for examples of diffeomorphic manifolds.

4. Tangent spaces and Vector fields

Let p ∈ Rn, then the tangent space of Rn at p is the set {p} × Rn.

TpRn = {(p, v) | v ∈ Rn}
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Some times the vector (p, v) is also written as vp and usually the vector v is written as a column vector
whereas the point p is a point of Rn. The tangent space forms a vector space.

If f : Rn → Rn is a differentiable map then the derivative of f gives a map between tangent spaces. If
p ∈ Rn, then define f∗ : TpRn → Tf(p)Rm as

f∗((p, v)) = (f(p),D f(p)v).

Note that ∂vf(p) = D f(p)v is the directional derivative of f at p along v. Hence the tangent vectors are
directions along which we differentiate functions.

From the chain rule it follows that if g : Rn → Rm and f : Rm → Rk then (f ◦ g)∗ = f∗ ◦ g∗.

Let M ⊂ Rn be a manifold of dimension k, and p ∈M . Suppose (U, φ) is a chart of M such that p = φ(x)
then the tangent space of M at p is defined as

TpM = φ∗(TxRk).

Since Dφ(x) has rank k, so TpM is a vector subspace of TpRn of dimension k.2

Theorem 4. 3 If f : Rn → Rk and a ∈ Rk is a regular value of f , then M = f−1(a) is a manifold. Let
p ∈Ma, then

TpM = ker(f∗ : TpRn → TaRk).

A differentiable function f : M → N between manifolds induces a linear map between tangent spaces. If
p ∈M then we get an induced linear map f∗ : TpM → Tf(p)N which is the linearisation of f at p.

The set

(1) TRn =
⋃
p∈Rn

TpRn = Rn × Rn,

is called the tangent bundle of Rn and is naturallyidentified with R2n.

The set
TM =

⋃
p∈M

TpM ⊂ TRn

is called the tangent bundle of M . Although we haven’t proved this, but it is a manifold of dimension 2k
in Rn × Rn.

If M is a manifold, a continuous (respectively smooth) vector field X on M is a continuous (respectively
smooth) function X : M → TM , such that X(p) ∈ TpM for each p ∈M . Thus a vector field is a function
form the manifold to its tangent bundle which assigns a tangent vector at each point on M .

If U ⊂ Rn is an open subset (hence an n dimensional manifold) then we have the standard vector fields
on U . Let e1, . . . , en be the standard basis of Rn. Then define the vector fields E1, . . . , En on U by

E1(p) = (p, e1), . . . , En(p) = (p, en).

These vector fields form a frame for the tangent bundle of U in the sense that at each point the vector
fields form a basis for the tangent space at that point.

Any other vector field X can be written as

X(p) = f1(p)E1(p) + · · ·+ fn(p)En(p).

Thus a vector field on U is equivalent to a function f = (f1, . . . , fn) : U → Rn. The vector field is
continuous or smooth if and only if the corresponding function is continuous or smooth.

2In ordinary vector calculus the tangent space to a point on a manifold is an affine space. For example the tangent line

to a point on a curve or the tangent plane to a point on a surface. If p ∈M note that the tangent space at p to M according
to usual vector calculus is the set of points p + v where (p, v) ∈ TpM . However this concept has the draw back that the

tangent is not a vector space (may not contain 0).
3This is just the generalisation of the fact in vector calculus that if a surface is given by an equation, that is the zero set

of a function then the tangent plane at a point to the surface is the plane perpendicular to the gradient of that function.
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On an arbitrary manifold there may not exist such a frame for vector fields. For example in class we
saw that there is a frame in the case of S1 but not in the case of S2. However there is a frame when we
restrict to the image of a chart.

If M is a manifold of dimension k, and (U, φ) is a chart of M , then the vector fields X1, . . . , Xk defined
by

Xi(p) = (p, ∂iφ) = φ∗Ei(φ
−1(p))

form a basis of the tangent space of M at each point of φ(U).

