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1. Direct Limits

Definition 1: A directed set I is a set with a partial order ≤ such that for every i, j ∈ I there
is k ∈ I such that i ≤ k and j ≤ k. Let R be a ring. A directed system of R-modules indexed
by I is a collection of R modules {Mi | i ∈ I} with a R module homomorphisms µi,j : Mi →Mj

for each pair i, j ∈ I where i ≤ j, such that

(i) for any i ∈ I, µi,i = IdMi and
(ii) for any i ≤ j ≤ k in I, µi,j ◦ µj,k = µi,k.

We shall denote a directed system by a tuple (Mi, µi,j).

The direct limit of a directed system is defined using a universal property. It exists and is unique
up to a unique isomorphism.

Theorem 2 (Direct limits). Let {Mi | i ∈ I} be a directed system of R modules then there
exists an R module M with the following properties:

(i) There are R module homomorphisms µi : Mi →M for each i ∈ I, satisfying µi = µj ◦ µi,j
whenever i < j.

(ii) If there is an R module N such that there are R module homomorphisms νi : Mi → N for
each i and νi = νj◦µi,j whenever i < j; then there exists a unique R module homomorphism
ν : M → N , such that νi = ν ◦ µi.

The module M is unique in the sense that if there is any other R module M ′ satisfying properties
(i) and (ii) then there is a unique R module isomorphism µ′ : M → M ′. This module M is
called the direct limit of the system {Mi | i ∈ I} and denoted by M = lim

−→
Mi.

Proof. The conditions of the theorem can be summed up by the following commutative diagram.

Mi

µi,j

��

µi

!!

νi

''
M

ν // N

Mj

µj

==

νj

88

Let

M ′ =
⊕
i∈I

Mi

and µ′i : Mi → M ′ be the map such that µ′i(x) has x at the i-th place and 0 everywhere else.
Let K be the submodule generated by the set {µ′i(xi) − µ′j(µi,j(xi)) | i ∈ I, xi ∈ Mi}. Let

M = M ′/K and Π : M ′ → K be the quotient map also let µi = Π ◦ µ′i.

Clearly M satisfies property (i) of the theorem. If there is an R module N as in property (ii)
then there is a R module homomorphism ν ′ : M ′ → N given by ν ′((xi)i∈I) =

∑
i∈I νi(xi).
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Since νi = νj ◦ µi,j we see that K is contained in the kernel of ν ′ and we get an induced map
ν : M → N . In fact this is the unique map which satisfies νi = ν ◦ µi. �

Exercise (i). Prove the uniqueness part of Theorem 2.

Exercise (ii). If I has a largest element i0, that is i ≤ i0 for all i ∈ I then show that µi0 :
Mi0 → lim

−→
Mi is an isomorphism.

Remark. Any element of M ′ is of the form µ′i1(xi1) + . . . + µ′ik(xik) for finitely many elements

i1, . . . , ik ∈ I. Since Π : M ′ →M is surjective any x ∈M is of the form

x = µi1(xi1) + . . .+ µik(xik).

Choose j ∈ I such that i1, . . . , ik ≤ j, and let yj = µi1,j(xi1) + . . .+µik,j(xik). Then x = µj(yj).
Thus any element of M is of the form µi(yi) for some i ∈ I and yi ∈Mi.

Moreover suppose µi(xi) = 0, then µ′i(xi) ∈ K hence for some j ≥ i, µi,j(xi) = 0.

Exercise (iii). Let N be an R module and {Mn | n ∈ N} a collection of submodules of N such
that Mn ⊂ Mn+1 for any integer n. Then {Mn | n ∈ N} forms a directed system of R modules
with µi,j : Mi →Mj being the inclusion map whenever i < j. Show that

lim
−→

Mn =
⋃
n∈N

Mn.

Definition 3 (Homomorphism of directed systems): Let N = (Ni, νi,j), and M = (Mi, µi,j)
be two directed systems of R modules indexed by I. A homomorphism Φ : N →M consists of
R module homomorphisms φi : Ni →Mi such that µi,j ◦ φi = φj ◦ νi,j for each i < j.

The definition basically says that the following diagram commutes.

Ni

νi,j
//

φi
��

Nj

φj
��

Mi

µi,j
// Mj

Let

N = lim
−→

Ni and M = lim
−→

Mi

be the direct limits of the two directed systems of the previous definition. Then we have maps
νi : Ni → N and µi : Mi → M . Moreover for each i ∈ I we have µi ◦ φi : Ni → M which
by the universal property of the direct limit gives rise to a unique R module homomorphism
φ : N →M . Moreover we have φ ◦ νi = µi ◦ φi.
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Let P = (Pi, πi,j) be another directed systems of R modules. A sequence of homomorphisms of
directed systems

M
Φ // N

Ψ //P

is called exact if for each i ∈ I, Mi
φi
// Ni

ψi
// Pi is exact.

