
Commutative Algebra Regular Local Rings June 16, 2020

Throughout this lecture A will be a noetherian local ring with maximal ideal m and residue field
k = A/m.

We have seen that

dimA = htm ≤ dimk m/m
2.

Definition 1: The noetherian local ring A is called regular if dimA = dimk m/m
2.

Exercise (i). Show that C[x]/(x2) is not regular.

Example 1. Consider R = C[x, y]/(xy). The maximal ideals of R are in one to one correspon-
dence with maximal ideals of C[x, y] that contain the ideal (xy).

Let n be the maximal ideal corresponding to (x, y) and let A = Rn and m = nRn. Then
m2 = (x2, y2), thus m/m2 has x, y as basis over C and dimCm/m2 = 2. On the other hand
dimA = ht n ≤ dimR ≤ 1 by Krull’s principal ideal theorem. In fact dimA = 1 since (x) ⊂ (x, y)
is a chain in A of length 1. Hence A is not regular.

On the other hand consider the maximal ideal n′ of R corresponding to (x, y − a) where a is a
non-zero complex number. Let B = Rn′ and m′ = n′B. Then we again have dimB = 1. Now
(m′)2 = (x2, y2 − 2ay + a2, ax) = (x, y2 − 2ay + a2), so x ∈ (m′)2 and just y in this case forms a
basis of m′/(m′)2 over C. Thus dimB = dimCm′/(m′)2, hence B is regular.

We shall give two more useful criteria for the ring A to be regular.

Theorem 2. Let d = dimA, then A is regular if and only if the following equivalent conditions
are satisfied:

(a) The maximal ideal m can be generated by d elements.
(b) The associated graded ring Gm(A) is isomorphic to the polynomial ring k[t1, . . . , td] over k

in d variables.

Proof. We shall show A regular ⇒ (a)⇒ (b)⇒ A regular.

Assume A is regular which means dimk m/m
2 = d. Let x1, . . . , xd ∈ m be such that their images

x1, . . . , xd forms a basis of m/m2 as a k vector space. Then by Nakayama’s lemma x1, . . . , xd
must generate m as an ideal.

Now for (a)⇒ (b) let m = (x1, . . . , xd), and let xi be the image of xi in m/m2, then x1 . . . , xd ∈
Gm(A) generate Gm(A) as a k = A/m algebra (see proof of Proposition 2 in the lecture on
Associated Graded rings). Let

φ : k[t1, . . . , td]→ Gm(A)

be the k algebra homomorphism given by φ(ti) = xi. Then φ is surjective, so if a = kerφ, we have
Gm(A) ∼= k[t1, . . . , td]/a. In fact φ is a homomorphism of graded rings, so a is a homogeneous
ideal (see Example 1 in the lecture on Hilbert polynomial). Suppose a 6= 0 and f ∈ a is a
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non-zero homogeneous polynomial then Gm(A) is isomorphic to a quotient of k[t1, . . . , td]/(f).
Thus

dimA = dhilb(Gm(A)) ≤ dhilb(k[t1, . . . , td]/(f)) = d− 1

(see Example 2 in the lecture on Hilbert polynomials). This is a contradiction since we assumed
dimA = d. Thus a = (0) and Gm(A) ∼= k[t1, . . . , td].

Finally assume Gm(A) ∼= k[t1, . . . , td], then m/m2 is the first graded component of k[t1, . . . , td],
which are all the polynomials of degree 1. Clearly that has dimension d as s k vector space. �

A regular local ring is always an integral domain. In fact it is also normal. Recall that an integral
domain is called normal if it is integrally closed in its field of fractions. To prove normality we
need an easy lemma first.

Lemma 3. Let R be a noetherian integral domain and K its field of fractions. An element
x ∈ K is integral over R if and only if there is an element a ∈ R such that

axn ∈ R for all n > 0.

Proof. Let S = R[x], then S is an R submodule of K. If x is integral over R then R[x] is finitely
generated by say 1, x, . . . , xn. Then if x = a/b with a, b ∈ R we have bnS ⊂ R. Hence we may
take a = bn.