Any vector field X on M then can be written as X = f1X1 + . . . + fkXk on φ(U) and X is continuous
or smooth if and only if all the functions fi are continuous or smooth for each chart of M .

4.1. Tangent space at boundary of a manifold. If M ⊂ Rn is a k manifold with boundary then our
previous definition of tangent space sort of works also at the boundary points.

If p ∈ ∂M , and (U, φ) is a chart for M with U ⊂ Hk, φ(x) = p, then x ∈ BdHk ∩ U . Now U is not an

open set of Rk, but there is some open set V ⊂ Rk containing U and an extension φ̃ of φ to V which is
differentiable (or smooth). Then we define TpM = φ̃∗TxRk.

There is a distinguished unit vector n(p) ∈ TpM called the outward normal. Consider the tangent vector

v = (x,


0
...
0
−1

) ∈ TxRk. Also note that Tp∂M ⊂ TpM is a sub-vector space of dimension k − 1. n(p)

is the unique vector in TpM such that

(1) ||n(p)|| = 1,
(2) n(p) is orthogonal to Tp∂M ,

(3) 〈n(p), φ̃∗v〉 > 0.

5. Differential forms

For a vector space V let Tk(V ) denote the vector space of k-tensors on V and let Λk(V ) ⊂ Tk(V ) be the
subspace of alternating k-tensors.

Let M ⊂ Rn be a manifold. A differential k-form on M is a function ω on M such that

ω(p) ∈ Λk(TpM) for all p ∈M.

Functions on M are conveniently treated as 0-forms. The set of all differential k forms on M will be
denoted by Ωk(M).

Note that if we have k vector fields X1, . . . , Xk then applying ω to these we can get a function g : M → R
as follows:

g(p) = ω(p)(X1(p), . . . , Xk(p)).

The form ω is smooth if for every set of k smooth vector fields the function thus obtained is smooth
(similar definition for continuity).

For ω ∈ Ωk(M) and η ∈ Ω`(M) we have the wedge product ω ∧ η ∈ Ωk+`(M) defined point wise

(ω ∧ η)(p) = ω(p) ∧ η(p).

If f ∈ Ω0(M) is a function on M then we define f ∧ ω = ω ∧ f = fω.
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The wedge product is linear in both the arguments and for ω ∈ Ωk(M) and η ∈ Ω`(M) we have ω ∧ η =
(−1)k`η ∧ ω.

Let M ⊂ Rn be a manifold and U ⊂ Rn be an open set containing M . Then any smooth differential
form on U restricts to a differential form on M . On the other hand any smooth differential form on M
can be extended to an open set V ⊂ Rn containing M .

If φ : M → N is a differentiable map of manifolds, then we define φ∗ : Ωr(M)→ Ωr(N), as follows: If ω
is a differential r form on N , p ∈M is a point and v1, . . . , vr ∈ TpM are r tangent vectors at p, then

(φ∗ω)(p)(v1, . . . , vr) = ω(φ(p))(φ∗v1, . . . , φ∗vr).

If r = 0, that is ω = f is a function on N , then this definition forces that φ∗f = f ◦ φ. Then φ∗ has the
following properties:

(1) φ∗(aω + bη) = aφ∗ω + bφ∗η where a, b ∈ R (linearity);
(2) (φ ◦ ψ)∗ = ψ∗ ◦ φ∗ (contra-variance);
(3) φ∗(ω ∧ η) = (φ∗ω) ∧ (φ∗η)

The differential operator is a linear operator d : Ωr(M)→ Ωr+1(M) satisfying the following properties.

(1) If φ : M → N is differentiable function of manifolds then φ∗(dω) = d(φ∗ω);
(2) d(aω + bη) = adω + bdη where a, b ∈ R (linearity);
(3) d(ω ∧ η) = (dω) ∧ η + (−1)rω ∧ dη if ω is an r form and η an ` form;
(4) d(dω) = 0, written often as d2 = 0.

