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1. DIRECT LiMITS

Definition 1: A directed set I is a set with a partial order < such that for every i,j € I there
is k € I such that i < k and 7 < k. Let R be a ring. A directed system of R-modules indexed
by I is a collection of R modules {M; | i € I} with a R module homomorphisms ; j : M; — M;
for each pair i, j € I where ¢ < j, such that

(i) for any i € I, p;; = Idyy, and
(ii) forany i < j < kin I, p;jo ik = ik

We shall denote a directed system by a tuple (M;, p; ;).

The direct limit of a directed system is defined using a universal property. It exists and is unique
up to a unique isomorphism.

Theorem 2 (Direct limits). Let {M; | i € I} be a directed system of R modules then there
exists an R module M with the following properties:

(i) There are R module homomorphisms p; : M; — M for each i € I, satisfying p; = pj o ;. j
whenever ¢ < j.

(ii) If there is an R module N such that there are R module homomorphisms v; : M; — N for
each 7 and v; = vjopu; j whenever ¢ < j; then there exists a unique R module homomorphism
v: M — N, such that v; = v o ;.

The module M is unique in the sense that if there is any other R module M’ satisfying properties

(i) and (ii) then there is a unique R module isomorphism p’ : M — M’. This module M is
called the direct limit of the system {M; | i € I} and denoted by M = lim M;.
—

Proof. The conditions of the theorem can be summed up by the following commutative diagram.

M; y
Y g
Wi, j M y> N
4 l/j
M;

Let
M =P M,
iel
and ) : M; — M’ be the map such that p(x) has x at the i-th place and 0 everywhere else.
Let K be the submodule generated by the set {y;(w;) — 1 (pi (%)) | i € I, »; € M;}. Let
M = M'/K and I : M" — K be the quotient map also let p; = IT o .

Clearly M satisfies property (i) of the theorem. If there is an R module N as in property (ii)
then there is a R module homomorphism v/ : M’ — N given by v/'((z;)icr) = >,y Vi(®i).
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Since v; = vj o p; j we see that K is contained in the kernel of v/ and we get an induced map
v: M — N. In fact this is the unique map which satisfies v; = v o y;. O

Exercise (i). Prove the uniqueness part of Theorem

Exercise (ii). If I has a largest element i, that is i < ig for all i € I then show that p;, :

M;, — lim M; is an isomorphism.
—

Remark. Any element of M’ is of the form i} (2;,) + ...+ pj (;,) for finitely many elements
i1,...,1, € I. Since II : M’ — M is surjective any x € M is of the form

L= iy (xll) ..ot :ulk(xlk)
Choose j € I such that iy,...,4; < j, and let y; = 4, j (@) + ...+ piy, j(25,). Then x = p;(y;).
Thus any element of M is of the form p;(y;) for some i € I and y; € M.

Moreover suppose f;(x;) = 0, then ) (x;) € K hence for some j > i, p; j(x;) = 0.

Exercise (iii). Let N be an R module and {M,, | n € N} a collection of submodules of N such
that M,, C M, for any integer n. Then {M,, | n € N} forms a directed system of R modules
with p; ; : M; — M; being the inclusion map whenever ¢ < j. Show that

lim M,, = U M,,.
neN

Definition 3 (Homomorphism of directed systems): Let A = (N, v43;), and A4 = (M;, p1i 5)
be two directed systems of R modules indexed by I. A homomorphism ® : .4 — .# consists of
R module homomorphisms ¢; : N; — M; such that p; ; o ¢; = ¢j ov;; for each i < j.

The definition basically says that the following diagram commutes.

Vig
Nl‘ E— Nj

ol e

i,
Ml’ —_— Mj

Let
N =1lmN; and M =lim M,
— —

be the direct limits of the two directed systems of the previous definition. Then we have maps
vi : Ny = N and p; : M; — M. Moreover for each ¢ € I we have u; o ¢; : N; — M which
by the universal property of the direct limit gives rise to a unique R module homomorphism
¢: N — M. Moreover we have ¢ o v; = p; o ¢;.
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Let & = (P;, m; ;) be another directed systems of R modules. A sequence of homomorphisms of
directed systems

-2y Y. p

is called exact if for each i € I, M; L N; L P; is exact.

