
Commutative Algebra Hilbert Polynomial June 16, 2020

1. Additive functions

Let R be a ring. We shall call, a collection M of R modules, an abelian subcategory if,
for any M,N ∈ M, M ⊕ N ∈ M and for any homomorphism of R modules f : M → N ,
ker(f), coker(f) ∈M. This is not a standard definition but we shall use this as terminology for
this section. The collection of finite dimensional vector spaces over a field k is an example of an
abelian subcategory of vector spaces over k.

Recall the definition of an additive function.

Definition 1: Let A be a ring and M an abelian subcategory of A modules. A function
λ :M→ Z is called additive if for any exact sequence 0→M ′ →M →M ′′ → 0 of modules in
M we have λ(M) = λ(M ′) + λ(M ′′).

We showed in class that if we have an arbitrary exact sequence of modules in M

(1) 0→M1 → · · · →Mn → 0

then the additive function λ satisfies
n∑
i=1

(−1)iλ(Mi) = 0.

The proof uses the fact that we can break up the exact sequence (1) into short exact sequences
using kernels and cokernels and that kernels and cokernels belong to M.

If A is a field then dimension is an example of an additive function on finite dimensional A
vector spaces.

Definition 2: Let M be an R module. A chain of submodules is a finite sequence (M0, . . . ,Mn)
of submodules of M such that

M = M0 ⊃M1 ⊃ . . . ⊃Mn = 0(strict inclusions).

The length of the chain is the number n.

A chain (Mi)
n
1 is called maximal if for any i = 0, . . . , n−1, there is no submodule M ′i of M such

that Mi ⊃M ′i ⊃Mi+1 and the inclusions are strict.

Remark. Note that ifM = M0 ⊃ . . . ⊃Mn = 0 is a maximal chain inM then eachNi = Mi/Mi+1

is a simple module, that is the only submodules of Ni are 0 and Ni.

Proposition 3. Let M be an R module. Suppose that a maximal chain of submodules of M
has length n, then

(a) every maximal chain has length n,
(b) any chain which has length n is a maximal chain,
(c) every chain can be extended to a maximal chain.
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Proof. Let l(M) be the infimum of the lengths of all maximal chains of M . We set l(M) = ∞
if M has no maximal chain.

If N ⊂ M and M = M0 ⊃ . . . ⊃ Mn = 0 is a maximal chain of M . Then let Ni = Mi ∩ N ,
clearly Ni ⊃ Ni+1 and Ni/Ni+1 is a submodule of Mi/Mi+1 which is a simple module. Thus
either Ni/Ni+1 = 0 in which case Ni = Ni+1 or Ni/Ni+1 = Mi/Mi+1. Eliminating the repeated
terms we thus get a maximal chain of N which has length less than n. Thus l(N) ≤ l(M).
Moreover if l(N) = l(M) = n then Ni/Ni+1 = Mi/Mi+1 for each i, thus Nn−1 = Mn−1 implies
Nn−2 = Mn−2, proceeding in this way we get N = M .

Now suppose M = M0 ⊃ . . . ⊃Mk = 0 is a chain of length k of M . Then l(M) > l(M1) > . . . >
l(Mk) = 0. Thus l(M) ≥ k. So any chain of submodules of M has length at most l(M).

Thus the length of any maximal chain of M is at most l(M) but it must be equal to l(M) by
the definition of l(M). This proves part (a).

Now suppose there is a chain of M of length l(M), then it cannot be extended any more, hence
it is maximal. This proves part (b).

Finally if M = M0 ⊃ . . . ⊃Mk = 0 is a chain of length k < l(M), then it is not maximal. Thus
new terms can be inserted in the chain until the length is l(M). �

Definition 4 (length): If an R module M has a maximal chain then it is called a module of
finite length. In that case the length of M is defined to be the length of any maximal chain of
M and denoted by l(M).

Exercise (i). Let R be a ring. Show that the modules of finite length over R is an abelian
subcategory of modules over R.

Proposition 5. The length is an additive function on the modules of finite length over a ring.

Proof. Let 0 → M ′
a−→ M

b−→ M ′′ → 0 be an exact sequence of finite length R modules. Let
M = M0 ⊃ . . . ⊃Mn = 0 be a maximal chain of M . Let M ′i = a−1(Mi) and M ′′i = b(Mi). Then
we have an exact sequence

0→M ′i/M
′
i+1 →Mi/Mi+1 →M ′′i /M

′′
i+1 → 0.

Since Mi/Mi+1 is simple exactly one of the following is true: M ′i/M
′
i+1
∼= Mi/Mi+1 ⇒ M ′′i =

M ′′i+1 or M ′′i /M
′′
i+1
∼= Mi/Mi+1 ⇒M ′i = M ′i+1.