For the converse, we note that the condition on the powers of x implies that aS ⊂ R. Since
it is a submodule of R, that is an ideal, and R is noetherian, aS is finitely generated as an R
module. This shows R[x] is a finitely generated R module, hence x is integral over R. �

Lemma 4. Let R be a noetherian ring and a ⊂ R an ideal.

(a) If ∩∞n=1a
n = (0) and Ga(R) is an integral domain, then R is also an integral domain.

(b) If a is contained in the Jacobson radical of R and Ga(R) is a normal integral domain, then
so is R.

Remark. Assume ∩∞n=1a
n = (0), for any r ∈ R−{0} there is an integer t such that r ∈ at− at+1.

Define r∗ to be the image of r in at/at+1. Then clearly

r∗ 6= 0 ∈ Ga(R).

Also define 0∗ = 0 ∈ Ga(R). Thus r 7→ r∗ is a surjective map from R → Ga(R). This is not a
ring homomorphism. However, if Ga(R) is an integral domain it is easy to check that the map
is multiplicative, that is

r∗1r
∗
2 = (r1r2)

∗.

If Ga(R) is not an integral domain this map may fail to be multiplicative.

Proof of Lemma 4. For part (a) if a, b ∈ R are non-zero then (ab)∗ = a∗b∗ 6= 0. Hence xy 6= 0.

Part (b) is significantly longer. First note that by Corollary 16 of the lecture on Graded rings
since a is contained in the Jacobson radical we have

∩∞n=1a
n = (0).
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Hence R is an integral domain by part (a). Now let x = a/b be integral over R with a, b ∈ R
and b 6= 0. We have to show that a = bc for some c ∈ R, that is a ∈ (b). Consider the ring
S = R/(b). As an R module, S is hausdorff in the a-adic topology, that is ∩∞n=1a

nS = 0, by
Corollary 16 of the lecture on Graded rings. Since anS = (an + (b))/(b), this means

∞⋂
n=1

((b) + an) = (b).

Hence it is enough to show that a ∈ (b) + an for all n. We shall prove this by induction on n.
Since a0 = R, this is trivial for n = 0. Assume it is true for n, that is

a = cb+ d where c ∈ R and d ∈ an.

Hence y = x− c = d/b is integral over R. Thus there is u ∈ R such that

uyn ∈ R for all n > 0.

Let vn = uyn, then udn = vnb
n. Hence u∗(d∗)n = v∗n(b∗)n in Ga(R). This means in the field of

fractions of Ga(R) we have

u∗
(
d∗

b∗

)n

∈ Ga(R) for all n > 0.

Since Ga(R) is noetherian it follows that d∗/b∗ is integral over Ga(R). But Ga(R) is normal, so
d∗ = e∗b∗ for some e ∈ R. Which means d− eb ∈ an+1. Thus

a = (c+ e)b+ (d− eb)⇒ a ∈ (b) + an+1

completing the proof. �

The next result is basically a corollary of the previous lemma but we write it as a theorem
because of its importance.

Theorem 5. A regular local ring A is an normal integral domain.

Proof. Since A is local m is the Jacobson radical. The associated graded ringGm(A) is isomorphic
to a polynomial algebra over k, hence a normal integral domain. �

Remark. In fact a regular local ring is always a unique factorisation domain (hence normal).
However, the proof is much more difficult. See for instance Section 19.4 of Commutative Algebra
with a view towards Algebraic Geometry — David Eisenbud.

Example 2. A regular local ring of dimension 0 has to be a field since it is an artinian integral
domain.

Example 3. If R is a noetherian integral domain of dimension 1 then R is regular ⇐⇒ R is a
discrete valuation ring ⇐⇒ R is normal. This follows immediately from Theorem 2, Theorem
5 and Theorem 8 of the lecture on Dedekind domains.

As we see when A is a normal integral domain and dimA ≤ 1, then A is regular if and only A is
normal. However when dimA > 1 this is not true. The following is an example when dimA = 2
and A is normal but not regular.
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Example 4. Let k be a field of characteristic not equal to 2 and let

R =
k[x, y, z]

(z2 − xy)
.

The ring R is a noetherian integral domain since the ideal z2 − xy is an irreducible polynomial,
(Eisenstein’s criterion). However it is not a unique factorization domain.