First we define d for U ⊂ Rn open. Now by the above properties it suffices to define d for 0 forms or
functions. For that we make the following definition. If f : U → R is a smooth function then df is the 1
form on U given by

df(p)((p, v)) = D f(p)v = ∂vf(p) where p ∈ U and (p, v) ∈ TpRn.

If πi : U → R is the projection onto the i-th coordinate, i.e. πi(x1, . . . , xn) = xi then we have the
differentials dπi = dxi. More over note that

dxi(p)(Ej(p)) = ∂jxi(p) =

{
1 i = j,
0 i 6= j.

Thus dx1(p), . . . , dxn(p) is the dual basis of Λ1(TpRn) = (TpRn)∗ to the basis E1(p), . . . , En(p) of TpRn.
Hence dx1, . . . , dxn form a frame for Ω1(U).

So any 1 form ω on U can be uniquely written as ω = g1dx1 + . . .+ gndxn where gi : U → R are smooth
functions.

If f : U → R is a differentiable function then it is easy to show that df = ∂1fdx1 + . . .+ ∂nfdxn.

The r forms dxi1 ∧ . . .∧ dxir for 1 ≤ ii < . . . < ir ≤ n thus form a frame for Ωr(U) and any r form η can
be uniquely written as

η =
∑

1≤i1<...<ir≤n

gi1···ir dxi1 ∧ . . . ∧ dxir

where again gi1···ir : U → R are smooth functions.

Now the the properties of d force the following formula for dη:

dη =
∑

1≤i1<...<ir≤n

dgi1···ir ∧ dxi1 ∧ . . . ∧ dxir

=
∑

1≤i1<...<ir≤n

n∑
α=1

∂αgi1···ir dxα ∧ dxi1 ∧ . . . ∧ dxir
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Let M ⊂ Rn be a k dimensional manifold and ω be a differential r form on M . If (U, φ) is a chart of M ,
then φ∗ω ∈ Ωr(U). Clearly we can write

φ∗ω =
∑

1≤i1<...<ir≤k

gi1···ir dxi1 ∧ . . . ∧ dxir .

So we know how to explicitly write dφ∗ω.

Theorem 5. There is a unique operator d : Ωr(M)→ Ωr+1(M) such that for any chart (U, φ) of M we
have d(φ∗ω) = φ∗(dω), for any r form ω.

Explicitly define dω point-wise as follows: for p ∈M , choose a chart (U, φ) of M with φ(x) = p for some
x ∈ U ; φ∗ : TxRk → TpM is an isomorphism of vector spaces so for any v1, . . . , vr ∈ TpM choose the
unique tangent vectors w1, . . . , wr at x such that φ∗wi = vi; finally set

dω(p)(v1, . . . , vr) = (dφ∗ω)(x)(w1, . . . , wr).

To see that this definition of dω is chart independent, let (V, ψ) be another chart with ψ(y) = p. Also
let w′1, . . . , w

′
r be the unique tangent vectors at y such that ψ∗w

′
i = vi. Note that g = φ−1 ◦ ψ is a

diffeomorphism of open sets in Rk, and that ψ = φ ◦ g (so ψ∗ = g∗ ◦φ∗). Moreover we have g(y) = x and
g∗(w

′
i) = wi. Thus

(dψ∗ω)(y)(w′1, . . . , w
′
r) = d(g∗ ◦ φ∗ω)(y)(w′1, . . . , w

′
r)

= g∗(dφ∗ω)(y)(w′1, . . . , w
′
r)

= (dφ∗ω)(g(y))(g∗w
′
1, . . . , g∗w

′
r)

= (dφ∗ω)(x)(w1, . . . , wr).

6. Orientability

6.1. Orientation of a vector space. If V is a vector space of dimension n, then Λn(V ) is of dimension
1. Define the equivalence relation ∼ on Λn(V ) − {0} by α ∼ β for α, β ∈ Λn(V ) − {0} if α = cβ where
c > 0. The equivalence classes of ∼ are called orientations of V . Notice that there are two possible
orientations.

