Please answer all questions. Total time 2 hrs, total points 60.

- 1. Let R be a ring and Γ a finite group of automorphisms of R. Denote the fixed ring of Γ by $R^{\Gamma} = \{a \in R \mid \gamma(a) = a \text{ for all } \gamma \in \Gamma\}$. Show that R is integral over R^{Γ} . (10)
- 2. An integral domain R is called normal if it is integrally closed in its field of fractions Q(R). Show that R is normal if and only if $R_{\mathfrak{p}}$ is normal for all prime ideals $\mathfrak{p} \subset R$. (10)
- 3. Prove or disprove the following statements:
 - (a) The integral closure of \mathbb{Z} in $\mathbb{Q}[i]$ is $\mathbb{Z}[i]$. (5)

(b) The ring
$$R = \frac{\mathbb{Q}[x, y]}{(y^2 - x^3)}$$
 is a normal integral domain. (5)

- 4. Let $\phi : A \to B$ be a ring homomorphism. For any ideal \mathfrak{a} of A we denote the extended ideal $\phi(\mathfrak{a})B$ by \mathfrak{a}^e and for any ideal \mathfrak{b} of B we denote the contracted ideal $\phi^{-1}(\mathfrak{b})$ by \mathfrak{b}^c .
 - (a) If $\mathfrak{p} \subset R$ is a prime ideal such that $\mathfrak{p}^{ec} = \mathfrak{p}$ and $S = A \mathfrak{p}$ show that $\phi(S)$ is a multiplicatively closed subset of B, and $\phi(S) \cap \mathfrak{p}^{ec} = \emptyset$. (5)
 - (b) Show that a prime ideal \mathfrak{p} of A is the contraction of a prime ideal of B if and only if $\mathfrak{p}^{ec} = \mathfrak{p}.$ (5)
- 5. Let R be a ring, a multiplicatively closed subset $S \subset R$ is called saturated if for any $a, b \in R$, $ab \in S \Rightarrow a$ and $b \in S$. Let $S \subset R$ be multiplicatively closed, show that S is saturated if and only if R - S is a union of prime ideals of R. (10)
- 6. Let $S \subset R$ be multiplicatively closed and let \widetilde{S} be the set of all $a \in R$ such that $ab \in S$ for some $b \in R$. Show that \widetilde{S} is the smallest saturated multiplicatively closed set containing Sand $S^{-1}R \cong (\widetilde{S})^{-1}R$. (10)