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1. Graded Rings and Modules

Definition 1: A graded ring R is a ring with a collection of additive subgroups R0, R1, R2, . . .
such that R =

⊕∞
n=1Rn and RnRm ⊂ Rn+m for all n,m ≥ 0. An element a ∈ R is called

homogeneous if a ∈ Rn for some n.

A graded R module is an R module M with a collection of subgroups M0,M1,M2, . . . such that
M =

⊕∞
n=1Mn and RnMm ⊂Mn+m for all n,m ≥ 0. An element x ∈M is called homogeneous

if x ∈Mn for some n.

Remark. Note that R0 is a subring of R and contains the multiplicative identity. Moreover each
Rn is an R0 module. On the other hand R+ = R1 ⊕R2 ⊕ . . . is an ideal of R.

Any a ∈ R can be uniquely written as finite sum a =
∑

n an of homogeneous elements an ∈
Rn. Only finitely many an are non-zero and those non-zero an are called the homogeneous
components of a.

Similarly each Mn is an R0 module and any x ∈ M can be uniquely written as a finite sum of
homogeneous elements.

Any ring A can be regarded as a graded ring with the trivial grading A0 = A and An = 0 for
n ≥ 1.

Example 1. The polynomial ring R = A[x1, x2, . . . , xn] in n variables over a ring A is a graded
ring where Rn is the set of homogeneous polynomials of degree n.

However the power-series ring A[[x1, . . . , xn]] does not have any graded ring structure other than
the trivial one (see https://math.stackexchange.com/questions/2522568/is-the-formal-power-series-ring-a-graded-ring ).

Definition 2: Let R,S be graded rings then a φ : R → S is called a homomorphism of graded
rings is φ is a ring homomorphism such that φ(Rn) ⊂ Sn.

Similarly if M,N are R modules a map f : M → N is called a homomorphism of graded R
modules if f is a homomorphism of R modules such that f(Mn) ⊂ Nn.

Exercise (i). Show that if R is a graded integral domain then any unit must be homogeneous
of degree 0. However this is not true when R is not an integral domain.

Exercise (ii). If A is a graded local integral domain then show that A0 = A.

Proposition 3. The following statements are equivalent for a graded ring R:

(a) R is noetherian;
1
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(b) R0 is noetherian and R is a finitely generated R0 algebra.

Proof. For (a) ⇒ (b) first note that R0
∼= R/R+, hence R0 is noetherian. Moreover R+ is an

ideal of R, hence finitely generated over R. Let R+ = (x1, . . . , xk), then we may take xi to be
homogeneous of some degree mi > 0 (why?).

Let S = R0[x1, . . . , xn] be the subring of R generated over R0 by x1, . . . , xk. Clearly R0 ⊂ S.
Assume that Rm ⊂ S for all m < n. If r ∈ Rn, then r = a1x1+· · ·+akxk for some a1, . . . , ak ∈ R.
Since xk ∈ Rmi we must have ai ∈ Rn−mi ⊂ S. Thus r ∈ S and by induction R = S.

The converse (b) ⇒ (a) follows from the Hilbert basis theorem. �

Example 2. If A is any ring (not graded) and a ⊂ A is an ideal we can for a graded ring

A∗ =

∞⊕
n=0

an

since if x ∈ an and y ∈ am then xy ∈ am+n. Clearly A = (A∗)0 is a subring. If a is finitely
generated by x1, . . . , xn then A∗ is a finitely generated A algebra generated by x1, . . . , xn. It
may not be a polynomial algebra over those generators, for example when a is nilpotent an = 0
for all large n. If A is noetherian then by the previous proposition A∗ is also noetherian.

Similarly if M is an A module and (Mn)n≥0 is an a-filtration of M , that is amMn ⊂ Mn+m,
then we may form a graded A∗ module M∗ =

⊕
n=0Mn.

Proposition 4. Let A be a noetherian ring, a ⊂ R an ideal. Let M be a finitely generated R
module and (Mn)n≥0 be an a-filtration of M . Then the following are equivalent:

(a) (Mn)n≥0 is a stable a-filtration.
(b) M∗ is a finitely generated graded A∗ module.