Let

S = {i | 0 ≤ i < n, M ′i 6= M ′i+1}

and

T = {i | 0 ≤ i < n, M ′′i 6= M ′′i+1}

then S ∩ T = {0, . . . , n − 1}. If s0 < . . . < sk are the elements of S then M ′ = M ′s0 ⊃ . . . ⊃
Msk+1 = 0 is a maximal chain for M ′, thus l(M ′) = |S|. Similarly l(M ′′) = |T |. This completes
the proof. �
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If R is a field the finite length R modules are precisely the finite dimensional vector spaces and
the length then coincides with the dimension.

Exercise (ii). Show that a module has finite length if and only if it is both noetherian and
artinian.

Remark. Note that a ring R (for example R = Z) which is not Artinian is not a finite length
module over itself by Exercise (ii), however it is of course a finitely generated module over itself.
On the other hand if an R module is finite length then it is noetherian hence finitely generated.
Hence finite length is stronger than finitely generated.

Exercise (iii). For a ring R, show that any finitely generated module is a module of finite
length if and only if R is artinian.

2. Hilbert Polynomial

Let A be a noetherian graded ring. Then we have seen previously that A0 is noetherian and A
is a finitely generated A0 algebra. Choose homegeneous generators x1, . . . , xk with xi ∈ Asi .

Now if M is a graded A module which is finitely generated generated then again we may choose
homogeneous generators m1, . . . ,ml with mi ∈Mti . If m ∈Mn then

m =
l∑

i=1

fi(x1, . . . , xs)mi where fi ∈ An−ti .

The element fi(x1, . . . , xs) is thus a homogeneous polynomial in the generators of A which is
not necessarily unique. It can thus be seen that the finite set{

xa11 · · ·x
ak
k mj | 1 ≤ j ≤ l,

k∑
1

ai = n− tj , ai ≥ 0

}
generate Mn as an A0 module. Hence all the Mn are finitely generated modules over A0.

Let us now fix a noetherian graded ring R and an additive function λ on the collection of finitely
generated A0 modules.

Remark. Note that the collection of finitely generated A0 modules may not in general be an
abelian subcategory of modules over A0 because kernels may fail to be finitely generated. How-
ever is true when A0 is noetherian, since submodules and quotients of finitely generated modules
are again finitely generated for a noetherian ring.

Definition 6: Let M be a graded A module. Then the Poincaré series of M with respect to λ
is the power series

Pλ(M) =
∞∑
n=0

λ(M)tn ∈ Z[[t]].
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Exercise (iv). If 0→M ′ →M →M ′′ → 0 is an exact sequence of

Example 1. Consider the polynomial ring in k variables A = k[x1, . . . , xk] over a field F and let

M = A. Here A0 is a field and let us take λ to be the dimension, then dimAn =

(
n+ k − 1

k − 1

)
.

Thus

Pλ(A) =

∞∑
n=0

(
n+ k − 1

k − 1

)
tn =

1

(1− t)k
.

An ideal I ⊂ A is called a homogeneous ideal if for any a ∈ I the homogeneous components of
a also belong to I. In this case

I =

∞⊕
n=0

In, where In = I ∩An.

It can be easily show that an ideal is homogeneous if it can be generated by homogeneous
elements. Thus

(
x21, x

3
2

)
is a homogeneous ideal but

(
x21 + x32

)
is not.

If I ⊂ A is a homogeneous ideal then it is a graded A module and so is A/I. Moreover we have
an exact sequence of graded modules 0→ I → R→ R/I → 0 which implies

Pλ(R) = Pλ(I) + Pλ(R/I).

Now for example if we take I = (xk) then R/I ∼= F [x1, . . . , xk−1] and we have

Pλ(I) =
1

(1− t)k
− 1

(1− t)k−1
=

t

(1− t)k
.

Remark. Consider the power series ring R[[t]] over a ring R. Recall that are precisely the elements

f(t) = a0 + a1t+ a2t
2 + . . . ∈ R[[t]]

is a unit if and only if a0 is a unit in R. Thus the units of Z[[t]] are precisely the power series
which start with 1 or −1. As an example (1− t)−1 = 1 + t+ t2 + . . ..

Theorem 7 (Hilbert, Serre). Let A be a noetherian graded ring generated as an algebra over
A0 by homogeneous elements x1, . . . , xs with xi ∈ Aki and let λ be an additive function on the
finitely generated A0 modules. For any graded A module M , the Poincaré series has the form

Pλ(M) =
f(t)

(1− tk1) · · · (1− tks)
where f(t) ∈ Z[t] is a polynomial.

Proof. We shall prove this by induction on s the number of generators of A as an A0 algebra.

If s0, we have A = A0 and An = 0 for n > 0. Since M is then a finitely generated A0 module
we must have Mn 6= 0 for only finitely many n ≥ 0. Hence, Pλ(M) is a polynomial, proving the
base case.