We claim that R is normal. Consider the homomorphism φ : k[x, y, z]→ k[s, t] given by φ(x) =
s2, φ(y) = t2, φ(z) = st. It is easy to see that the kerφ = (z2 − xy), hence R ∼= k[s2, t2, st].
Thus R is isomorphic to the subring of k[s, t] generated by monomials of even degrees. Let F
be the field of fractions of R = k[s2, t2, st] and E be the field of fractions of k[s, t]. Then, E has
the automorphism

ψ : E → E given by ψ(s) = −s and ψ(t) = −t.
Since ψ2 = IdE , so G = {Id, ψ} is a group of automorphisms of E. Clearly F is the fixed field
of E and R = F ∩ k[s, t] are the fixed elements of k[s, t]. If f ∈ F is integral over R, then f is of
course integral over k[s, t]. But k[s, t] is normal since it is a unique factorisation domain. Hence
f ∈ k[s, t]. But then

f ∈ F ∩ k[s, t] = R.

This proves R is normal. Let n be the maximal ideal corresponding to the maximal ideal (x, y, z)
of k[x, y, z]. Then Rn is is a normal local integral domain which is of course noetherian.

We claim that A is not regular. The maximal ideal of A is m = nA and is generated by x, y and
z the images of x, y and z. On one hand

dimA = dimR = transcendence degree of F over k = 2,

(see Theorem 17 of the lecture on Dimension of Rings). However, notice that (z2 − xy) ⊂ n2,
hence

dimk m/m
2 = dimk n/n

2 = 3.

Exercise (ii). Let A be a regular local ring with maximal ideal m and x ∈ m such that x 6∈ m2

then show that A/(x) is also regular and dimA/(x) = dimA− 1.

Proposition 6. A noetherian local ring A is regular if and only in the m-adic completion Â is
regular.

Proof. Note that Â is also a noetherian local ring with maximal ideal m̂. Moreover, Gm(A) ∼=
Gm̂(Â). Now use Theorem 2. �

Remark. It follows that for a regular local ring A, the completion Â is also an integral domain.

Exercise (iii). Show that the power series ring A = k[[x1, . . . , xd]] over a field k is a regular
local ring of dimension d. (Hint. Show that Gm(A) ∼= k[x1, . . . , xd] where m = (x1, . . . , xd)).

The next result shows that for a regular closed point of SpecR, where R is a finitely generated
algebra over a field, the complete local ring is just a power series ring.
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Proposition 7. Let R be a finitely generated algebra over a field k and n ⊂ R a maximal ideal
such that R/n = k. If A = Rn, the localisation at n, is regular then

Â ∼= k[[t1, . . . , td]]

where d = dimA and Â is the completion of A with respect to its maximal ideal nA.

Proof. Let m = nA, then by an application of the Noether normalisation theorem A/m ∼= R/n
is a finite extension of k and by assumption it is in fact k.

Let k[t1, . . . , td] be the polynomial ring over k in d variables and m = (x1, . . . , xd). Consider the
k algebra homomorphism, (since we have an inclusion k → A),

φ : k[t1, . . . , td]→ A given by φ(ti) = xi.

Let m′ = (t1, . . . , td) then φ((m′)s) ⊂ ms for all s > 0. Thus we get homomorphisms of k algebras

φn :
k[t1, . . . , td]

(m′)s
→ A

ms
.

Hence taking inverse limits we get a homomorphism of the completions

φ̂ : k[[t1, . . . , td]]→ Â.

We shall show that each φ is an isomorphism. Hence so is φ̂.

Then since A/m = k and A is a regular local ring, we have an isomorphism

ψ : k[t1, . . . , td]→ Gm(A) such that ψ(ti) = xi ∈ m/m2.

To show surjectivity of φn note that by surjectivity of ψ, for each s ≥ 0, and a ∈ ms there is
f ∈ k[t1, . . . , td] such that a− φ(f) ∈ ms+1. Hence, for any a ∈ A there is f0 ∈ k[t1, . . . , td] such
that a − φ(f0) ∈ m. Similarly there is f1 such that a − φ(f0) − φ(f1) ∈ m2. Continuing in this
manner we can get f0, f1, . . . , fn−1 ∈ k[t1, . . . , td] such that

a− φ(f0 + . . .+ fn−1) ∈ mn.