Proposition 4. With the above notation if .# 2 Y P is exact then the induced
sequence on direct limits

lim M; i> lim IV; 2, lim P;
— — —

is also exact.

Proof. Let = € li_r)nNi such that ¢ (xz) = 0. There is some i € I and z; € N; such that

r = vi(z;). We must have m;(¢;(z;)) = ¥(vi(x;)) = 0. Thus there exists j > ¢ such that
i (Yi(x;)) = 0 = (v j(x;)) = 0. By assumption we have y; € M; such that ¢;(y;) = v; j(z;).
Thus ¢(1;(y;)) = vj(¢;(y;)) = vj(vi(xi)) = vi(z;) = . This completes the proof. O

Example 1 ( ). Let X be a hausdorff topological space and for
every U C X open C(U) be the set of continuous functions U — R. Let z € X, then the
set I ={U C X | U open, x € U} is a directed set with the partial order U < V if U D V.
Whenever U D V', we have the map pyy : C(U) — C(V') given by restriction of functions. Thus

{C(U)|U C X open, x € U}
is a directed system of R modules (in fact rings). The direct limit

C, = lim C(U)
H

is called the stalk of continuous functions to R at z. Its elements are called germs of continuous
functions at z. This is in fact a ring. The details are left as an exercise.

Exercise (iv) ( ). There is another way of constructing the direct limit. Let
(M, 115, 5) be a directed system of R modules indexed by I. Let

M = <|_| ]\/fi> / ~ where x; ~ p; j(z;) for any i € I and z; € M;.

i€l

The set M has an R module structure.

a. If z; € M; and z; € M; then let 4,j < k and define [x;] + [z;] = [pi x(2:) + pjx(x;)]. Show
that this is well defined and that M = lim M;.
—
b. If M; are R algebras and p; are R algebra homomorphisms then M has the structure of an
R algebra. Show that the multiplication [x;][x;] = [1ix(2:)pjk(x;)] is well defined. Hence
this gives a way of constructing direct limit of rings.

2. INVERSE LIMITS

An inverse system is a directed system with arrows reversed.
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Definition 5 (Inverse system): Let I be a directed set, a collection of R modules {M; |i € I}
indexed by [ is an inverse system if for every ¢ < j in I, there is an R module homomorphism
i« Mj — M;. Moreover, there homomorphisms satisfy:

(i) pi; =1Id for all i € I and
(i) pori = pjq o pxy for any i < j < k.

We denote the inverse system as a tuple (M;, p15,;). The inverse system is called surjective if p;
is surjective for all i < j.

The inverse limit is defined exactly like a direct limit with the arrows reversed. The construction
and properties are quite different though.

Theorem 6 (Inverse limit). Let {M; | ¢ € I} be a inverse system of R modules. Then there
exists an R module M with the following properties:

(i) There are R module homomorphisms p; : M — M; for each i € I, such that for i < j,
i = [1,i © fj-

(ii) If N is an R module with homomorphisms v; : M — M; for each i € I, such that for
i < j, v; = jj; ovj then there is a unique R module homomorphism v : N — M satisfying
Vi = u; O V.

If M’ is another R module with properties (i) and (ii) then there is a unique isomorphism
p' i M — M. This module M is called the inverse limit of the inverse system {M; | i € I}and
denoted by
M = lim M;.
—

Proof. Properties (i) and (ii) of the theorem can be summed up in the following commutative
diagram.