Proof. For (a) ⇒ (b) note that there is n > 0 such that amMn = Mm+n. Thus

M∗ = M0 ⊕ · · · ⊕Mn ⊕ aMn ⊕ a2Mn ⊕ · · · ⊕ amMn ⊕ · · ·

and since M0, . . . ,Mn are finitely generated over A we can choose generators x1,i, . . . , xki,i of Mi

for 0 ≤ i ≤ n. These will generate M∗ over A∗.

Now for the converse let Qn = M0 ⊕ · · · ⊕Mn. Then Qn is a finitely generated A module but
not in general an A∗ module. The A∗ submodule of M∗ generated by Qn is

M∗n = M0 ⊕ · · · ⊕Mn ⊕ aMn ⊕ a2Mn ⊕ · · · ⊕ amMn ⊕ · · ·

Clearly this is finitely generated. Now M∗0 ⊂ M∗1 ⊂ · · · ⊂ M∗n ⊂ · · · is an ascending chain of
submodules of M∗ and M∗ = ∪nM∗n. Since A∗ is noetherian and M∗ is finitely generated this
chain must stabilise, that is there exists n > 0 such that

M∗ = M∗n = M∗n+1 = . . . .

This precisely means Mn+m = amMn. �

Using this we get the Artin-Rees lemma which will be the most useful result of this lecture.
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Lemma 5 (Artin-Rees). Let A be a noetherian ring, a ⊂ A an ideal, M an A module and
(Mn)n≥n a stable a-filtration of M . If K ⊂ M is a submodule, then (K ∩Mn)n≥0 is a stable
a-filtration of K.

Proof. Let Kn = K ∩Mn, then aKn ⊂ (aK)∩ (aMn+1) ⊂ K ∩Mn+1 = Kn+1, hence (Kn)n≥0 is
an a-filtration of K. Thus K∗ =

⊕∞
n=0Kn is a submodule of M∗. Since A∗ is noetherian and

M∗ is finitely generated so is K∗. Hence we obtain the result using the previous proposition. �

As an immediate corollary we have the following result which is usually called the Artin-Rees
lemma.

Corollary 6. Let A be a noetherian ring, a ⊂ A an ideal, M an A module. If K ⊂ M is a
submodule, then there exists an integer n0 > 0 such that

(an+n0M) ∩K = an((an0M) ∩K) for all n > 0.

Proof. Just take Mn = anM then (Mn)n≥0 is a stable a-filtration of M . Now use Lemma 5 to
infer that ((anM) ∩K)n≥0 is a stable a-filtration of K. �

Theorem 7. Let A be a noetherian ring, a ⊂ A an ideal, M an A module. Let K ⊂ M be a
submodule, then the a-adic topology on K is the same as the subspace topology induced by the
a-adic topology on M .

Proof. The induced topology on K of the a-adic topology on M is generated by the the filtration
((anM)∩K)n≥0. This is an stable a-filtration of K thus by Proposition 15 of Completions lecture
the result follows. �

Using Theorem 7 we obtain an exactness property of completion of modules.

Proposition 8. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of finitely generated
modules over a noetherian ring A. Let a ⊂ A be an ideal then the sequence of a-adic completions

0→ M̂ ′ → M̂ → M̂ ′′ → 0

is also exact.

Proof. The induced topology on M ′ by the a-adic topology on M is the same as the a-adic
topology on M ′. Similarly the quotient topology on M ′′ given by the a-adic topology on M is
precisely the a-adic topology on M ′′. Thus the result follows from the exactness properties of
the inverse limit. �

2. Completion of Rings continued

We shall first show that for a noetherian ring A, an ideal a ⊂ A and a finitely generated A module

M the Â modules M̂ and Â ⊗A M are isomorphic. Here Â and M̂ are the a-adic completions.
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As a consequence we shall show that Â is a flat A algebra. These results are not true in general
without the noetherian assumption on A.