If ω ∈ Λn(V ) − {0}, then ω determines an orientation on V . We say that a basis v1, . . . , vn of V
is positively oriented if ω(v1, . . . , vn) > 0. Otherwise we say that the basis is negatively oriented. If
v1, . . . , vn is positively oriented, and w1, . . . , wn is another basis such that wj =

∑n
i=1 ai,jvi then note

that

ω(w1, . . . , wn) = detA ω(v1, . . . , vn)

where A = ((ai,j)) is the change of basis matrix. Thus w1, . . . , wn is also positively oriented if detA > 0
otherwise it is negatively oriented.

On the other hand given any basis v1, . . . , vn of V , take the dual basis φ1, . . . , φn of Λ1(V ) = V ∗, then
φ1 ∧ . . . ∧ φn is a non-zero alternating n tensor and gives an orientation on V for which v1, . . . , vn is of
course positively oriented.

A vector space along with a choice of orientation is called an oriented vector space. A linear transformation
is called orientation preserving if it takes any positively oriented basis to a positively oriented basis.

There is the standard orientation on Rn given by the determinant det ∈ Ωn(Rn). This is just a generali-
sation of our notion of orientation for R,R2 and R3.

6.2. Orientable manifolds. A k dimensional manifold M ⊂ Rn is orientable if there is a non-vanishing
k form on M , i.e. some ω ∈ Ωk(M) such that ω(p) 6= 0 for any p ∈ M . A k form on a k dimensional
manifold is called a top form.
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Any two non-vanishing forms ω, η ∈ Ωk(M) are related by ω = fη for a smooth function f : M → R
such that f(p) 6= 0 for any p. We define an equivalence relation ∼ on the set of non-vanishing top forms
on M , ω ∼ η if η = fω such that f(p) > 0 for any p ∈M . The equivalence classes under this equivalence
relation are called orientations on M .

Thus any non-vanishing top form gives an orientation on M , which is essentially a smoothly varying
orientation for all the tangent spaces of M . Notice that if M is connected and orientable then there are
just two possible orientations of M . If we fix the orientation of the tangent space at a point then the
orientation of the whole manifold is determined in this case.

Let M ⊂ Rn be a k manifold with an orientation given by a top form ω. A chart (U, φ) is called positively
oriented if φ∗ω = fdx1∧ . . .∧dxn for a positive function f : M → R. This is equivalent to saying that for
any x ∈ U such that p = φ(x) the basis φ∗((x, e1)), . . . , φ∗((x, en)) is a positively oriented basis of TpM
with respect to the orientation given by ω(p) (i.e positively oriented bases of TxRk are taken to positively
oriented bases of TpM by φ∗).

If (U, φ) and (V, ψ) are both positively oriented then detD(φ−1 ◦ψ) > 0. We have the following practical
way of checking orientability of a manifold.

Theorem 6. A manifold M ⊂ Rn is orientable if and only if there is an atlas {(Ui, φi)}i∈I of M such
that detD(φ−1i ◦ φj) > 0 for all i, j ∈ I.

Any open set of U ⊂ Rn has the standard orientation given by dx1 ∧ . . . ∧ dxn.

If M ⊂ Rn is an oriented manifold of dimension n − 1, then for any p ∈ M , there is a unique vector
N(p) ∈ TpRn satisfying

(1) ||N(p)|| = 1,
(2) N(p) is orthogonal to TpM ,
(3) N(p), v1, . . . , vn is a positively oriented basis of TpRn if v1, . . . , vn is a positively oriented basis of

TpM .

This vector N(p) is called the unit normal of M , and is smoothly varying on M . On the other hand
if we have a smoothly varying unit normal vector N(p) for each point p ∈ M , then that determines an
orientation on M .