M;
Vi
2
N Do Yo s M i
I/j k
M;
Let
M = {(CL‘Z) € HMZ x; = pji(x;) for all i < ]} )
el
There are projection maps u; : M — M; and it is easy to check that this module satisfies all the
properties mentioned in the theorem. [l

Exercise (v). Complete the proof of Theorem [6]

Exercise (vi). If I has a largest element g, that is i < iy for all ¢ € I then show that u;, :
lim M; — M;, is an isomorphism.
—
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Exercise (vii). Let (M, ftmn) be an inverse system indexed by the set of positive integers N.
Let M' = [],en My and d : M" — M’ be
d(((ll, ceey Qpy e )) = ((ll - M2,1((l2)7 ceey O — ,Un,+1,n(an,+1)a .. ) = (“n - Hn,+l,n(a'n+1))nEN-
Show that lim M,, = Ker(d).
(7

Remark. 1t is easy to see that if we have an inverse system of rings the previous construction of
inverse limit actually produces a ring.

Example 2 ( ). Let a C R be an ideal of R. Consider the inverse system of rings
{R, = R/a" | n € N}.
We have the quotient maps R/a™ — R/a™ for m < n. The inverse limit
lim R/a"
—
is called the a - adic completion of R. We shall see more on this in the next lecture.
Example 3. Let R = k[z] the polynomial ring in one variable over a field k¥ and a = (x) as
in the previous example. Then the inverse limit lim R/a™ is isomorphic to k[[z]]. There are
(—

quotient maps p, : k[[z]] — k[z]/(2™) for every n € N. If there is any ring N with maps
vn : N — k[z]/(z™) satisfying property (ii) of Theorem @ then clearly we have a unique ring
homomorphism v : N — k[[z]] such that v; = p; o v. Hence by uniqueness k|[[x]] is isomorphic
to the inverse limit.

Example 4 ( ). A profinite groups is an inverse limit of a inverse system of finite
abelian groups. They occur in Galois theory as Galois groups of infinite Galois extensions.

If # = (M;,pji), & = (Ni,vj;) are inverse systems of R modules indexed by I, then a
® . A4 — N is a collection of homomorphisms ¢; : M; — N;
such that the following diagram is commutes for any i < j.

Hji
— M,

|

Gyt
Nj E— Nz

In this case there is a induced homomorphism of R modules ¢ : lim N; — lim M; obtained as
— —

follows: For each i € I we have a map ¢u; : lim M; — M; and these maps satisfy property (ii)
—

of Theorem [ hence we get a unique map ¢ as required and the following diagram commutes.

H

/| J@.

—

Let & = (P;, ;) be another inverse system of R modules indexed by I and ¥ : A4 — & a

homomorphism of inverse systems consisting of maps (1; | ¢ € I). The sequence
VAV

is called exact if M; & N; ﬂ> P; is exact for each ¢ € I. In this case the induced sequence of

the inverse limits may not be exact as in the case of direct limits. However we have to following
partial result.



Proposition 7 ( ). Let the indexing set be N. If 0 — .# N
& — 0 is an exact sequence of inverse systems of R modules indexed by N, then

. P . P,
0 — lim M,, = lim N,, — lim P,
— — —
is exact. Moreover, if .Z is a surjective system then
. ¢ . Yoo,
0 — lim M,, = lim N,, — lim P, — 0
— — —

is also exact.

Proof. Let M’ = 1], cy My, and dpp = M’ — M’ be

dM’((ala ceeyQny . )) = (al - M2,1(a2)7 ceeyQp — Hn+1,n(an+1), .. ) = (an - Mn+1,n(an+1))n€N

as in Exercise (vil). Similarly define N’,dy: and P’,dpr. Then we have a commutative diagram

O M/ H¢TL N, Hwn P, 0
J/dpl J/dp/ J/dp/
0 M s N/ P 0
[1én [T¥n

where the rows are exact. Hence by snake’s lemma we have an exact sequence
0 — Ker(dy) — Ker(dy/) — Ker(dp/) — Coker(dys ) — Coker(dy) — Coker(dp:) — 0.
This proves the first part using the isomorphism lim M,, = Ker(d,;/) of Exercise . Moreover
—

if # is a surjective system them dj; is surjective so Coker(dy;) = 0 which completes the
proof. O

Remark. Most of the inverse systems that we shall encounter will be surjective.
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