Now assume s > 0 and that the result is true for s− 1. Then consider the A module homomor-
phism φ : M →M given by multiplication by xs. Then K = ker(φ) and L = coker(φ) are both
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graded modules A modules and we have an exact sequence of A0 modules

0→ Kn →Mn
×xs−−→Mn+ks → Ln+ks → 0.

Thus
λ(Mn+ks)− λ(Mn) = λ(Ln+ks)− λ(Kn)

Now multiplying this equation by tn+ks and summing over n we get
∞∑

n=ks

tnλ(Mn)− tks
∞∑
n=0

λ(Mn) =
∞∑

n=ks

tnλ(Ln)− tks
∞∑
n=0

tnλ(Kn),

which yields
(1− tks)Pλ(M) = Pλ(L)− Pλ(K) + g(t)

where g(t) is a polynomial.

The ideal (xs) annihilates both K and L hence they are both A′ = A/(xs) graded modules.
Clearly A′0 = A0 and A′ is generated over A0 by x1, . . . , xs−1, hence by assumption the result is
true for K and L, hence it is also true form M . �

Definition 8: Let A be a noetherian graded ring, λ an additive function on finitely generated
A0 modules and M a finitely generated graded A module. The the Hilbert dimension of M with
respect to λ, which we shall denote by dHilb,λ(M) is defined to be the order of the pole of Pλ(M)
at t = 1.

The following corollary is quite useful.

Corollary 9. With the notation from Theorem 7 if ki = 1 for all i = 1, . . . , s, then there is an
integer N ≥ 0 and a polynomial HM,λ(t) ∈ Q[t] such that for n > N

λ(Mn) = HM,λ(n).

The polynomial degHM,λ has degree dHilb,λ(M)− 1 and is called the Hilbert Polynomial of M .

Proof. By Theorem 7 we have

Pλ(M) =
f(t)

(1− t)s
If d = dHilb,λ(M) then by cancelling common factors we may assume s = d and f is not divisible
by (1− t).

Now if f(t) = a0 + a1t+ . . .+ aN t
N then since

(1− t)d =
∞∑
n=0

(
n+ d− 1

d− 1

)
tn

we have

λ(Mn) =

N∑
k=1

ak

(
n− k + d− 1

d− 1

)
.

Hence

HM,λ(t) =

N∑
k=1

ak

(
t− k + d− 1

d− 1

)

is the coveted polynomial with leading term
(
∑N

k=1)

(d− 1)!
td−1. �
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Remark. A polynomial f(t) ∈ Q[t] such that f(n) is an integer for ever integer n may not have
integral coefficients. For example Pk(t) =

(
t
k

)
= 1

k! t(t− 1) · · · (t− k+ 1) is one such polynomial.
In fact the set of such polynomials inside Q[t] forms a subring which is a free abelian group with
integer basis {Pk(t) | k = 0, 1, . . .}.

Example 2. Let k be a field and λ = dim. The polynomial ring A = k[x1, . . . , xn] has Hilbert

dimension n and Hilbert polynomial

(
t+ n− 1

n− 1

)
. If I ⊂ A is a homogeneous ideal then

HI(t) +HA/I(t) =

(
t+ n− 1

n− 1

)
.

If I = (f) where f ∈ A is a polynomial of degree d then

dimk Im =

{
0 m < d,(
m−d+n−1

n−1
)

m ≥ d.

Hence HI(t) =

(
t− d+ n− 1

n− 1

)
and the Poincaré series of I is

P (I) =
∞∑
m=d

(
m− d+ n− 1

n− 1

)
tm = td

∞∑
m=0

(
m+ n− 1

n− 1

)
=

td

(1− t)n
.

Thus HR/I(t) =

(
t+ n− 1

n− 1

)
−
(
t− d+ n− 1

n− 1

)
and

P (R/I) = P (R)− P (I) =
1− td

(1− t)n
=

1 + t+ · · ·+ td−1

(1− t)n−1
.

Hence dHilb(R/I) = n− 1.

3. Hilbert Dimension of Local rings

Let A be a noetherian local ring with maximal ideal m. Consider the associated graded ring

B = Gm(A) =
∞⊕
n=0

mn/mn+1.

Then B0 = A/m is a field and Bn = mn/mn+1 are finite dimensional B0 vector spaces.

Definition 10: Let A be a noetherian local ring with maximal ideal m and residue field k = A/m.
Let λ(V ) = dimk(V ) for finite dimensional k vector spaces. Then we define the Hilbert dimension
of A to be

dHilb(A) = dHilb,λ(Gm(A)).

If q ⊂ A is an m-primary ideal, then since A is noetherian, it is easy to see that mn+1 ⊂ q ⊂ mn

for some n > 0 and thus A/q is an artinian local ring by Proposition 9 in the lecture on artinian
rings. Recall that by Exercise (iii), finitely generated A/q modules are thus of finite length. Let
λ be the additive function length on finitely generated A/q modules. Note that when q = m,
length coincides with dimension.