Remark. Let A be a ring, a ⊂ A an ideal and M be an A module. Let Â and M̂ be the a-adic

completions, then we have a natural morphism Â module homomorphism Â⊗AM → M̂ which

is given as follows: There is a natural map ı : M → M̂ , and the map Â ×M → M̂ given by
(a,m) 7→ aı(m) is clearly A-bilinear, hence it induces a linear map from the tensor product.

Theorem 9. Let Let A be a ring, a ⊂ A an ideal and M be a finitely generated A module. Let

Â and M̂ be the a-adic completion. Then the map Â⊗A M̂ → M̂ is surjective. Moreover, if A

is noetherian then Â⊗A M̂ → M̂ is an isomorphism.

Proof. Using the inverse limit description it follows that if F ∼= An then Â ⊗A F ∼= F̂ ∼= Ân.
Since M is finitely generated, we have an exact sequence of A modules

0→ N → An →M → 0.

This gives rise to a commutative diagram

Â⊗A N
a //

f
��

Ân b //

g
��

Â⊗A M

h
��

// 0

0 // N̂
c // Ân d // M̂ // 0

The top line is exact since tensor product is right exact. The bottom line is exact because of
Proposition 8. Since d is surjective and g is an isomorphism, so h must be surjective.

If A is noetherian, f is also surjective by the same reasoning. Some diagram chasing shows that
h is injective in this case. Suppose x′′ ∈ ker(h) and let x ∈ b−1{x′′}. Since d(g(x)) = h(x′′) = 0,

there exists y′ ∈ N̂ such that c(y′) = g(x). Pick x′ ∈ f−1{y′}. Then g(a(x′)) = c(y′) = g(x),
but g is an isomorphism, hence x = a(x′). Therefore, x′′ = b(a(x′)) = 0. �

Hence as a corollary we have the following result. Recall to check that a module is flat it
is enough to check that tensor product with it preserves injectivity of a morphism of finitely
generated modules.

Corollary 10. If A is noetherian and a ⊂ A an ideal, the a-adic completion Â is a flat A algebra.

Remark. Note that if M is not finitely generated M 7→ M̂ may not be an exact functor. However

M 7→ Â⊗A M is exact, and the two functors coincide on finitely generated modules.

Exercise (iii). Let A be a noetherian ring and a ⊂ A an ideal. Suppose Â is the a-adic
completion of A then show that:

(a) â = Âa ∼= Â⊗A a,
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(b) (̂an) = (â)n, and

(c) an/an+1 ∼= ân/ân+1.

Proposition 11. If A is noetherian and a ⊂ A an ideal, then â is contained in the Jacobson

radical of Â the a-adic completion.

Proof. There is an exact sequence 0 → an → A → A/an → 0. Thus taking completions and
using Exercise (iii) we get an exact sequence

0→ ân → Â→ Â/an → 0.

Since A/an has discrete topology Â/an ∼= A/an, thus A/an ∼= Â/ân. Taking inverse limits we

see that (̂Â) ∼= Â, where (̂Â) is the â-adic completion of Â, showing that Â is complete in the
â-adic topology. For any x ∈ â the sequence yn = 1 + x + . . . + xn is clearly Cauchy hence it

converges to an element y in Â. We also have

(1− x)yn = 1− xn−1,
hence by continuity of multiplication we must have y(1− x) = 1. Thus for any x ∈ â, 1− x is a
unit. This proves that â is conained in the Jacobson radical. �

Exercise (iv). If A is noetherian, a ⊂ A an ideal and Â the a-adic completion of A then show

that there is a bijection between the maximal ideals of Â and the maximal ideals of A/a. If a is

a maximal ideal then show that Â is local with maximal ideal â.

Exercise (v). Let p ∈ Z be a prime, denote by Z(p) the localisation of Z at the prime ideal

(p) and by Ẑp the (p)-adic completion of Z or the ring of p-adic integers. Then show that Ẑp is
isomorphic to the pZ(p)-adic completion of Z(p).

Corollary 12. If A is a noetherian local ring with maximal ideal m, then the m-adic completion

Â is a local ring with maximal ideal m̂.