Hence, a = φn(f0 + . . .+ fn−1) ∈ A/mn

Moreover, φn is injective ⇐⇒ φ−1(mn) = (m′)n. Let f ∈ k[t1, . . . , td] be a homogeneous
polynomial of degree s, then clearly φ(f) ∈ ms. However, if φ(f) ∈ ms+1 then ψ(f) = 0 ∈
ms/ms+1 ⇒ f = 0. Now let g ∈ k[t1, . . . , td] be any polynomial such that φ(g) ∈ mn. Let s ≥ 0
be the smallest degree for which the homogeneous component gs of g of degree s is non-zero. If
s ≥ n then g ∈ (m′)n so assume s < n. Clearly φ(g − gs) ∈ ms+1 and φ(g) ∈ mn ⊂ ms+1. Hence

φ(gs) = φ(g)− φ(g − gs) ∈ ms+1

But gs is homogeneous of degree s, hence gs = 0. Contradicting our assumption s < n. �

Definition 8 (Regular ring): A noetherian ring R is called regular if for any prime ideal p ⊂ R,
the localisation Rp is a regular local ring.

Remark. If A is a regular local ring and p ⊂ A a prime ideal then the localisation Ap is also
a regular local ring. The proof of this is quite difficult and uses methods we shall not be able
to discuss in this course, you may refer to Commutative Algebra — Matsumura, Chapter 7,
Theorem 45 and its corollary. It follows that in the definition of a regular ring we may replace
prime ideal by maximal ideal.
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Example 5. Clearly a field is a regular ring of dimension 0 and a Dedekind domain is a regular
ring of dimension 1.

Example 6. If R is regular then S = R × R is also regular. A prime ideal of R × R is of the
form q = p×R or R× p for a prime ideal p ⊂ R. Thus

Sq ∼= Rp

which is a regular local ring. Hence Z × Z is regular. This shows that a regular ring need not
be an integral domain.

Proposition 9. If R is a regular ring then so is R[x] the polynomial ring over R in one variable.

Proof. If q is a prime ideal of B = R[x] then p = q ∩ R is a prime ideal of R. Then S = R − p
is a multiplicatively closed subset of R[x] and

S−1R[x] ∼= Rp[x].

Let q′ = S−1q then it is easy to show that

Bq
∼= Rp[x] localised at q′.

Now Rp is a local ring and q′ ∩Rp = pRp. Thus we may assume R it self is a regular local ring.
Moreover we have q∩R = p the maximal ideal of R. We have to show Bq is a regular local ring.
Clearly q ⊃ pB hence the image of q in

B

pB
∼= k[x] where k = R/p is the residue field.

is a principal ideal. It follows that q = pB or q = pB+(f) for some monic polynomial f(x) ∈ B.
Suppose dimR = d. If q = pB then it is generated by d elements, and ht q = ht p = d. On the
other hand if q = pB+ (f(x)) then ht q = ht p+ 1 = d+ 1 and it is generated by d+ 1 elements.
Hence, in both cases Bq is regular. �

Remark. The previous proposition shows that, in particular any polynomial ring k[x1, . . . , xn]
over a field k is regular. Similarly if D is a Dedekind domain, for instance D = Z, then
D[x1, . . . , xn] is a regular ring.

The next exercise gives an extremely useful and convenient method of checking whether a local
ring is regular.

Exercise (iv) (Jacobian criterion). Let K be a field and k[x1, . . . , xn] a polynomial ring. Let
f1, . . . , fk ∈ k[x1, . . . , xn] and R = k[x1, . . . , xn]/(f1, . . . , fk). Suppose m is a maximal ideal of
R such that k = R/m and A = Rm the localisation at m. Consider the matrix

M =

((
∂fi
∂xj

))
where ∂fi

∂xj
is the image of ∂fi

∂xj
in R/m. Then show that R is regular if and only if

rank(M) = n− dimA.

(Hint. Show that dimk m/m
2 = n− rank(M).)