Proposition 4. With the above notation if M
Φ // N

Ψ //P is exact then the induced
sequence on direct limits

lim
−→

Mi
φ−→ lim
−→

Ni
ψ−→ lim
−→

Pi

is also exact.

Proof. Let x ∈ lim
−→

Ni such that ψ(x) = 0. There is some i ∈ I and xi ∈ Ni such that

x = νi(xi). We must have πi(ψi(xi)) = ψ(νi(xi)) = 0. Thus there exists j > i such that
πi,j(ψi(xi)) = 0⇒ ψj(νi,j(xi)) = 0. By assumption we have yj ∈Mj such that φj(yj) = νi,j(xi).
Thus φ(µj(yj)) = νj(φj(yj)) = νj(νi,j(xi)) = νi(xi) = x. This completes the proof. �

Example 1 (Germs of continuous functions). Let X be a hausdorff topological space and for
every U ⊂ X open C(U) be the set of continuous functions U → R. Let x ∈ X, then the
set I = {U ⊂ X | U open, x ∈ U} is a directed set with the partial order U ≤ V if U ⊃ V .
Whenever U ⊃ V , we have the map ρU,V : C(U)→ C(V ) given by restriction of functions. Thus

{C(U) | U ⊂ X open, x ∈ U}

is a directed system of R modules (in fact rings). The direct limit

Cx = lim
−→
C(U)

is called the stalk of continuous functions to R at x. Its elements are called germs of continuous
functions at x. This is in fact a ring. The details are left as an exercise.

Exercise (iv) (Direct limit of rings). There is another way of constructing the direct limit. Let
(Mi, µi,j) be a directed system of R modules indexed by I. Let

M =

(⊔
i∈I

Mi

)
/ ∼ where xi ∼ µi,j(xi) for any i ∈ I and xi ∈Mi.

The set M has an R module structure.

a. If xi ∈ Mi and xj ∈ Mj then let i, j ≤ k and define [xi] + [xj ] = [µi,k(xi) + µj,k(xj)]. Show
that this is well defined and that M ∼= lim

−→
Mi.

b. If Mi are R algebras and µj,k are R algebra homomorphisms then M has the structure of an
R algebra. Show that the multiplication [xi][xj ] = [µi,k(xi)µj,k(xj)] is well defined. Hence
this gives a way of constructing direct limit of rings.

2. Inverse Limits

An inverse system is a directed system with arrows reversed.
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Definition 5 (Inverse system): Let I be a directed set, a collection of R modules {Mi | i ∈ I}
indexed by I is an inverse system if for every i < j in I, there is an R module homomorphism
µj,i : Mj →Mi. Moreover, there homomorphisms satisfy:

(i) µi,i = Id for all i ∈ I and
(ii) µk,i = µj,i ◦ µk,j for any i ≤ j ≤ k.

We denote the inverse system as a tuple (Mi, µj,i). The inverse system is called surjective if µj,i
is surjective for all i ≤ j.

The inverse limit is defined exactly like a direct limit with the arrows reversed. The construction
and properties are quite different though.

Theorem 6 (Inverse limit). Let {Mi | i ∈ I} be a inverse system of R modules. Then there
exists an R module M with the following properties:

(i) There are R module homomorphisms µi : M → Mi for each i ∈ I, such that for i < j,
µi = µj,i ◦ µj .

(ii) If N is an R module with homomorphisms νi : M → Mi for each i ∈ I, such that for
i < j, νi = µj,i ◦ νj then there is a unique R module homomorphism ν : N →M satisfying
νi = µi ◦ ν.

If M ′ is another R module with properties (i) and (ii) then there is a unique isomorphism
µ′ : M ′ → M . This module M is called the inverse limit of the inverse system {Mi | i ∈ I}and
denoted by

M = lim
←−

Mi.

Proof. Properties (i) and (ii) of the theorem can be summed up in the following commutative
diagram.

Mi

N

νi
22

ν //

νj
,,

M

µi
==

µj
!!

Mj

µj,i

OO

Let

M =

{
(xi) ∈

∏
i∈I

Mi

∣∣∣ xi = µj,i(xj) for all i ≤ j

}
.

There are projection maps µi : M →Mi and it is easy to check that this module satisfies all the
properties mentioned in the theorem. �

Exercise (v). Complete the proof of Theorem 6.