6.3. Induced orientation of the boundary. Let M ⊂ Rn be a oriented k manifold with boundary,
with the orientation given by ω ∈ Ωk(M). Then ∂M is an orientable manifold and the orientation of M
determines an orientation of ∂M .

Consider the unit outward normal n(p) for any p ∈ ∂M . We define the top form η ∈ Ωk−1(∂M) as
follows:

η(v1, . . . , vk−1) = ω(n(p), v1, . . . , vk−1) for any v1, . . . , vk−1 ∈ TpM

Then η is non-vanishing, since ω is, and gives an orientation of ∂M . According to this orientation
v1, . . . , vk−1 is a positively oriented basis of Tp∂M if n(p), v1, . . . , vk−1 is a positively oriented basis of
TpM .

Hn ⊂ Rn is an n manifold with boundary and ∂Hn = Rn−1 × {0}. Consider the standard orientation on
Hn given by dx1 ∧ . . .∧ dxn. The induced orientation on ∂Hn is the standard orientation on Rn−1 if n is
even, otherwise the induced orientation is the opposite one. This is so designed to get the nice form of
the Stokes’ theorem.
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7. Integration of forms

We shall define integral of top forms on manifolds.

For open sets of Rn this is quite easy. Let ω ∈ Ωn(U), then ω = fdx1∧ . . .∧dxn for some smooth function
f : U → R. Define ∫

U

ω =

∫
U

f.

Note that if v1, . . . , vn is a positively oriented orthonormal basis of Rn, then

f(p) = ω(p)((p, v1), . . . , (p, vn)).

Thus the above integral can be written as∫
U

ω =

∫
U

ω(x)((x, v1), . . . , (x, vn))dx1 · · · dxn.

Now let M ⊂ Rn be an oriented k manifold (with or without boundary).

If (U, φ) is a positively oriented chart of M , and ω is a top form on M which vanishes outside φ(U), that
is ω(p) = 0 for p /∈ φ(U), we define the integral of ω as follows:∫

M

ω =

∫
U

φ∗ω.

It is an easy exercise to check that this definition is independent of the choice of the chart.

Now to define integral of arbitrary top forms on M we need to use partitions of unity. Let {Uα}α∈A be
an open cover of M . Then Uα = Vα ∩M for some open set Vα ⊂ Rn. Let

V =
⋃
α∈A

Vα.

V is an open set in Rn containing M and {Vα}α∈A is an open cover of V . Let φ1, φ2, . . . be a partition
of unity for V subordinate to the open cover {Vα}α∈A. The functions ψi = φi|M , obtained from φi by
restricting the domain to M are a partition of unity on M subordinate to the open cover {Uα}α∈A of M .
They satisfy the following properties:

• ψi : M → R is C∞ and ψi(x) ≥ 0 for all x ∈M ;
• there exists an α ∈ A such that ψi(x) = 0 for x /∈ Uα;
• for any x ∈M there is an open set U 3 x such that all but finitely many φi vanish on U ;
•
∑∞
i=1 ψi(x) = 1 for any x ∈M .

Now if ω ∈ Ωk(M) we define the integral of ω on M in the following manner. Choose an atlas
{Uα, φα)}α∈A of positively oriented charts on M . Let ψ1, ψ2, . . . be a partition of unity subordinate
to the open cover {φα(Uα)}α∈A of M . Define∫

M

ω =

∞∑
i=1

∫
M

ψiω,

if the above sum converges absolutely. In that case we say that ω is integrable.

Note that ψiω vanishes outside a single chart of the above atlas, so the integral
∫
M
ψiω makes sense by

our previous definition.

It is not a hard, although quite tedious, exercise to show that this definition is independent of the choice
of the atlas and the partition of unity. Also this definition makes sense for forms that are not continuous
on M .
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If the manifold M is compact then any continuous top form is integrable. In fact integration of forms is
a linear map Ωk(M)→ R in that case.

For any oriented k manifold M ⊂ Rn, if ω and η are integrable top forms on M then aω + bη is also
integrable for any a, b ∈ R and ∫

M

(aω + bη) = a

∫
M

ω + b

∫
M

η.