Proof. Since Â/m̂ ∼= A/m which is a field the ideal m̂ is maximal. Moreover by the previous

proposition any maximal ideal of Â must contain Â. Thus Â is local with the only maximal
ideal m. �

Remark. It is often the case that the completion of a local ring (with respect to its maximal
ideal) is easier to deal with than the local ring itself. This is especially useful in Algebraic
Geometry. Many of the properties of the local ring are preserved by the completion. To study
a noetherian ring R one often localises it at some prime ideal p, to get a local ring Rp, and then

completes with respect to the maximal ideal m = pRp to get a complete local ring R̂p. If we
start with R = Z and a prime ideal p = (p) we arrive at the p-adic integers.
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The next theorem by Krull determines the kernel of M → M̂ for an R module.

Theorem 13 (Krull’s theorem). Let A be a noetherian ring, a ⊂ A an ideal and M a finitely

generated A module. If M̂ denotes the a-adic completion of M and

E =
∞⋂
n=0

anM = ker(M → M̂)

then
E = {x ∈M | (1− α)x = 0 for some α ∈ a}.

That is ker(M → M̂) consists precisely of elements of M annihilated by some element of 1 + a.

Proof. One side inclusion is trivial. If (1− α)x = 0 then x = αx = α2x = . . . , so x ∈ anM for
all n > 0 which means x ∈ E.

On the other hand aE = E and being a submodule of a finitely generated module over a
noetherian ring, E is itself finitely generated. Let a1, . . . , xn generate E then xi = αixi for some
αi ∈ a. Consider the diagonal matrix D whose entries are α1, . . . , αn and I be the n×n identity
matrix then

det(In −D) = 1 + α for some α ∈ a

and (1 + α)x = 0 for all x ∈ E (consequence of Cayley-Hamilton theorem). �

Remark. In the setting of Krull’s theorem let S = 1 + a. Then S is a multiplicatively closed
subset of A. Consider the morphism φ : A → S−1A. If x ∈ ker(φ) then (1 + α)x = 0 for some
α ∈ a. Hence by Krull’s theorem

ker(φ) =

∞⋂
n=0

an = ker(A→ Â).

Corollary 14. Let A be a noetherian ring, a ⊂ A an ideal and M a finitely generated A

module. If Â denotes the a-adic completion of A and S = 1 + a then there is an injective ring
homomorphism

S−1A→ Â.

Hence S−1A can be regarded as a subring of Â.

Proof. The morphism A → Â extends to S−1A → Â since any element of 1 + a is a unit in Â.
For any α ∈ a, 1 − α + α2 + . . . is the inverse of (1 + α) (see proof of Proposition 11.) This
morphism is injective by Krull’s theorem. �

Exercise (vi) (In what generality is this true?). Let A be a noetherian ring and m ⊂ A be a
maximal ideal. We denote by Am the localisation of A at m and by n = mAm the maximal ideal
of Am then

Â ∼= Âm

where Â is the m-adic completion of A and Âm is the n-adic completion of Âm.
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Exercise (vii). Let Ẑp be the ring of p-adic integers for some prime p ∈ Z. Show that the

power series ring Ẑp[[x]] in one variable is isomorphic to the (p, x)-adic completion of Z[x].

We shall end this lecture with some more easy but useful corollaries of Krull’s theorem.

Corollary 15. Let A be a noetherian integral domain and a 6= (1) an ideal then ∩nan = (0).

In particular the map A→ Â the a-adic completion is injective, hence A is a subring of Â.

Proof. There are no zero-divisors in 1 + a so the result follows by Krull’s theorem. �

Corollary 16. Let A be a noetherian ring, a an ideal of A contained in the Jacobson radical

and M be a finitely generated A module. Then ∩nanM = 0 and the morphism M → M̂ into
the a-adic completion is injective.

Proof. The elements of 1 + a are units hence they do not annihilate any element. �

As a special case we have.

Corollary 17. For a noetherian local ring A with maximal ideal m and a finitely generated A

module M , we have ∩∞n=1m
nM = 0, hence the map M → M̂ the a-adic completion is injective.

In particular ∩∞n=1m
n = (0) hence A→ Â is injective.
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