Exercise (vi). If I has a largest element i0, that is i ≤ i0 for all i ∈ I then show that µi0 :
lim
←−

Mi →Mi0 is an isomorphism.
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Exercise (vii). Let (Mn, µm,n) be an inverse system indexed by the set of positive integers N.
Let M ′ =

∏
n∈NMn and d : M ′ →M ′ be

d((a1, . . . , an, . . .)) = (a1 − µ2,1(a2), . . . , an − µn+1,n(an+1), . . .) = (an − µn+1,n(an+1))n∈N.

Show that lim
←−

Mn
∼= Ker(d).

Remark. It is easy to see that if we have an inverse system of rings the previous construction of
inverse limit actually produces a ring.

Example 2 (Completion). Let a ⊂ R be an ideal of R. Consider the inverse system of rings

{Rn = R/an | n ∈ N}.
We have the quotient maps R/an → R/am for m ≤ n. The inverse limit

lim
←−

R/an

is called the a - adic completion of R. We shall see more on this in the next lecture.

Example 3. Let R = k[x] the polynomial ring in one variable over a field k and a = (x) as
in the previous example. Then the inverse limit lim

←−
R/an is isomorphic to k[[x]]. There are

quotient maps µn : k[[x]] → k[x]/(xn) for every n ∈ N. If there is any ring N with maps
νn : N → k[x]/(xn) satisfying property (ii) of Theorem 6, then clearly we have a unique ring
homomorphism ν : N → k[[x]] such that νi = µi ◦ ν. Hence by uniqueness k[[x]] is isomorphic
to the inverse limit.

Example 4 (Profinite groups). A profinite groups is an inverse limit of a inverse system of finite
abelian groups. They occur in Galois theory as Galois groups of infinite Galois extensions.

If M = (Mi, µj,i), N = (Ni, νj,i) are inverse systems of R modules indexed by I, then a
homomorphism of inverse systems Φ : M → N is a collection of homomorphisms φi : Mi → Ni

such that the following diagram is commutes for any i ≤ j.

Mj

µj,i
//

φj
��

Mi

φi
��

Nj

νj,i
// Ni

In this case there is a induced homomorphism of R modules φ : lim
←−

Ni → lim
←−

Mi obtained as

follows: For each i ∈ I we have a map φµi : lim
←−

Mi → Mi and these maps satisfy property (ii)

of Theorem 6, hence we get a unique map φ as required and the following diagram commutes.

lim
←−

Mi
µi

//

φ

��

Mi

φi

��

lim
←−

Ni
νi // Ni

Let P = (Pi, πj,i) be another inverse system of R modules indexed by I and Ψ : N → P a
homomorphism of inverse systems consisting of maps (ψi | i ∈ I). The sequence

M
Φ−→ N

Ψ−→P

is called exact if Mi
φi−→ Ni

ψi−→ Pi is exact for each i ∈ I. In this case the induced sequence of
the inverse limits may not be exact as in the case of direct limits. However we have to following
partial result.
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Proposition 7 (Exactness under inverse limit). Let the indexing set be N. If 0→M
Φ−→ N

Ψ−→
P → 0 is an exact sequence of inverse systems of R modules indexed by N, then

0→ lim
←−

Mn
φ−→ lim
←−

Nn
ψ−→ lim
←−

Pn

is exact. Moreover, if M is a surjective system then

0→ lim
←−

Mn
φ−→ lim
←−

Nn
ψ−→ lim
←−

Pn → 0

is also exact.

Proof. Let M ′ =
∏
n∈NMn and dM ′ : M ′ →M ′ be

dM ′((a1, . . . , an, . . .)) = (a1 − µ2,1(a2), . . . , an − µn+1,n(an+1), . . .) = (an − µn+1,n(an+1))n∈N

as in Exercise (vii). Similarly define N ′, dN ′ and P ′, dP ′ . Then we have a commutative diagram

0 // M ′
∏
φn
//

dP ′
��

N ′
∏
ψn
//

dP ′
��

P ′ //

dP ′
��

0

0 // M ′ ∏
φn

// N ′ ∏
ψn

// P ′ // 0

where the rows are exact. Hence by snake’s lemma we have an exact sequence

0→ Ker(dM ′)→ Ker(dN ′)→ Ker(dP ′)→ Coker(dM ′)→ Coker(dN ′)→ Coker(dP ′)→ 0.

This proves the first part using the isomorphism lim
←−

Mn
∼= Ker(dM ′) of Exercise (vii). Moreover

if M is a surjective system them dM ′ is surjective so Coker(dM ′) = 0 which completes the
proof. �

Remark. Most of the inverse systems that we shall encounter will be surjective.
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