The above definition is not very practical for actually evaluating integrals. The following theorem however
gives us a procedure to compute the integrals by cutting up the manifold into disjoint pieces, integrating
the form on each piece and finally summing all the integrals to get the integral on the whole manifold.

A subset S ⊂ M is said to be of measure 0, if there is an atlas {Uα, φα)}α∈A of M for which φ−1α (S ∩
φα(Uα)) is a measure 0 subset of Uα for each α ∈ A.

For example any finite subset of M has measure 0 in M , or if N ⊂M is also a manifold (with or without
boundary) such that dimN < dimM , then N has measure 0 in M .

Note that if M ⊂ Rn is a k manifold with k < n, then any subset of M is measure 0 in Rn however it
may not have measure 0 in M , so this is a different concept that being measure 0 in Euclidean space.

Theorem 7. Let M ⊂ Rn be a compact k manifold and {(U1, φ1), . . . , (UN , φN )} be a collection of charts

on M , such that S = M −
(
φ1(U1) ∪ . . . ∪ φN (UN )

)
has measure 0 in M and φi(Ui) ∩ φj(Uj) = ∅ for

i 6= j then ∫
M

ω =

N∑
i=1

∫
Ui

φ∗iω .

7.1. Volume form. Let M ⊂ Rn be an oriented k manifold, then there is a distinguished top form on
M called the volume form.

Theorem 8. There is a smooth k form VolM on M :

(1) For any p ∈M and any positively oriented orthonormal basis v1, . . . , vk of TpM

VolM (p)(v1, . . . , vk) = 1

(2) If (U, φ) is a chart on M , define the matrix G(x) for any x ∈ U by setting G(x) = ((gi,j(x)))
where gi,j(x) = 〈∂iφ(x), ∂jφ(x)〉, then

φ∗VolM =
√

detG dx1 ∧ . . . ∧ dxk .

Proof. Choose a non-vanishing top form ω on M . Let v1, . . . , vk and w1, . . . , wk be two positively oriented
orthonormal bases of TpM . Writing wj as a linear combination of v1, . . . , vk we get

wj =

k∑
i=1

ai,jvi .

The matrix A = ((ai,j)) then is an orthogonal matrix with positive determinant, hence detA = 1. Thus

ω(w1, . . . , wk) = (detA)ω(v1, . . . , vk) .

Hence ρ(p) = ω(v1, . . . , vk) is the same if we choose any positively oriented orthonormal basis of TpM .
We thus get a function ρ : M → R such that ρ(p) 6= 0 for any p ∈M . Define

VolM (p) =
1

ρ(p)
ω(p) .

This is a top form on M and it clearly satisfies (1). It remains to show that this is a smooth form.

Let (U, φ) be a positively oriented chart on M . Clearly

φ∗VolM = f dx1 ∧ . . . ∧ dxk .



10

for some function f : U → R. We want to find this function f and show that it is smooth. That will show
that VolM is smooth on each chart, hence smooth on M . For x ∈ U consider the basis E1(x), . . . , Ek(x)
of TxRk. φ∗E1(x), . . . , φ∗Ek(x) is a positively oriented basis of TpM where p = φ(x) but it may not be
orthonormal. Let v1, . . . , vk be an orthonormal basis of TpM as before and write φ∗Ej(x) as a linear
combination of the basis v1, . . . , vk.

φ∗Ej(x) =

k∑
i=1

bi,jvi .

Let B be the k × k matrix B = ((bi,j)), then

f(x) = (φ∗VolM )(x)(E1(x), . . . , Ek(x))

= VolM (φ(x))(φ∗E1(x), . . . , φ∗Ek(x))

= (detB) VolM (v1, . . . , vk) = detB .