By Proposition 2 in the lecture on associated graded rings, B = Gq(A) is a noetherian ring and
thus a finitely generated algebra over B0 = A/q. If M is a finitely generated A module then
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(qnM)n≥0 is a stable q-filtration of M and the associated graded module

G(M) = qnM/qn+1M

is a finitely generated graded Gq(A) algebra. Thus each qnM/qn+1M is a finitely generated A/q
algebra.

We want to show that dHilb(A) = dHilb,λ(Gm(A)) = dHilb,λ(Gq(A)).

Proposition 11. Let A be a noetherian local ring with maximal ideal m and m-primary ideal
q. Let M be a finitely generated A module. Then:

(a) The A module M/qnM has finite length ,
(b) There is a polynomial χMq (t) ∈ Q[t] and an integer N ≥ 0 such that for n > N ,

l(M/qnM) = χMq (n).

Moreover if s is the least number of generators of q then degχMq ≤ s.

Proof. Part (a): Since each qnM/qn+1M is finitely generated A module annihilated by q hence
it is a finitely generated module over the artinian ring A/q hence has finite length. Since
M/qnM ⊃ qM/qnM ⊃ . . . ⊃ qn−1M/qnM ⊃ 0 and the successive quotients are all of finite
length we can prove by induction that M/qnM is of finite length and

ln = l(M/qnM) = l(M/qM) + l(qM/q2M) + . . .+ l(qn−1M/qnM).

Part (b): Let x2, . . . , xs generate q, then the images xi ∈ q/q2 generate Gq(A) as a A/q algebra.
These generators are all homogeneous of degree 1, thus by Corollary 9, there is some integer
N ≥ 0 such that

l(qnM/qn+1M) = HGq(A)(n) for n ≥ N.

Moreover degHGq(A)(t) ≤ s− 1. Let HGq(A)(t) = a0 + a1t+ . . .+ as−1t
s−1 (we are not claiming

that as−1 6= 0). Now since

ln+1 − ln = HGq(A)(n), for n ≥ N

for any n ≥ N we have

ln = lN +HGq(A)(N) + . . .+HGq(A)(n− 1)

= r +

n−1∑
k=0

HGq(A)(k) (for some integer r)

= r + a0n+ a1

n−1∑
k=0

k + . . .+ as−1

n−1∑
k=0

ks−1.

The expression

χMq (n) = r + a0n+ a1

n−1∑
k=0

k + . . .+ as−1

n−1∑
k=0

ks−1

is a polynomial in n of degree at most s since as−1 may be 0 and l(M/qnM) = qM (n) for
n ≥ N . �
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Remark. For any positive integer k the sum of the k-th powers of the first n−1 positive integers
is a polynomial function of n of degree k + 1. This was shown by Bernoulli who also found the
polynomial explicitly:

1k + . . .+ nk =
1

k + 1

k∑
j=0

(
k + 1

j

)
Bjn

k+1−j ,

where Bj is the j-th Bernoulli number. See for instance https://www.isibang.ac.in/~sury/

bernoullizeta.pdf for a proof.

Definition 12: With the notation of Proposition 11 if M = A then χAq is called the characteristic
polynomial of q.

Corollary 13. Let A be a noetherian local ring with maximal ideal m and q is an m-primary
ideal. Then A/qn has finite length and there is a polynomial χAq ∈ Q[t] and an integer N ≥ 0
such that

l(A/qn) = χAq (n) for all n ≥ N.
Moreover if s is the least number of generators of q then degχAq ≤ s.

The next proposition says that the degree of χAq is the same for all m-primary ideals q and is
equal to the Hilbert dimension of A.

Proposition 14. With the notation as in Corollary 13 we have

degχAq = degχAm = dHilb(A).

Proof. We have m ⊃ q ⊃ mr for some r > 0, hence for all n > 0 mn ⊃ qn ⊃ mrn ⇒ A/mn ⊂
A/qn ⊂ A/mrn. Hence χAm(n) ≤ χAq (n) ≤ χAm(rn) for all n sufficiently large.

Thus degχAm ≤ degχAq , however degχAm(rt) = degχAm since r is a constant, so degχAq ≤
deg degχAm.

From the proofs of Corollary 9 and Proposition 11 it is clear that degχAm = dHilb(Gm(A)) =
dHilb(A). �

Remark. For a slightly different treatment of Hilbert polynomials you refer to Algebraic Geom-
etry, by Robin Hartshorne, Chapter 1, Section 7.

https://www.isibang.ac.in/~sury/bernoullizeta.pdf
https://www.isibang.ac.in/~sury/bernoullizeta.pdf
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