Now φ∗Ei(x) = φ∗(x, ei) = (p,Dφ ei) = (p, ∂iφ), thus gi,j(x) = 〈∂iφ(x), ∂jφ(x)〉 = 〈φ∗Ei(x), φ∗Ej(x)〉.
Expressing gi,j(x) in terms of v1, . . . , vk we have

〈φ∗Ei(x), φ∗Ej(x)〉 = 〈
k∑
l=1

bl,ivl,

k∑
m=1

bm,jvm〉

=

k∑
l=1

k∑
m=1

bl,ibm,j〈vi, vj〉 .(2)

Note that 〈vi, vj〉 = 1 if i = j but 0 otherwise. Hence equation (2) yields G(x) = BtIB = BtB.

Hence detB =
√

detG(x). Since the entries of G(x) are all smooth and detG(x) > 0 we see that

f(x) =
√

detG(x) is a smooth function on U . �

Now we define the integral of any function f : M → R as∫
M

f =

∫
M

f VolM

if this integral exists.

We define the volume of a compact oriented manifold M as

volume(M) =

∫
M

1 =

∫
M

VolM .

Intuitively the volume form is an infinitesimal volume element in the sense of vector calculus. It is the
volume element of the correct orientation on all the tangent spaces of M smoothly varying on M .

7.2. Special cases. As special cases let us look at line and surface integrals.

A parametrized curve C ⊂ Rn is a 1 manifold covered by a single chart (U, φ) hence naturally oriented if
we declare the chart to be positively oriented, if further C is connected then we can take U = (a, b) ⊂ R
an open interval. Now if t is the variable in U , then by Theorem 8 we have

φ∗VolC = ||φ′(t)||dt .
So if f : C → R is a function then the integral of f on C is given by∫

C

f =

∫
f VolC =

∫
U

φ∗(f VolC) =

∫ b

a

f ◦ φ(t)||φ′(t)||dt .

This is the usual line integral formula.

A parametrized surface S ⊂ R3 is a 2 manifold covered by a single chart (U, φ). Now we have

G =

(
∂xφ · ∂xφ ∂xφ · ∂yφ
∂yφ · ∂xφ ∂yφ · ∂yφ

)
.
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Thus
detG = ||∂xφ||2||∂yφ||2 − (∂xφ · ∂yφ)2 = ||∂xφ× ∂yφ||2 .

Hence if f : S → R is a function, the integral of f on S is given by∫
S

f =

∫
S

f VolS =

∫
U

(f ◦ φ)φ∗VolS =

∫
U

(f ◦ φ)||∂xφ× ∂yφ||.

8. Where to go from here

The Differential Geometry course of semester VIII is a natural continuation of this course. However before
learning about general manifolds, one could study curves and surfaces first and “Differential Geometry
of Curves and Surfaces” by Do Carmo is an excellent reference for that and should be an easy read.

Here are some references for Differential Geometry.

• Topology from a Differential Point of View, by Milnor: This is an excellent introductory text,
but it is less rigorous and leaves out a lot of topics. On the other hand it is very short and makes
for a god bed time reading.

• Differential Topology, by Guillemin and Pollack: This is the easiest book and does things is good
details, also it is fairly short.

• A Comprehensive Introduction to Differential Geometry, by Spivak Volume 1: This is the first
of a 5 volume book which is an absolute classic and a must read for Differential Geometers. The
first volume lays out the foundations and geometry really starts from volume 2. See MAA review
for a detailed review of these books.

• Morse theory, by Milnor: Morse theory is also a central topic in Differential Geometry and
Milnor’s expository book on this topic is the best reference available.

Manifolds and Differential geometry is just as important in Physics and here are some good references to
venture further into these topics:

• Mathematical Methods of Classical Mechanics, V.I. Arnold: This is again a classic book and it
works through most of the differential geometry needed in Physics.

• General Relativity, Robert Wald: This is by far the most popular book in general relativity,
although it may be a bit too mathematical and a bit out dated.

http://www.maa.org/publications/maa-reviews/a- comprehensive-introduction-to-differential-geometry-vol-i
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